Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (198)

Search Parameters:
Keywords = non-thermal atmospheric plasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1930 KiB  
Article
A Microfluidic System for Real-Time Monitoring and In Situ Metabolite Detection of Plasma-Enhanced Wound Healing
by Zujie Gao, Jinlong Xu, Hengxin Zhao, Xiaobing Zheng, Zijian Lyu, Qiwei Liu, Hao Chen, Yu Zhang, He-Ping Li and Yongjian Li
Biomolecules 2025, 15(8), 1077; https://doi.org/10.3390/biom15081077 - 25 Jul 2025
Viewed by 299
Abstract
Although cold atmospheric plasma (CAP) has shown promise in facilitating wound repair due to its non-thermal and non-invasive properties, its dynamic effects on cellular response and metabolic regulation remain poorly characterized, and the mechanism is still unclear. In this study, we developed a [...] Read more.
Although cold atmospheric plasma (CAP) has shown promise in facilitating wound repair due to its non-thermal and non-invasive properties, its dynamic effects on cellular response and metabolic regulation remain poorly characterized, and the mechanism is still unclear. In this study, we developed a microfluidic experimental system that integrates a CAP treatment module with multiparametric in situ sensing capabilities, along with precise environmental control of temperature, humidity, and CO2 concentration. A stratified microfluidic chip was engineered to co-culture HaCaT keratinocytes and HSF fibroblasts. CAP treatment was applied within this platform, and the dynamic processes of cell migration, proliferation, and multiple metabolic markers were simultaneously monitored. The experimental results show that the system can not only achieve real-time observation in the healing process under plasma intervention, but also find that the healing process is closely related to the concentration of NO2. In addition, the study also found that keratin KRT14, which is thought to be closely related to wound healing, decreased significantly in the process of plasma-induced healing. The platform provides high-resolution experimental tools to elucidate the biological effects of CAP and has the potential for parameter optimization, material evaluation, and personalized therapeutic development to advance plasma research and clinical translational applications. Full article
(This article belongs to the Special Issue Advances in Plasma Bioscience and Medicine: 2nd Edition)
Show Figures

Figure 1

20 pages, 6490 KiB  
Article
Impact of Chitooligosaccharide Conjugated Epigallocatechin Gallate and Non-Thermal High-Voltage Atmospheric Cold Plasma on Vibrio parahaemolyticus: An In Vitro Study and the Use in Blood Clam Meat
by Mruganxi Harshad Sharma, Avtar Singh, Ankita Singh, Soottawat Benjakul, Suriya Palamae, Ajay Mittal and Jirayu Buatong
Foods 2025, 14(15), 2577; https://doi.org/10.3390/foods14152577 - 23 Jul 2025
Viewed by 281
Abstract
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study [...] Read more.
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study aimed to determine the effect of chitooligosaccharide conjugated with epigallocatechin gallate (COS-EGCG) at different concentrations (200 and 400 ppm) combined with high-voltage atmospheric cold plasma (HVACP) on inhibiting V. parahaemolyticus in vitro and in challenged blood clam meat. Firstly, HVACP conditions were optimized for gas composition and treatment time (20 and 60 s); a 70% Ar and 30% O2 gas mixture resulted in the highest ozone formation and a treatment time of 60 s was used for further study. COS-EGCG conjugate at 400 ppm with HVACP (ACP-CE400) completely killed V. parahaemolyticus after incubation at 37 °C for 6 h. Furthermore, an antibacterial ability of ACP-CE400 treatment against bacterial cells was advocated due to the increased cell membrane damage, permeability, and leakage of proteins and nucleic acids. Scanning electron microscopy (SEM) showed cell elongation and pore formation, while confocal microscopy revealed disrupted biofilm formation. Additionally, the shelf life of challenged blood clam meat treated with ACP-CE400 was extended to nine days. SEM analysis revealed damaged bacterial cells on the meat surface after ACP-CE400 treatment, indicating the antibacterial activity of the combined treatment. Thus, HVACP combined with COS-EGCG conjugate, especially at a highest concentration (400 ppm), effectively inhibited microbial growth and extended the shelf life of contaminated blood clam meat. Full article
(This article belongs to the Special Issue Research on Aquatic Product Processing and Quality Control)
Show Figures

