Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (405)

Search Parameters:
Keywords = non-vertical well

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 766 KiB  
Systematic Review
Molecular Mechanisms Underlying Inflammation in Early-Onset Neonatal Sepsis: A Systematic Review of Human Studies
by Anca Vulcănescu, Mirela-Anișoara Siminel, Anda-Lorena Dijmărescu, Maria-Magdalena Manolea, Sidonia-Maria Săndulescu, Virginia Maria Rădulescu, Valeriu Gheorman and Sorin-Nicolae Dinescu
J. Clin. Med. 2025, 14(15), 5315; https://doi.org/10.3390/jcm14155315 - 28 Jul 2025
Viewed by 283
Abstract
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be [...] Read more.
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be challenging. Clinical presentations are often nonspecific, laboratory confirmation is often delayed, and immune responses vary considerably among neonates. Expanding our understanding of the molecular mechanisms underlying EOS is essential in enhancing early detection, refining risk stratification, and guiding therapeutic strategies. This systematic review aims to synthesize the available information on the molecular pathways involved in EOS, focusing on pathogen-induced inflammation, systemic immune responses, sterile inflammatory processes, interactions between infectious and non-infectious pathways, as well as emerging molecular diagnostic approaches. Methods: A comprehensive review of original research articles and reviews published between January 2015 and January 2025 was conducted; studies were included based on their focus on human neonates and their analysis of molecular or immunological mechanisms relevant to EOS pathogenesis, immune dysregulation, or novel diagnostic strategies. Results: Pathogen-driven inflammation typically involves the activation of Toll-like receptors (TLRs), the recruitment of neutrophils, and the release of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α, particularly in response to vertical transmission of organisms like Escherichia coli and Streptococcus agalactiae. Systemic inflammatory responses are marked by cytokine dysregulation, contributing to multi-organ dysfunction. Sterile inflammation, often initiated by hypoxia–reperfusion injury or intrauterine stress, amplifies susceptibility to sepsis. Interactions between immune, metabolic, and endothelial pathways further exacerbate tissue injury. Recent advances, including transcriptomic profiling, microRNA-based biomarkers, and immune checkpoint studies, offer promising strategies for earlier diagnosis and individualized therapeutic options. Conclusions: EOS arises from a complex interplay of infectious and sterile inflammatory mechanisms. A deeper molecular understanding holds promise for advancing correct diagnostics and targeted therapies, aiming to improve neonatal outcomes. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 280
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 3288 KiB  
Article
Non-Vertical Well Trajectory Design Based on Multi-Objective Optimization
by Xiaowei Li, Yu Li, Yang Wu, Zhaokai Hou and Haipeng Gu
Appl. Sci. 2025, 15(14), 7862; https://doi.org/10.3390/app15147862 - 14 Jul 2025
Viewed by 164
Abstract
The optimization and control of the wellbore trajectory is one of the important technologies to improve drilling efficiency, reduce drilling cost, and ensure drilling safety in the process of modern oil and gas exploration and development. In this paper, a multi-objective wellbore trajectory [...] Read more.
The optimization and control of the wellbore trajectory is one of the important technologies to improve drilling efficiency, reduce drilling cost, and ensure drilling safety in the process of modern oil and gas exploration and development. In this paper, a multi-objective wellbore trajectory optimization mathematical model is established, which takes into account the five factors of wellbore trajectory length, friction, torque, trajectory complexity, and target accuracy. A DR-NSGA-III-MGA algorithm (dynamic reference NSGA-III with multi-granularity adaptation) is proposed. By introducing multi-granularity reference vector generation and an information entropy-guided search direction adaptation mechanism, the performance of the algorithm in the complex target space is improved, and the three-stage wellbore trajectory is optimized. Simulation experiments show that the DR-NSGA-III-MGA algorithm is stable in a variety of complex problems, while maintaining good convergence, and has good generalization ability and practical application value. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 2881 KiB  
Article
Seismic Vulnerability Assessment and Sustainable Retrofit of Masonry Factories: A Case Study of Industrial Archeology in Naples
by Giovanna Longobardi and Antonio Formisano
Sustainability 2025, 17(13), 6227; https://doi.org/10.3390/su17136227 - 7 Jul 2025
Viewed by 271
Abstract
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential [...] Read more.
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential for adaptive reuse, transforming into vibrant cultural, commercial, or residential spaces through well-planned restoration and consolidation efforts. This paper explores a case study of such industrial architecture: a decommissioned factory near Naples. The complex consists of multiple structures with vertical supports made of yellow tuff stone and roofs framed by wooden trusses. To improve the building’s seismic resilience, a comprehensive analysis was conducted, encompassing its historical, geometric, and structural characteristics. Using advanced computer software, the factory was modelled with a macro-element approach, allowing for a detailed assessment of its seismic vulnerability. This approach facilitated both a global analysis of the building’s overall behaviour and the identification of potential local collapse mechanisms. Non-linear analyses revealed a critical lack of seismic safety, particularly in the Y direction, with significant out-of-plane collapse risk due to weak connections among walls. Based on these findings, a restoration and consolidation plan was developed to enhance the structural integrity of the building and to ensure its long-term safety and functionality. This plan incorporated metal tie rods, masonry strengthening through injections, and roof reconstruction. The proposed interventions not only address immediate seismic risks but also contribute to the broader goal of preserving this industrial architectural heritage. This study introduces a novel multidisciplinary methodology—integrating seismic analysis, traditional retrofit techniques, and sustainable reuse—specifically tailored to the rarely addressed typology of masonry industrial structures. By transforming the factory into a functional urban space, the project presents a replicable model for preserving industrial heritage within contemporary cityscapes. Full article
Show Figures

