Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (488)

Search Parameters:
Keywords = non-woven fabrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7328 KB  
Article
Assessing the Influence Zone and Drainage Efficiency of Geotextiles with Enhanced Lateral Drainage Abilities in Unsaturated Soil Systems
by Shakeel Abid Mohammed and Jorge G. Zornberg
Geosciences 2026, 16(1), 22; https://doi.org/10.3390/geosciences16010022 - 1 Jan 2026
Viewed by 203
Abstract
The hydraulic performance of woven geotextiles is frequently overlooked in roadway design, despite their extensive use for reinforcement applications. Woven geotextiles are typically manufactured from hydrophobic polymers such as polypropylene or polyester and can act as capillary barriers under unsaturated conditions. This results [...] Read more.
The hydraulic performance of woven geotextiles is frequently overlooked in roadway design, despite their extensive use for reinforcement applications. Woven geotextiles are typically manufactured from hydrophobic polymers such as polypropylene or polyester and can act as capillary barriers under unsaturated conditions. This results in moisture accumulation at the soil–geotextile interface, adversely impacting long-term pavement performance. Such problems can be effectively mitigated using geotextiles with enhanced lateral drainage (ELD) capabilities, which are engineered with hydrophilic fibers to facilitate capillary-driven lateral water movement under unsaturated conditions. This functionality facilitates the redistribution of moisture away from the interface, mitigating moisture retention and enhancing drainage performance. The hydraulic performance of geotextiles with enhanced lateral drainage capabilities under unsaturated conditions remains insufficiently understood, particularly in terms of their influence zone and drainage efficiency. For this reason, the present study evaluates the lateral drainage behavior of an ELD geotextile using a soil column test, compared against a control setup without a geotextile and with a non-woven geotextile. Two moisture migration scenarios, namely capillary rise and vertical infiltration, were simulated, with the water table varied at multiple depths. Moisture sensors were embedded along the column depth to monitor real-time water content variations. Results show that the ELD geotextile facilitated efficient lateral drainage, with a consistent influence zone extending up to 2 inches below the fabric. Under infiltration, the ELD geotextile reduced moisture accumulation by 30% around the geotextile, highlighting its superior drainage behavior. These findings encourage practicing engineers to adopt rational, performance-based designs that leverage ELD geotextiles to enhance subgrade drainage and moisture control in pavement and geotechnical applications. Full article
Show Figures

Figure 1

13 pages, 1222 KB  
Article
The ReSpool Fiber Research (RFR) Model: A Protocol for the Evaluation of Mechanically Recycled Textile Materials Towards “Second Life” Product Applications
by Kelly Cobb, Huantian Cao, Michelle Yatvitskiy, Kendall Ludwig and Sophia Gupman
Sustainability 2025, 17(23), 10753; https://doi.org/10.3390/su172310753 - 1 Dec 2025
Viewed by 436
Abstract
Textile recycling promotes a circular economy, a system seeking to minimize waste and maximize the value of textiles by reusing them. Currently, mechanical recycling produces short, weak, and low-quality fibers that diminish the value of the textiles, resulting in downcycled products and loss [...] Read more.
Textile recycling promotes a circular economy, a system seeking to minimize waste and maximize the value of textiles by reusing them. Currently, mechanical recycling produces short, weak, and low-quality fibers that diminish the value of the textiles, resulting in downcycled products and loss of value. The Respool Fiber Research (RFR) model was developed from an examination of current practices, relevant literature, and apparel design and material selection models. Demonstrating the capabilities of mechanically recycled textiles in material development, the RFR model is intended for educators, research laboratories and design studios, product developers, and designers. The RFR model ventures beyond current models of textile recycling through its fiber-oriented approach to material development. To demonstrate the application of the RFR model as part of the development process, mechanically recycled cotton fibers and polyester fibers were used to develop yarns and nonwoven fabrics. The application of the RFR model demonstrated that the RFR model is valuable for selecting which recycled fibers are appropriate for different types of products. Full article
Show Figures