Graphical abstract

12 pages, 2715 KiB  
Article
Room-Temperature Plasma Hydrogenation of Fatty Acid Methyl Esters (FAMEs)
by Benjamin Wang, Trevor Jehl, Hongtao Zhong and Mark Cappelli
Processes 2025, 13(8), 2333; https://doi.org/10.3390/pr13082333 - 23 Jul 2025
Viewed by 270
Abstract
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl [...] Read more.
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl esters (H-FAMEs) and other high-value hydrocarbons. A key mechanistic advance is achieved via in situ distillation: at the reactor temperature, unsaturated C18 and C20 FAMEs remain liquid due to their low melting points, while the corresponding saturated C18:0 and C20:0 FAMEs (with melting points of approximately 37–39 °C and 46–47 °C, respectively) solidify and deposit on a glass substrate. This phase separation continuously exposes fresh unsaturated FAME to the plasma, driving further hydrogenation and thereby delivering high overall conversion efficiency. The non-thermal, energy-efficient nature of DBD plasmas offers a promising alternative to conventional high-pressure, high-temperature methods; here, we evaluate the process efficiency, product selectivity, and scalability of this room-temperature, atmospheric-pressure approach and discuss its potential for sustainable fuel-reforming applications. Full article
(This article belongs to the Special Issue Plasma Science and Plasma-Assisted Applications)
Show Figures

Figure 1

14 pages, 2726 KiB  
Article
Streamer Discharge Modeling for Plasma-Assisted Combustion
by Stuart Reyes and Shirshak Kumar Dhali
Plasma 2025, 8(3), 28; https://doi.org/10.3390/plasma8030028 - 10 Jul 2025
Viewed by 308
Abstract
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the [...] Read more.
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

16 pages, 3023 KiB  
Article
Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry
by Dheerawan Boonyawan, Hans Jørgen Lyngs Jørgensen and Salit Supakitthanakorn
Horticulturae 2025, 11(7), 818; https://doi.org/10.3390/horticulturae11070818 - 9 Jul 2025
Viewed by 327
Abstract
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge [...] Read more.
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge (DBD) for controlling R. stolonifer infection. Fungal mycelial discs were exposed to these plasmas for 10, 15 or 20 min, whereas conidial suspensions were treated for 1, 3, 5 or 7 min. Morphological alterations following non-thermal plasma exposure were studied using scanning electron microscopy (SEM). Exposure to GA and DBD plasmas for 20 min completely inhibited mycelial growth. SEM analysis revealed significant structural damage to the mycelium, sporangia and sporangiospores of treated samples compared to untreated controls. Complete inhibition of sporangiospore germination was achieved with treatments for at least 3 min for all NTPs. Pathogenicity assays on strawberry fruit showed that 15 min exposure to any of the tested NTPs completely prevented the development of soft rot disease. Importantly, NTP treatments did not adversely affect the external or internal characteristics of treated strawberries. These findings suggest that atmospheric non-thermal plasmas offer an effective approach for controlling R. stolonifer infection in strawberries, potentially providing a non-chemical alternative for post-harvest disease management. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Graphical abstract

14 pages, 1491 KiB  
Article
A Study on Enhanced Lipid Accumulation by Cold Plasma Process in Chlorella sp.
by Mohamed Aadhil Musthak Ahamed, Navaneetha Pandiyaraj Krishnasamy, Karuppusamy Murugavel, Kannappan Arunachalam, Khamis Sulaiman AlDhafri, Arunkumar Jagadeesan, Thajuddin Nooruddin, Sang-Yul Lee and MubarakAli Davoodbasha
Water 2025, 17(13), 2030; https://doi.org/10.3390/w17132030 - 6 Jul 2025
Viewed by 485
Abstract
This study investigated the enhancement in lipid accumulation in Chlorella sp. using non-thermal atmospheric pressure plasma as a pretreatment strategy for the production of value-added products. The plasma treatment was optimized by varying discharge times (0–16 min) using argon gas at a flow [...] Read more.
This study investigated the enhancement in lipid accumulation in Chlorella sp. using non-thermal atmospheric pressure plasma as a pretreatment strategy for the production of value-added products. The plasma treatment was optimized by varying discharge times (0–16 min) using argon gas at a flow rate of 4 L/min. Lipid productivity was assessed through gravimetric analysis and profiling of fatty acid methyl ester using gas chromatography−mass spectrometry (GC-MS). The growth rate and pH of the treated cells were monitored. The findings demonstrated that the 4-min plasma exposure maximized the efficiency of lipid recovery, achieving a 35% of the dry cell weight and a 34.6% increase over untreated control. However, longer plasma treatment times resulted in a comparative decrease in lipid yield, as the decline is possibly due to oxidative degradation. The findings highlight the role of plasma treatment, which significantly boosts lipid yield and gives complementary optimization of downstream processes to improve biodiesel production. The accumulation of lipids in terms of size and volume in the algal cells was assessed by confocal laser scanning microscopy. The GC–MS results of the control revealed that lipids comprised primarily mixed esters such as 2H Pyran 2 carboxylic acid ethyl esters, accounting for 50.97% and 20.52% of the total peak area. In contrast, the 4-min treated sample shifted to saturated triacylglycerols (dodecanoic acid, 2,3 propanetriyl ester), comprising 85% of the total lipid content, which efficiently produced biodiesel. Thus, the non-thermal plasma-based enhancement of lipids in the algal cells has been achieved. Full article
(This article belongs to the Special Issue Aquatic Environment and Ecosystems)
Show Figures