Figure 1

17 pages, 740 KiB  
Systematic Review
Accompanying Titanium Meshes and Titanium-Reinforced Membranes with Collagen Membranes in Vertical Alveolar Ridge Augmentations: A Systematic Review
by Amir-Ali Yousefi-Koma, Reza Amid, Anahita Moscowchi, Hanieh Nokhbatolfoghahaei and Mahdi Kadkhodazadeh
J. Funct. Biomater. 2025, 16(7), 246; https://doi.org/10.3390/jfb16070246 - 4 Jul 2025
Viewed by 728
Abstract
Background: Vertical ridge augmentations (VRAs), including guided bone regeneration (GBR) techniques, have been utilized in the reconstruction of deficient alveolar ridges for quite some time. GBR-based VRA procedures are technique-sensitive, operator-dependent, and often lead to complications detected during or after the treatment. The [...] Read more.
Background: Vertical ridge augmentations (VRAs), including guided bone regeneration (GBR) techniques, have been utilized in the reconstruction of deficient alveolar ridges for quite some time. GBR-based VRA procedures are technique-sensitive, operator-dependent, and often lead to complications detected during or after the treatment. The main objective of this systematic review was to include randomized and non-randomized human studies that investigated the regenerative outcome differences, as well as the incidence rates of healing and surgical complications of titanium meshes and/or titanium-reinforced membranes with and without collagen membranes utilized in GBR-based VRA. Methods: This systematic review has been prepared and organized according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines and is registered at PROSPERO (Registration ID: CRD420251002615). Medline via PubMed, Scopus, Web of Science, Embase, and the Cochrane Library were searched for eligible studies up to 5 June 2025. Randomized and non-randomized human clinical studies, except for case reports, focused on applying titanium meshes or titanium-reinforced membranes with or without collagen membranes in GBR-based VRA, were eligible. Results: A total of 119 patients from three human randomized clinical trials (RCTs) and one case series reported across nine articles were included. The addition of collagen membranes causes no significant differences in vertical bone gain or surgical/healing complication rates. Conclusions: The addition of collagen membranes on top of titanium meshes and titanium-reinforced membranes might not be necessary in GBR-based VRA. Further human RCTs are required to reach a reliable conclusion. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Graphical abstract