Figure 1

20 pages, 7443 KB  
Article
Sweat-Resistant Parylene-C Encapsulated Conductive Textiles for Active Thermal Management
by Shi Hu, Dan Wang, Mohanapriya Venkataraman, Jiří Militký, Dana Křemenáková and Martin Palušák
Polymers 2025, 17(21), 2952; https://doi.org/10.3390/polym17212952 - 5 Nov 2025
Viewed by 907
Abstract
The development of electro-thermal textiles has attracted growing interest as a promising approach for active thermal management in wearable systems. Metallic-coated fabrics can efficiently generate heat through the Joule effect; however, their long-term performance and safety are severely limited under perspiration due to [...] Read more.
The development of electro-thermal textiles has attracted growing interest as a promising approach for active thermal management in wearable systems. Metallic-coated fabrics can efficiently generate heat through the Joule effect; however, their long-term performance and safety are severely limited under perspiration due to metal ion release and corrosion. To overcome these challenges, this study introduces a Parylene-C encapsulation strategy for copper-coated polyethylene terephthalate nonwovens (CuPET) using a chemical vapor deposition (CVD) process. The conformal, biocompatible Parylene-C films (thickness 4–16 μm) act as effective protective barriers while preserving the porous textile structure. Morphological and comfort analyses demonstrate a controlled reduction in air permeability from 3100 to 1100 L·m−2·s−1, maintaining acceptable breathability. Electro-thermal measurements reveal rapid and uniform heating, reaching 40–45 °C within 2 min at 2 V, and the addition of a thermal insulation layer further enhances the Joule heating efficiency, increasing the steady-state temperature by approximately 6 °C. ICP–OES results show an ≈80% reduction in copper ion release (from 28.34 mg·L−1 to 5.80 mg·L−1) after artificial sweat exposure. This work demonstrates a scalable encapsulation route that effectively balances sweat protection, electrical stability, and thermal performance, paving the way for safe, durable, and actively heated smart textiles for advanced thermal insulation applications. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Textiles)
Show Figures

Figure 1

31 pages, 2913 KB  
Review
Mitigation Techniques of Membranes’ Biofouling in Bioelectrochemical Cells (BEC Cells): Recent Advances
by Shatha Alyazouri, Muhammad Tawalbeh and Amani Al-Othman
Membranes 2025, 15(11), 332; https://doi.org/10.3390/membranes15110332 - 1 Nov 2025
Viewed by 1416
Abstract
Biofouling remains a critical challenge in bioelectrochemical cells (BECs), hindering their efficiency and performance. This research article reviews advances in biofouling mitigation techniques within BEC systems during the period from 2019 to 2025, focusing on membrane modifications and electro-assisted membrane technologies. Through comprehensive [...] Read more.
Biofouling remains a critical challenge in bioelectrochemical cells (BECs), hindering their efficiency and performance. This research article reviews advances in biofouling mitigation techniques within BEC systems during the period from 2019 to 2025, focusing on membrane modifications and electro-assisted membrane technologies. Through comprehensive analysis, it is revealed that Nafion alternatives, including ceramic membranes and recycled nonwoven fabrics like polypropylene, have emerged as significant contenders due to their combination of low cost and high performance. Additionally, the incorporation of silver, zeolite, and graphene oxide onto membranes has demonstrated efficacy in mitigating biofouling under laboratory conditions. Furthermore, the application of direct current electric fields has shown potential as a chemical-free preventative measure against biofouling in BECs. However, challenges related to long-term stability, scalability, and cost-effectiveness must be addressed for widespread adoption. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