Figure 1

36 pages, 1129 KiB  
Review
The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks
by Yanan Wu, Xinxin Li, Xinyu Ma, Qing Ren, Zhanbin Sun and Hanxu Pan
Foods 2025, 14(13), 2374; https://doi.org/10.3390/foods14132374 - 4 Jul 2025
Viewed by 552
Abstract
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy [...] Read more.
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy consumption, enhanced environmental sustainability, and effective microbial inactivation, thereby extending food shelf life. Moreover, they can better preserve the nutritional integrity, color, flavor, and texture of food products. However, a critical concern associated with non-thermal processing is its potential to induce microorganisms into a viable but nonculturable (VBNC) state. These VBNC cells evade detection via conventional culturing techniques and may remain metabolically active and retain virulence, posing hidden food safety risks. Despite these implications, comprehensive reviews addressing the induction of a VBNC state by non-thermal treatments remain limited. This review systematically summarizes the microbial inactivation effects and mechanisms of non-thermal processing techniques, the VBNC state, and their associated hazards. This review aims to support technological innovation and sustainable advancement in non-thermal food processing. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 4602 KiB  
Article
Dual-Plasma Discharge Tube for Synergistic Glioblastoma Treatment
by William Murphy, Alex Horkowitz, Vikas Soni, Camil Walkiewicz-Yvon and Michael Keidar
Cancers 2025, 17(12), 2036; https://doi.org/10.3390/cancers17122036 - 18 Jun 2025
Viewed by 495
Abstract
Background: Glioblastoma (GBM) resists current therapies due to its rapid proliferation, diffuse invasion, and heterogeneous cell populations. We previously showed that a single cold atmospheric plasma discharge tube (DT) reduces GBM viability via broad-spectrum electromagnetic (EM) emissions. Here, we tested whether two DTs [...] Read more.
Background: Glioblastoma (GBM) resists current therapies due to its rapid proliferation, diffuse invasion, and heterogeneous cell populations. We previously showed that a single cold atmospheric plasma discharge tube (DT) reduces GBM viability via broad-spectrum electromagnetic (EM) emissions. Here, we tested whether two DTs arranged in a helmet configuration could generate overlapping EM fields to amplify the anti-tumor effects without thermal injury. Methods: The physical outputs of the single- and dual-DT setups were characterized by infrared thermography, broadband EM field probes, and oscilloscope analysis. Human U87-MG cells were exposed under the single or dual configurations. The viability was quantified with WST-8 assays mapped across 96-well plates; the intracellular reactive oxygen species (ROS), membrane integrity, apoptosis, and mitochondrial potential were assessed by multiparametric flow cytometry. Our additivity models compared the predicted versus observed dual-DT cytotoxicity. Results: The dual-DT operation produced constructive EM interference, elevating electric and magnetic field amplitudes over a broader area than either tube alone, while temperatures remained <39 °C. The single-DT exposure lowered the cell viability by ~40%; the dual-DT treatment reduced the viability by ~60%, exceeding the additive predictions. The regions of greatest cytotoxicity co-localized with the zones of highest EM field overlap. The dual-DT exposure doubled the intracellular ROS compared with single-DT and Annexin V positivity, confirming oxidative stress-driven cell death. The out-of-phase operation of the discharge tubes enabled the localized control of the treatment regions, which can guide future treatment planning. Conclusions: Two synchronously operated plasma discharge tubes synergistically enhanced GBM cell killing through non-thermal mechanisms that coupled intensified overlapping EM fields with elevated oxidative stress. This positions modular multi-DT arrays as a potential non-invasive adjunct or alternative to existing electric-field-based therapies for glioblastoma. Full article
(This article belongs to the Special Issue Plasma and Cancer Treatment)
Show Figures