19 pages, 23214 KiB  
Article
Quantum Scattering by Multiple Slits—A Lippmann–Schwinger Approach
by Rafael M. Fortiny, Matheus E. Pereira and Alexandre G. M. Schmidt
Physics 2025, 7(3), 25; https://doi.org/10.3390/physics7030025 - 1 Jul 2025
Viewed by 290
Abstract
We investigate the non-relativistic scattering of a plane wave by a vertical segment formulating the problem in terms of the Lippmann–Schwinger equation in two spatial dimensions. Adjusting the coupling strength function we show how to implement the scattering by a system of multiple [...] Read more.
We investigate the non-relativistic scattering of a plane wave by a vertical segment formulating the problem in terms of the Lippmann–Schwinger equation in two spatial dimensions. Adjusting the coupling strength function we show how to implement the scattering by a system of multiple slits and by a Cantor set. We present detailed calculations of the scattered wave function for the line segment, as well as for the single, double, and multiple slits. We define reflection and transmission functions that are position-dependent in a defined region. From these results, we obtain the probability densities and differential and total cross-sections for these problems. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

18 pages, 1558 KiB  
Article
The Beekeeping Practice of Transhumance Bee Colonies—Quantitative Study of Honey Production Characteristics Based on a Questionnaire Survey in Hungary
by Aliz Feketéné Ferenczi, Andrea Bauerné Gáthy, István Szűcs and Angéla Kovácsné Soltész
Agriculture 2025, 15(13), 1405; https://doi.org/10.3390/agriculture15131405 - 29 Jun 2025
Viewed by 404
Abstract
This study examined the transhumance of bee colonies from the perspective of Hungarian beekeepers. Hungarian scientific literature on this topic is minimal. Therefore, it is necessary to assess the sustainability of the Hungarian beekeeping sector using a research method based on a survey [...] Read more.
This study examined the transhumance of bee colonies from the perspective of Hungarian beekeepers. Hungarian scientific literature on this topic is minimal. Therefore, it is necessary to assess the sustainability of the Hungarian beekeeping sector using a research method based on a survey of beekeepers. This research was based on a questionnaire (N = 1067). Basic statistical tools were used to analyse the data. To evaluate the differences between the individual category variables, we used the chi-square test for cross-stability and non-parametric tests were used. In this study, we defined four farm (apiary) size categories based on the number of bee colonies. Our results revealed statistically significant correlations between apiary size and transhumance, payment for the use of bee pastures and transhumance, as well as between the type of hive used and transhumance. Transhumance is mainly characteristic of semi-professional and professional apiaries. Hungarian beekeepers (typically small-scale and professional apiary size) traditionally give honey as a “gift” to landowners for the use of bee pastures, which is related to transhumance. In terms of the type of hive used, a significant difference can be seen between transhumance (28 kg/colony) and stationary apiaries (21 kg/colony) in the case of vertical hives. Full article
(This article belongs to the Special Issue Productivity and Efficiency of Agricultural and Livestock Systems)
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 735
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

9 pages, 454 KiB  
Article
Association Between Vertical Bone Defects and Interdental Papilla Loss in Periodontitis: A Cross-Sectional Analysis
by Hristina Maynalovska and Kamen Kotsilkov
Dent. J. 2025, 13(7), 294; https://doi.org/10.3390/dj13070294 - 29 Jun 2025
Viewed by 340
Abstract
Background: The interdental papilla plays a critical role in maintaining both the esthetic and functional integrity of the periodontium. Although the relationship between the papilla presence and the contact point–bone crest distance is well established, the impact of vertical bone defect morphology—common in [...] Read more.
Background: The interdental papilla plays a critical role in maintaining both the esthetic and functional integrity of the periodontium. Although the relationship between the papilla presence and the contact point–bone crest distance is well established, the impact of vertical bone defect morphology—common in periodontitis—remains largely unexplored. Aim: To assess the relationship between the loss of interdental papilla height and three site-specific factors—vertical bone defect morphology, probing depth, and papilla base width—in patients with periodontitis. Materials and Methods: Ten periodontitis patients contributing 28 interdental papillae adjacent to vertical bone defects were included. The recorded parameters included probing depth, papilla base width, and loss of papilla height. Intraoperative measurements of defect depth, mesiodistal width, and buccolingual width were also obtained. Patient-level variables, such as age, sex, oral hygiene, and gingival phenotype, were not controlled or included in the analysis, due to the small number of participants and the study’s focus on defect-level characteristics. Spearman’s rank correlation was used due to non-normal data distribution. Results: A moderate positive association was observed between the probing depth and loss of papilla height (ρ = 0.353), approaching but not reaching statistical significance (p = 0.066). Weak, non-significant associations were found with the remaining parameters (p > 0.05). Conclusions: Although no statistically significant associations were found, observed trends may indicate site-specific influences on the loss of papilla height. These preliminary findings highlight the need for further research with larger, well-characterized cohorts to better understand the factors affecting papilla stability in periodontitis. Full article
Show Figures