32 pages, 16609 KB  
Article
NMR, FT-IR, XRD, SEM, and ANN Complex Characterization of Some Nonwoven Materials Produced by Electrospinning
by Ramona Crainic, Petru Pășcuță, Florin Popa and Radu Fechete
Materials 2025, 18(21), 4893; https://doi.org/10.3390/ma18214893 - 25 Oct 2025
Viewed by 1033
Abstract
Electrospinning is a versatile technique used to manufacture nanofibers by applying an electric field to a polymer solution. This method has gained significant interest in the biomedical, pharmaceutical, and materials engineering fields due to its ability to produce porous structures with a high [...] Read more.
Electrospinning is a versatile technique used to manufacture nanofibers by applying an electric field to a polymer solution. This method has gained significant interest in the biomedical, pharmaceutical, and materials engineering fields due to its ability to produce porous structures with a high specific surface area, making it ideal for applications such as wound dressings, controlled drug delivery systems, and tissue engineering. The materials used in electrospinning play a crucial role in determining the final properties of the obtained nonwoven nanofibers. Among the most studied substances are chitosan, collagen, and fish-derived gelatin, which are biopolymers with high biocompatibility. These materials are especially used in the medical and pharmaceutical fields due to their bioactive properties. In combination with synthetic polymers such as polyethylene glycol (PEG) and polyvinyl alcohol (PVA), these biopolymers can form electrospun fibers with improved mechanical characteristics and enhanced structural stability. The characterization of these materials was performed using modern characterization techniques, such as one-dimensional (1D) proton NMR spectroscopy (1H), for which the spin–spin relaxation time distributions T2 were characterized. Additionally, two-dimensional (2D) measurements were conducted, for which EXSY T2-T2 and COSY T1-T2 exchange maps were obtained. The characterization was complemented with FT-IR spectra measurements, and the nanofiber morphology was observed using SEM. As a novelty, machine learning methods, including artificial neural networks (ANNs), were applied to characterize the local structural order of the produced nanofibers. In this study, it was shown that the nanofiber nonwoven materials made from PVA are characterized by a degree of order in the range of 0.27 to 0.61, which are more ordered than the nanofibers made from chitosan and fish gelatin, characterized by an order degree ranging from 0.051 to 0.312, where 0 represents the completely unordered network and 1 a fully ordered fabric. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

16 pages, 4000 KB  
Article
Influence of Fabric Support on Improving the Layer-by-Layer Polyethersulfone Membrane Performance
by Ahmed A. Bhran, Abdelrahman G. Gadallah, Eman S. Mansor and Heba Abdallah
Polymers 2025, 17(21), 2825; https://doi.org/10.3390/polym17212825 - 23 Oct 2025
Viewed by 619
Abstract
This work is based on studying the effect of different kinds of support on the prepared reverse osmosis membranes. Different kinds of woven and non-woven supports were tested and characterized to select the best one for RO membrane preparation. The prepared membrane on [...] Read more.
This work is based on studying the effect of different kinds of support on the prepared reverse osmosis membranes. Different kinds of woven and non-woven supports were tested and characterized to select the best one for RO membrane preparation. The prepared membrane on polyester woven support (M1ws) provides 39.9 LMH permeate flux using a piperazine coagulation bath during membrane preparation, while polyester non-woven support (M2ns) exhibits the highest salt rejection percentage, which was 92.2% using a Melamine coagulation bath. The mechanical properties for preparing membranes using supports were arranged in descending order as follows: M1ws > M2ns > M3np. The membrane on polypropylene support (M3np) provides the lowest mechanical properties. Full article
(This article belongs to the Special Issue Preparation and Application of Polymer Membranes)
Show Figures

Figure 1

15 pages, 1220 KB  
Article
Integration of Postbiotics into Adult Diapers: In Vitro Evaluation of Biocompatibility and Effect on Skin Microbiota
by Oznur Ozlem Ibrahimoglu, Leyla Tarhan Celebi, Dilan Ece Dikbiyik, Halise Betul Gokce, Bekir Cakici, Zafer Türkoğlu, Ayse Nilhan Atsu and Ismail Aslan
Life 2025, 15(11), 1652; https://doi.org/10.3390/life15111652 - 23 Oct 2025
Viewed by 811
Abstract
Postbiotics are bioactive microbial metabolites recognized for their potential to support skin health and balance the microbiota. In this study, nonwoven fabrics and adult diaper prototypes, with and without postbiotic incorporation, were evaluated for their effects on skin microbiota, epidermal integrity, and cytotoxicity. [...] Read more.
Postbiotics are bioactive microbial metabolites recognized for their potential to support skin health and balance the microbiota. In this study, nonwoven fabrics and adult diaper prototypes, with and without postbiotic incorporation, were evaluated for their effects on skin microbiota, epidermal integrity, and cytotoxicity. In vitro assays using reconstructed human epidermis and keratinocyte cell lines demonstrated that postbiotic-containing samples maintained high tissue and cell viability. Microbiota diversity analyses confirmed that postbiotic formulations maintained a favorable ratio of Staphylococcus epidermidis to Staphylococcus aureus. Collectively, these findings indicate that ATA-coded postbiotic-embedded nonwoven and adult diaper prototypes are skin microbiota-friendly, safe for epidermal contact, and stable in their bioactive compound content. These results underscore the potential of postbiotics as functional agents in personal hygiene products to promote skin health. Full article
Show Figures