Figure 1

24 pages, 5461 KiB  
Article
Classification and Prediction of Unknown Thermal Barrier Coating Thickness Based on Hybrid Machine Learning and Terahertz Nondestructive Characterization
by Zhou Xu, Jianfei Xu, Yiwen Wu, Changdong Yin, Suqin Chen, Qiang Liu, Xin Ge, Luanfei Wan and Dongdong Ye
Coatings 2025, 15(6), 725; https://doi.org/10.3390/coatings15060725 - 17 Jun 2025
Viewed by 479
Abstract
Thickness inspection of thermal barrier coatings is crucial to safeguard the reliability of high-temperature components of aero-engines, but traditional destructive inspection methods are difficult to meet the demand for rapid assessment in the field. In this study, a new non-destructive testing method integrating [...] Read more.
Thickness inspection of thermal barrier coatings is crucial to safeguard the reliability of high-temperature components of aero-engines, but traditional destructive inspection methods are difficult to meet the demand for rapid assessment in the field. In this study, a new non-destructive testing method integrating terahertz time-domain spectroscopy and machine learning algorithms is proposed to systematically study the thickness inspection of 8YSZ coatings prepared by two processes, namely atmospheric plasma spraying (APS) and electron beam physical vapor deposition (EB-PVD). By optimizing the preparation process parameters, 620 sets of specimens with thicknesses of 100–400 μm are prepared, and three types of characteristic parameters, namely, time delay Δt, frequency shift Δf, and energy decay η, are extracted by combining wavelet threshold denoising and time-frequency joint analysis. A CNN-RF cascade model is constructed to realize coating process classification, and an attention-LSTM and SVR weighted fusion model is developed for thickness regression prediction. The results show that the multimodal feature fusion reduces the root-mean-square error of thickness prediction to 8.9 μm, which further improves the accuracy over the single feature model. The classification accuracy reaches 96.8%, of which the feature importance of time delay Δt accounts for 62%. The hierarchical modeling strategy reduces the detection mean absolute error from 6.2 μm to 4.1 μm. the method provides a high-precision solution for intelligent quality assessment of thermal barrier coatings, which is of great significance in promoting the progress of intelligent manufacturing technology for high-end equipment. Full article
Show Figures

Figure 1

30 pages, 4647 KiB  
Review
Recent Advances in Cold Atmospheric Pressure Plasma for E. coli Decontamination in Food: A Review
by Muhammad Waqar Ahmed, Kainat Gul and Sohail Mumtaz
Plasma 2025, 8(2), 18; https://doi.org/10.3390/plasma8020018 - 7 May 2025
Cited by 3 | Viewed by 3480
Abstract
Cold atmospheric plasma (CAP) acts as a powerful antibacterial tool in the food industry, effectively eliminating E. coli and a wide range of pathogens, including bacteria, viruses, fungi, spores, and biofilms in meat and vegetables. Unlike traditional bactericidal methods, CAP leverages an arsenal [...] Read more.
Cold atmospheric plasma (CAP) acts as a powerful antibacterial tool in the food industry, effectively eliminating E. coli and a wide range of pathogens, including bacteria, viruses, fungi, spores, and biofilms in meat and vegetables. Unlike traditional bactericidal methods, CAP leverages an arsenal of reactive species, including reactive oxygen species (ROS) such as ozone (O3) and hydroxyl radicals (OH•), and reactive nitrogen species (RNS) like nitric oxide (NO•), alongside UV radiation and charged particles. These agents synergistically dismantle E. coli’s cell membranes, proteins, and DNA, achieving high degradation rates without thermal or chemical damage to processed food. This non-thermal, eco-friendly technology preserves food’s nutritional and sensory integrity, offering a transformative edge over conventional approaches. It emphasizes the critical need to optimize treatment parameters (exposure time, gas composition, power) to unlock CAP’s full potential. This review explores CAP’s effectiveness in degrading E. coli, emphasizing the optimization of treatment parameters for practical food industry applications and its potential as a scalable food safety solution. It is crucial to conduct further studies to enhance its implementation, establishing CAP as a fundamental element of advanced food processing technologies and a key measure for protecting public health. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2025)
Show Figures