Figure 1

22 pages, 3392 KiB  
Article
Research on Wellbore Trajectory Optimization and Drilling Control Based on the TD3 Algorithm
by Haipeng Gu, Yang Wu, Xiaowei Li and Zhaokai Hou
Appl. Sci. 2025, 15(13), 7258; https://doi.org/10.3390/app15137258 - 27 Jun 2025
Viewed by 401
Abstract
In modern oil and gas exploration and development, wellbore trajectory optimization and control is the key technology to improve drilling efficiency, reduce costs, and ensure safety. In the drilling operation of non-vertical wells in complex formations, the traditional static trajectory function, combined with [...] Read more.
In modern oil and gas exploration and development, wellbore trajectory optimization and control is the key technology to improve drilling efficiency, reduce costs, and ensure safety. In the drilling operation of non-vertical wells in complex formations, the traditional static trajectory function, combined with the classical optimization algorithm, has difficulty adapting to the parameter fluctuation caused by formation changes and lacks real-time performance. Therefore, this paper proposes a wellbore trajectory optimization model based on deep reinforcement learning to realize non-vertical well trajectory design and control while drilling. Aiming at the real-time optimization requirements of complex drilling scenarios, the TD3 algorithm is adopted to solve the problem of high-dimensional continuous decision-making through delay strategy update, double Q network, and target strategy smoothing. After reinforcement learning training, the trajectory offset is significantly reduced, and the accuracy is greatly improved. This research shows that the TD3 algorithm is superior to the multi-objective optimization algorithm in optimizing key parameters, such as well deviation, kickoff point (KOP), and trajectory length, especially in well deviation and KOP optimization. This study provides a new idea for wellbore trajectory optimization and design while drilling, promotes the progress and development of intelligent drilling technology, and provides a theoretical basis and technical support for more accurate, efficient, concise, and effective wellbore trajectory optimization and design while drilling in the future. Full article
Show Figures