Graphical abstract

10 pages, 833 KB  
Article
Behavioral Suppression and Rapid Lethality: Beauveria bassiana B4 Targets Adult Monochamus alternatus for Sustainable Management of Pine Wilt Disease
by Yaqi Zhang, Xuejie Zhang, Liudi An, Dongfeng Gong, Jinsheng Wang, Huitao Bi, Yi Zheng, Lei Cao and Shaohui Lu
Insects 2025, 16(10), 1045; https://doi.org/10.3390/insects16101045 - 12 Oct 2025
Viewed by 1178
Abstract
Pine wilt disease, transmitted primarily by Monochamus alternatus (Hope, 1842) adults, causes severe ecological and economic losses globally. Conventional chemical controls face challenges of resistance and non-target toxicity. This study identified Beauveria bassiana (Bals.-Criv.) Vuill. strain B4 as a high-virulence biocontrol agent against [...] Read more.
Pine wilt disease, transmitted primarily by Monochamus alternatus (Hope, 1842) adults, causes severe ecological and economic losses globally. Conventional chemical controls face challenges of resistance and non-target toxicity. This study identified Beauveria bassiana (Bals.-Criv.) Vuill. strain B4 as a high-virulence biocontrol agent against adult M. alternatus. Laboratory bioassays compared four strains (B1–B4), with B4 exhibiting rapid lethality (LT50 = 6.61 days at 1 × 108 spores/mL) and low median lethal concentration (LC50 = 9.63 × 105 spores/mL). Critically, B4 infection induced significant behavioral suppression, including reduced appetite and mobility prior to death. In forest trials, pheromone-enhanced nonwoven fabric bags impregnated with B4 spores reduced trap catches by 66.4% within one month, with effects persisting for over a year without reapplication. The slow-release carrier system enabled continuous spore dissemination and sustained population suppression. These results demonstrate that B4’s dual action—rapid lethality and behavioral disruption—provides an effective, eco-friendly strategy for sustainable pine wilt disease management. Full article
Show Figures