Figure 1

19 pages, 1731 KiB  
Article
Microbial Decontamination of Fresh-Cut Carrots via Cold Atmospheric Plasma Treatment: Effect on Physicochemical and Nutritional Properties During Storage
by Efe Bakla and Ufuk Bağcı
Foods 2025, 14(9), 1599; https://doi.org/10.3390/foods14091599 - 1 May 2025
Viewed by 654
Abstract
The extension of shelf-life and enhancement of the safety and quality of fresh-cut ready-to-eat vegetables is an ongoing public health concern. The present study investigated the efficacy of cold atmospheric plasma (CAP) treatment for the decontamination of fresh-cut carrots inoculated with Escherichia coli [...] Read more.
The extension of shelf-life and enhancement of the safety and quality of fresh-cut ready-to-eat vegetables is an ongoing public health concern. The present study investigated the efficacy of cold atmospheric plasma (CAP) treatment for the decontamination of fresh-cut carrots inoculated with Escherichia coli. An atmospheric plasma jet system operating at 1 kVA was utilized for treatment with varying plasma jet nozzle to sample distances (10–40 mm), exposure times (10–60 s) and either argon or dry air at 3 bar as working gases. It was demonstrated that both working gases achieved more than 4 log reductions in E. coli within 60 s of treatment while maintaining carrot surface temperatures below 50 °C. During 3-week storage at 4 °C, the immediate effects of plasma treatment on quality parameters were found to be minimal, with no significant changes observed in color (ΔE < 3.0) parameters, β-carotene content, ascorbic acid levels, total phenolic content (TPC), or total antioxidant activity (TAA) following either treatment. Additionally, plasma-treated carrots retained their firmness, showing no significant texture loss, whereas untreated controls experienced a firmness decline of approximately 9% by the end of storage. Notably, TPC increased by up to 41%, and TAA increased significantly (p < 0.05) in plasma-treated samples during storage, especially in dry air plasma-treated carrots. These results demonstrated that CAP treatment can be successfully applied for rapid inactivation of E. coli on fresh-cut carrot surfaces while preserving original quality characteristics during refrigerated storage, offering potential as non-thermal preservation technology for fresh produce. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

33 pages, 1847 KiB  
Review
Immunological Control of Herpes Simplex Virus Type 1 Infection: A Non-Thermal Plasma-Based Approach
by Julia Sutter, Jennifer L. Hope, Brian Wigdahl, Vandana Miller and Fred C. Krebs
Viruses 2025, 17(5), 600; https://doi.org/10.3390/v17050600 - 23 Apr 2025
Viewed by 1455
Abstract
Herpes simplex virus type 1 (HSV-1) causes a lifelong infection due to latency established in the trigeminal ganglia, which is the source of recurrent outbreaks of cold sores. The lifelong persistence of HSV-1 is further facilitated by the lack of cure strategies, unsuccessful [...] Read more.
Herpes simplex virus type 1 (HSV-1) causes a lifelong infection due to latency established in the trigeminal ganglia, which is the source of recurrent outbreaks of cold sores. The lifelong persistence of HSV-1 is further facilitated by the lack of cure strategies, unsuccessful vaccine development, and the inability of the host immune system to clear HSV-1. Despite the inefficiencies of the immune system, the course of HSV-1 infection remains under strict immunological control. Specifically, HSV-1 is controlled by a CD8+ T cell response that is cytotoxic to HSV-1-infected cells, restricts acute infection, and uses noncytolytic mechanisms to suppress reactivation in the TG. When this CD8+ T cell response is disrupted, reactivation of latent HSV-1 occurs. With antiviral therapies unable to cure HSV-1 and prophylactic vaccine strategies failing to stimulate a protective response, we propose non-thermal plasma (NTP) as a potential therapy effective against recurrent HSV-1 infection. We have demonstrated that NTP, when applied directly to HSV-1-infected cells, has antiviral effects and stimulates cellular stress and immunomodulatory responses. We further propose that the direct effects of NTP will lead to long-lasting indirect effects such as reduced viral seeding into the TG and enhanced HSV-1-specific CD8+ T cell responses that exert greater immune control over HSV-1 infection. Full article
(This article belongs to the Special Issue Herpesviruses and Associated Diseases)
Show Figures