Figure 1

17 pages, 2945 KiB  
Article
Is It Possible to Preserve the Full Diversity of Birds in Managed Oak–Lime–Hornbeam Forests?
by Karolina Stąpór, Małgorzata Bujoczek and Leszek Bujoczek
Forests 2025, 16(7), 1060; https://doi.org/10.3390/f16071060 - 26 Jun 2025
Viewed by 309
Abstract
Oak–lime–hornbeam forests are among the most biodiverse temperate forests. This study compared older managed stands with a strictly protected old-growth forest in terms of their features. Managed forests at various stages of silvicultural operations were selected: a mature stand where regeneration cuts had [...] Read more.
Oak–lime–hornbeam forests are among the most biodiverse temperate forests. This study compared older managed stands with a strictly protected old-growth forest in terms of their features. Managed forests at various stages of silvicultural operations were selected: a mature stand where regeneration cuts had not yet begun, as well as stands where such treatments were in the initial or advanced stages. Stand features that may affect the diversity and density of avifauna were analyzed on the basis of 151 sample plots. In four successive breeding seasons, birds in these stands were surveyed. The stands differed significantly in volume, the density of large trees, regeneration, the vertical structure, and the amount of deadwood. The number of bird species was the highest in the initial and advanced gap-cut stands. Group-selection cutting in those stands led to a succession of non-forest bird species and, hence, a greater number of birds building nests on or close to ground as compared to the old-growth forest. The old-growth forest was the most similar to the mature managed stand in terms of bird species composition (Jaccard index = 0.76). The old-growth forest was characterized by the highest bird density (91 pairs per 10 ha), with more than half of the breeding pairs being cavity nesters. In the managed forest, the bird density was from 63 to 72 pairs per 10 ha. Based on the present study, it can be concluded that effective conservation of bird assemblages is possible in managed forests, provided that certain concessions are made. Drawing on the characteristics of old-growth forests, several guidelines can be proposed for forest management. First and foremost, it is essential to maintain a mosaic forest structure. Secondly, it is necessary to retain an adequate number of large, old trees within the stand and to ensure a sufficient volume and diversity of deadwood. Additionally, it is absolutely critical to shift timber harvesting activities outside of the bird breeding season. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 216 KiB  
Article
Understanding the Service Landscape of Naturally Occurring Retirement Community Supportive Service Programs (NORC-SSPs) in New York State
by Bodi Shu, Bo Xia, Jiaxuan E and Qing Chen
Buildings 2025, 15(13), 2209; https://doi.org/10.3390/buildings15132209 - 24 Jun 2025
Viewed by 403
Abstract
Background: As global ageing accelerates, countries worldwide are increasingly facing social and economic challenges posed by rising older populations. Many nations are responding by optimizing healthcare systems, strengthening community-based ageing models, and promoting healthy ageing policies. The Naturally Occurring Retirement Community (NORC) is [...] Read more.
Background: As global ageing accelerates, countries worldwide are increasingly facing social and economic challenges posed by rising older populations. Many nations are responding by optimizing healthcare systems, strengthening community-based ageing models, and promoting healthy ageing policies. The Naturally Occurring Retirement Community (NORC) is gaining recognition as a promising approach due to its cost efficiency and ability to meet diverse ageing-related needs. However, systematic research on the service models of NORCs remains scarce. Objective: This study aims to systematically examine the service offerings of Naturally Occurring Retirement Community Supportive Service Programs (NORC-SSPs) and analyze how these programs contribute to supporting ageing in place. Methods: A qualitative content analysis was conducted on official website information from 60 NORC-SSPs in New York State. Service categories were identified, coded, and compared across different geographic and structural contexts. Results: The analysis shows that education, healthcare management, and recreational activities are the most frequently provided services, with health-related services playing a central role in supporting older adults to age in place. Differences in service priorities were also observed between rural and non-rural settings, as well as between vertical and horizontal built environments, reflecting the adaptability of NORC-SSPs to varying community conditions. Conclusions: By identifying key service characteristics, this study provides insights for policymakers and practitioners in Australia and other countries seeking to implement sustainable, community-based models of ageing support. Grounded in the concept of “ageing in place”, the findings contribute to the development of inclusive and flexible service systems for older adults. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
20 pages, 4659 KiB  
Article
Development of a Discrete Algorithm for Interpreting Ground-Penetrating Radar Data in Vertically Heterogeneous Media
by Kazizat Iskakov, Almaz Tatin, Natalya Glazyrina, Ainur Kussainova, Nurgul Uzakkyzy and Kakim Sagindykov
Appl. Sci. 2025, 15(13), 7036; https://doi.org/10.3390/app15137036 - 23 Jun 2025
Viewed by 402
Abstract
This study presents the development of a discrete algorithm for interpreting ground-penetrating radar (GPR) data in vertically inhomogeneous media for the diagnostics of road structures. Experimental data were obtained using an OKO-2 GPR system, followed by primary radargram processing using the CartScan software. [...] Read more.
This study presents the development of a discrete algorithm for interpreting ground-penetrating radar (GPR) data in vertically inhomogeneous media for the diagnostics of road structures. Experimental data were obtained using an OKO-2 GPR system, followed by primary radargram processing using the CartScan software. This included noise and interference filtering, as well as the initial estimation of the dielectric permittivity of detected layers. The resulting dataset was used to validate numerical algorithms for solving the forward and inverse problems of geolectrics. The proposed approach is based on minimizing a quadratic misfit functional between the calculated and observed values of the horizontal component of the electromagnetic field. The gradient of the functional required for optimization is obtained via the numerical solution of an adjoint problem. A discrete version of this problem was developed, which satisfies the properties of conservativeness and uniformity according to finite difference theory. The inverse problem reconstruction of dielectric permittivity is considered a non-destructive method for radargram interpretation. Assuming a piecewise-continuous medium structure eliminates the need for computing gradients at material interfaces. The proposed methodology enhances the accuracy and reliability of pavement condition assessment and holds practical value for road infrastructure monitoring. Full article
Show Figures