Graphical abstract

15 pages, 3467 KB  
Article
Repeated Impact Performance of Carbon Spread-Tow Woven Stitched Composite with Anti-Sandwich Structure
by Minrui Jia, Jingna Su, Ao Liu, Teng Fan, Liwei Wu, Kunpeng Luo, Qian Jiang and Zhenkai Wan
Polymers 2025, 17(19), 2670; https://doi.org/10.3390/polym17192670 - 2 Oct 2025
Viewed by 761
Abstract
Spread-tow woven fabrics (STWs) have attracted considerable attention owing to their thin-layered characteristics, high fiber strength utilization rate and superior designability, finding wide application in the aerospace field. To meet the application requirements for materials with high specific strength/specific modulus in the aerospace [...] Read more.
Spread-tow woven fabrics (STWs) have attracted considerable attention owing to their thin-layered characteristics, high fiber strength utilization rate and superior designability, finding wide application in the aerospace field. To meet the application requirements for materials with high specific strength/specific modulus in the aerospace field, this study designed an anti-sandwich structured composite with high specific load-bearing capacity. Herein, the core layer was a load-bearing structure composed of STW, while the surface layers were hybrid lightweight structures made of STW and nonwoven (NW) felt. Repeated impact test results showed that increasing the thickness ratio of the core layer enhanced the impact resistant stiffness of the overall structure, whereas increasing the proportion of NW felt in the surface layers improved the energy absorption of the composites but reduced their load-bearing stiffness and strength. The composite exhibited superior repeated impact resistance, achieving a peak impact load of 17.43 kN when the thickness ratio of the core layer to the surface layers was 2:1 and the hybrid ratio of the surface layers was 3:1. No penetration occurred after 20 repeated impacts at the 50 J or 3 repeated impacts at 100 J. Meanwhile, both the maximum displacement and impact duration increased, whereas the bending stiffness declined as the number of impacts increased. The failure mode was mainly characterized by progressive interfacial cracking in the surface layers and fracture in the core layer. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 6337 KB  
Article
Polymer-Metallic Systems Functionalizing Polylactide Nonwovens as a Greener Alternative to Modified Polypropylene-Based Textiles
by Maria Czajka, Dawid Stawski, Lucyna Herczyńska and Michał Puchalski
Coatings 2025, 15(9), 996; https://doi.org/10.3390/coatings15090996 - 28 Aug 2025
Viewed by 885
Abstract
This study focuses on functionalized nonwoven fabrics, modified with complexes of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and divalent metal ions (M2+). A bioactive PDMAEMA with tertiary amines was synthesized and applied to nonwoven fabrics using a spray-coating method. Functionalization was achieved by in [...] Read more.
This study focuses on functionalized nonwoven fabrics, modified with complexes of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and divalent metal ions (M2+). A bioactive PDMAEMA with tertiary amines was synthesized and applied to nonwoven fabrics using a spray-coating method. Functionalization was achieved by in situ complexation on PDMAEMA-modified nonwovens with solutions of divalent metal salts. The aim of the study was to demonstrate that the proposed textiles can serve as biologically active materials, effectively inhibiting the growth of harmful bacteria. The modification process was designed to ensure that the amount of PDMAEMA was sufficient to cover the entire surface of the nonwoven fabric. The weight efficiency of the polymer application was approximately 1.4% and 2.0%. The presence of the polymer was confirmed through functional group analysis and electrokinetic property measurements. The PDMAEMA surface layer on the nonwoven fabrics was subsequently cross-linked by divalent metal ions (M2+), supplied from aqueous solutions of the corresponding salts, thereby converting the modifier into an insoluble form. Morphological changes in the functionalized nonwoven fabrics demonstrated the effect of the complexes on surface topography. Energy-dispersive X-ray microanalysis confirmed the presence of metal ions on the functionalized nonwoven fabrics. The modified polylactide (PLA) nonwoven fabrics exhibited antibacterial properties against Escherichia coli. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

16 pages, 3217 KB  
Article
Design of a Hybrid 3D-Printed Composite Material Based on Non-Woven Needle-Punched Fabrics with Radio-Absorbing Properties
by Victor Nazarov, Fedor Doronin, Alexander Dedov, Andrey Evdokimov, Georgy Rytikov and Mikhail Savel’ev
Polymers 2025, 17(17), 2324; https://doi.org/10.3390/polym17172324 - 27 Aug 2025
Cited by 3 | Viewed by 1044
Abstract
The paper proposes a manufacturing technology for the non-woven/3D-printed (N3DP) hybrid material (HM) with improved radio-absorbing properties. We have fabricated the needle-punched non-woven felt and impregnated it with the carbon fibers containing UV-curable photopolymer resin. The functional 3D-printed layer was attached to the [...] Read more.
The paper proposes a manufacturing technology for the non-woven/3D-printed (N3DP) hybrid material (HM) with improved radio-absorbing properties. We have fabricated the needle-punched non-woven felt and impregnated it with the carbon fibers containing UV-curable photopolymer resin. The functional 3D-printed layer was attached to the highly porous, deformable polymer substrate by the fused deposition modeling (FDM) technique. The preliminary bulk modification of the filament was realized with the IR- and UV-pigment microcapsules filling. The combination of additive prototyping and non-woven needle-punched fabrics surface modification (by the electrically conductive elements 2D-periodic system applying) expands the frequency range of the electromagnetic radiation effective absorption. It provides the possibility of a reversible change in the color characteristics of the hybrid material surface under the influence of the UV and IR radiation. Full article
Show Figures

Figure 1

21 pages, 5155 KB  
Article
Dynamic Degradation of Seed Ropes: Influence of Material Type and Adhesion to Different Soils
by Jiaoyang Duan, Xiang Liu and Baolong Wang
Agronomy 2025, 15(9), 2065; https://doi.org/10.3390/agronomy15092065 - 27 Aug 2025
Viewed by 883
Abstract
Seed rope direct seeding technology is a precision seeding method that can accurately mix and arrange multiple varieties based on specific grain spacing and quantity, making it suitable for precision breeding and variety comparison studies. As seed ropes serve as the crucial seed [...] Read more.
Seed rope direct seeding technology is a precision seeding method that can accurately mix and arrange multiple varieties based on specific grain spacing and quantity, making it suitable for precision breeding and variety comparison studies. As seed ropes serve as the crucial seed encapsulation material in seed rope direct seeding, this study employed a multi-faceted approach to investigate the dynamic degradation of nonwoven fabric and paper material seed ropes under diverse environmental conditions as well as their adhesion properties with Ultisols, Oxisols, and the Substrate in this seeding technique. Firstly, the degradation dynamics were systematically analyzed using image-based surface area detection, breaking force measurement, and organic carbon content analysis. Secondly, the process of seed rope laying was simulated by modeling the sliding friction and adhesion forces during the detachment of soil slurry. The laying motion was simulated considering both sliding friction (during the uniform-speed interaction between the seed rope and soil slurry) and adhesion (during upward detachment), providing crucial reference values for optimizing the rope-breaking mechanism in field applications. The study yielded several significant findings: In natural environments, Wood pulp paper seed rope degrades significantly faster than nonwoven fabric, with a degradation cycle of only 5.68 days in winter (approximately 34% of the degradation cycle of nonwoven fabric) and 4.70 days in summer (approximately 78% of the degradation cycle of nonwoven fabric). The main effect of seed viability on the degradation rate of seed tapes was not statistically significant. The degradation of Wood pulp paper seed rope was relatively predictable in indoor settings but exhibited notable fluctuations outdoors. The peak friction occurred at 35% soil moisture content, with values of 1.22 N for Wood pulp paper seed rope and 2.08 N for nonwoven fabric when interacting with Oxisols; nonwoven ropes demonstrated stronger adhesion than Wood pulp paper seed rope in the Substrate (at moisture contents of 25–30% and 40–45%) and Oxisols (at 35–45% moisture). In Ultisols, nonwoven fabric only showed superior adhesion compared to Wood pulp paper seed rope at 35–45% moisture, while Wood pulp paper seed rope exhibited better adhesion in other moisture ranges. Full article
Show Figures

Figure 1

19 pages, 3437 KB  
Article
Sustainable Acrylic Thermoplastic Composites via Vacuum-Assisted Resin Infusion Molding: Evaluation and Comparison of Fabrics and Recycled Non-Woven Carbon Fiber as Reinforcement
by Sara Taherinezhad Tayebi, Tommaso Pini, Bruno Caruso, Matteo Sambucci, Irene Bavasso, Fabrizio Sarasini, Jacopo Tirillò and Marco Valente
J. Compos. Sci. 2025, 9(8), 441; https://doi.org/10.3390/jcs9080441 - 17 Aug 2025
Viewed by 1591
Abstract
Recently, environmental issues have compelled people worldwide to pursue sustainability and adopt circular economy practices across all engineering sectors, including polymer engineering and composite fabrication. A transition towards fabric-reinforced thermoplastics (FRTPs), a greener solution, has been recommended in recent years. On the other [...] Read more.
Recently, environmental issues have compelled people worldwide to pursue sustainability and adopt circular economy practices across all engineering sectors, including polymer engineering and composite fabrication. A transition towards fabric-reinforced thermoplastics (FRTPs), a greener solution, has been recommended in recent years. On the other hand, utilizing recovered reinforcing phases, such as recycled carbon fiber (rCF), has attracted tremendous attention. In this framework, the aim of this research is to investigate the performance of acrylic-based FRTPs (Elium® resin developed by Arkema). Woven virgin carbon fiber (vCF) and non-woven recycled carbon fiber (rCF) fabrics were used as reinforcement architectures for the fabrication of composites via resin infusion. The optimized formulation selected for the matrix showed flexural modulus and flexural strength of 5 GPa and 78 MPa, respectively. Composites prepared with woven vCF reached 36 GPa and 620 MPa values of flexural modulus and strength, respectively. The study of non-woven fabric is of particular interest, because the web is composed of recycled carbon fibers obtained from end-of-life (EoL) thermoset composite components. The results were promising; the flexural modulus reached 8 GPa, and the flexural strength was 113 MPa. Improvements are anticipated, especially in the parameters and conditions of the molding process. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