Figure 1

15 pages, 1263 KiB  
Article
Detection of Group B Streptococcus (GBS) from Antenatal Screening, Maternal GBS Colonization and Incidence of Early-Onset Neonatal Disease (GBS-EOD): A National Survey, December 2022 to February 2023, Italy
by Michela Sabbatucci, Pierangelo Clerici and Roberta Creti
Microorganisms 2025, 13(7), 1438; https://doi.org/10.3390/microorganisms13071438 - 20 Jun 2025
Viewed by 383
Abstract
Invasive neonatal GBS infections constitute a major cause of sepsis and meningitis in Western countries. Vaginal/rectal GBS colonization during pregnancy is the main risk factor for the development of early-onset infections (GBS-EOD) in newborn by vertical transmission at birth, in addition to prematurity [...] Read more.
Invasive neonatal GBS infections constitute a major cause of sepsis and meningitis in Western countries. Vaginal/rectal GBS colonization during pregnancy is the main risk factor for the development of early-onset infections (GBS-EOD) in newborn by vertical transmission at birth, in addition to prematurity and stillbirth. In Italy, intrapartum antibiotic prophylaxis (IAP) to prevent GBS-EOD is offered to pregnant women who tested as GBS-positive in late pregnancy. Passive surveillance in Italy showed that a non-negligible number of GBS-EOD cases (about 50%) occurred from GBS-negative pregnant women. This finding prompted the launch of a national online survey from 15 December 2022 to 12 February 2023 to investigate the microbiological procedures followed for GBS identification in Italian public and private microbiology laboratories, the prevalence of maternal GBS colonization, and the incidence of GBS-EOD cases. The survey results demonstrated that national guidelines for the prevention of EOD-GBS cases as well as harmonization of microbiological methodologies for GBS identification in the antenatal screening are needed. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Bacterial Infection)
Show Figures

Figure 1

33 pages, 5220 KiB  
Article
Stability Diagrams of Bed Evolution for Vertically Averaged and Moment (VAM) Models
by Mohamed Hassan Elgamal and Mohd Aamir Mumtaz
Mathematics 2025, 13(12), 1997; https://doi.org/10.3390/math13121997 - 17 Jun 2025
Viewed by 324
Abstract
This study presents, for the first time, a detailed linear stability analysis (LSA) of bedform evolution under low-flow conditions using a one-dimensional vertically averaged and moment (1D-VAM) approach. The analysis focuses exclusively on bedload transport. The classical Saint-Venant shallow water equations are extended [...] Read more.
This study presents, for the first time, a detailed linear stability analysis (LSA) of bedform evolution under low-flow conditions using a one-dimensional vertically averaged and moment (1D-VAM) approach. The analysis focuses exclusively on bedload transport. The classical Saint-Venant shallow water equations are extended to incorporate non-hydrostatic pressure terms and a modified moment-based Chézy resistance formulation is adopted that links bed shear stress to both the depth-averaged velocity and its first moment (near-bed velocity). Applying a small-amplitude perturbation analysis to an initially flat bed, while neglecting suspended load and bed slope effects, reveals two distinct modes of morphological instability under low-Froude-number conditions. The first mode, associated with ripple formation, features short wavelengths independent of flow depth, following the relation F2 = 1/(kh), and varies systematically with both the Froude and Shields numbers. The second mode corresponds to dune formation, emerging within a dimensionless wavenumber range of 0.17 to 0.9 as roughness increases and the dimensionless Chézy coefficient C decreases from 20 to 10. The resulting predictions of the dominant wavenumbers agree well with recent experimental observations. Critically, the model naturally produces a phase lag between sediment transport and bedform geometry without empirical lag terms. The 1D-VAM framework with Exner equation offers a physically consistent and computationally efficient tool for predicting bedform instabilities in erodible channels. This study advances the capability of conventional depth-averaged models to simulate complex bedform evolution processes. Full article
(This article belongs to the Special Issue Advanced Computational Methods for Fluid Dynamics and Applications)
Show Figures

Figure 1

Back to TopTop