18 pages, 4144 KB  
Article
Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications
by Magdalena Georgievska, Benny Malengier, Lucas Roelofs, Sufiyan Derbew Tiku and Lieva Van Langenhove
Appl. Sci. 2025, 15(16), 9002; https://doi.org/10.3390/app15169002 - 14 Aug 2025
Cited by 1 | Viewed by 1023
Abstract
Thermocouples can be combined into thermopiles to sense heat differences or achieve localized heating and cooling. However, integrating them into textiles using yarns is not straightforward, and chemical methods face challenges like complex processing, poor scalability, and voltage non-uniformity. This study employs conventional [...] Read more.
Thermocouples can be combined into thermopiles to sense heat differences or achieve localized heating and cooling. However, integrating them into textiles using yarns is not straightforward, and chemical methods face challenges like complex processing, poor scalability, and voltage non-uniformity. This study employs conventional weaving to fabricate textile-based thermocouples and thermopiles for wearable sensing and potential cooling applications, with a focus on protective clothing. Using stainless steel and nickel-coated carbon yarns, we demonstrate a more stable thermocouple than those made with chemical or welded methods, with minimal fabric damage. Four conductive yarns, stainless steel, carbon fiber (CF), and nickel-coated carbon fiber (NiFC), were woven and laser-cut to form thermocouples using three different binding types to connect them. Inox1–NiFC was the most efficient thermocouple, achieving the highest Seebeck coefficient of 21.87 µV/K with Binding 3. Binding 3 also reduced contact resistance by 66% across all configurations. Slightly lower but comparable performance was seen with Inox1–NiFC/Binding 2 (21.83 µV/K) and Inox2–NiFC/Binding 1 (15.79 µV/K). In contrast, FC-based thermocouples showed significantly lower Seebeck values: 5.67 µV/K (Inox2–FC/Binding 2), 5.43 µV/K (Inox1–FC/Binding 3), and 5.06 µV/K (Inox2–FC/Binding 1). A woven thermopile with three junctions made with the optimal binding and thermocouple combination generated an average of 55.54 µV/K and about 500 µV at small temperature differences (4–5 °C), with a linear voltage response suitable for sensing. While thermal sensing proved effective, Peltier cooling needs further optimization. This method offers a stable, low-cost, and scalable platform for textile-integrated thermoelectric systems, with strong potential for use in uniforms and other protective garments. Full article
Show Figures

Figure 1

10 pages, 1885 KB  
Article
Plasma-Induced Amino HBP/Ag Nanoparticle-Grafted PP Melt-Blown Nonwoven Fabric and Its Antibacterial Performance
by Hongxia Chen, Wei Zhang, Weidong Gao and Guangyu Zhang
Coatings 2025, 15(8), 947; https://doi.org/10.3390/coatings15080947 - 13 Aug 2025
Viewed by 749
Abstract
In this work, polypropylene (PP) melt-blown nonwoven fabric was used as a raw material, which was plasma-treated and grafted with HBP/Ag nanoparticle (NP) solution. The surface wettability, surface morphology, and surface element composition after the treatment were evaluated through a contact angle test, [...] Read more.
In this work, polypropylene (PP) melt-blown nonwoven fabric was used as a raw material, which was plasma-treated and grafted with HBP/Ag nanoparticle (NP) solution. The surface wettability, surface morphology, and surface element composition after the treatment were evaluated through a contact angle test, field emission scanning electron microscopy (FE-SEM), energy-dispersive spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR), respectively. The antibacterial activity of PP fabrics treated with Ag NPs against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was measured. SEM and EDS results showed that Ag NPs were evenly dispersed on the surface of the PP fabrics. The PP fabrics treated with Ag NPs exhibited excellent antibacterial performance. Full article
(This article belongs to the Special Issue Recent Progress on Functional Films and Surface Science)
Show Figures

Graphical abstract

Back to TopTop