Figure 1

13 pages, 10824 KiB  
Article
Study of the Surface Structural Transformation and Mechanical Properties of 65Mn Steel Modified by Pulsed Detonation–Plasma Technology
by Youxing He, Mingming Zhang, Xuebing Yang, Wenfu Chen and Lei Lu
Metals 2025, 15(5), 473; https://doi.org/10.3390/met15050473 - 22 Apr 2025
Viewed by 412
Abstract
Pulsed detonation–plasma technology (PDT) is a surface-modification technology used in an atmospheric environment, where plasma, a detonation impact and thermal conditions are combined and have an effect on the material’s surface. In this study, annealed 65Mn steel was selected to further study the [...] Read more.
Pulsed detonation–plasma technology (PDT) is a surface-modification technology used in an atmospheric environment, where plasma, a detonation impact and thermal conditions are combined and have an effect on the material’s surface. In this study, annealed 65Mn steel was selected to further study the principle of PDT modification. The results show that the modified layer with fine grains was divided into an infiltration layer with a large amount of non-uniformly distributed granular CW3 carbides and a heat-affected layer below the infiltration layer after PDT treatment. However, a higher amount of acicular martensite and a lower amount of austenite was achieved in the modified layer, containing a large number of small-angle grain boundaries, dislocations, and twin grains. After the PDT treatment, the hardness of the modified layer, heat-affected layer, and substrate was 980 HV, 856.2 HV, and 250 HV, respectively. The mass loss of the sample before and after PDT treatment was 21.1 mg and 12.4 mg, respectively. The hardness and wear resistance of the modified layer were greatly improved compared with the substrate because of the combined effect of the solid-phase transformation, element infiltration, and distortion. Full article
Show Figures

Figure 1

25 pages, 4967 KiB  
Article
Synergistic Effects of Selected Nonthermal Technologies Combined with Soursop Leaf Extract on the Quality and Shelf Life of Refrigerated Pacific White Shrimp
by Abubakar Saleh Ahmad, Thanasak Sae-Leaw, Yadong Zhao, Lukai Ma, Bin Zhang, Hui Hong and Soottawat Benjakul
Foods 2025, 14(8), 1388; https://doi.org/10.3390/foods14081388 - 17 Apr 2025
Viewed by 624
Abstract
The effectiveness of multi-targeted treatments including pulsed electric field (PEF), soursop leaf extract (SLE), vacuum impregnation (VI), and modified atmosphere packaging (MAP), with and without cold plasma (CP) treatment, on the quality and shelf life of Pacific white shrimp (Penaeus vannamei) [...] Read more.
The effectiveness of multi-targeted treatments including pulsed electric field (PEF), soursop leaf extract (SLE), vacuum impregnation (VI), and modified atmosphere packaging (MAP), with and without cold plasma (CP) treatment, on the quality and shelf life of Pacific white shrimp (Penaeus vannamei) during refrigerated storage for 21 days was investigated. PEF inhibited melanosis and reduced the initial bacterial load, as evidenced by lower melanosis scores and total bacterial counts in the treated samples. Integrating 1% SLE through VI effectively lowered color alteration, retarded melanosis, and preserved textural integrity in the SLE-treated samples (p < 0.05). SLE1 (1%) significantly reduced lipid oxidation, as witnessed by lower thiobarbituric acid reactive substances (p < 0.05) and minimal fatty acid profile changes. MAP3, comprising CO2/N2/Ar (60%/30%/10%), combined with CP treatment, ensured microbiological quality and maintained total viable count within the acceptable limit (6 Log CFU/g) throughout the storage time of 21 days. Notably, the PEF-SLE1-VI-MAP3-CP sample exhibited superior quality preservation, as shown by a lower pH and total volatile base content than the others. Sensory evaluation confirmed that the PEF-SLE1-VI-MAP3-CP sample remained sensorially acceptable during storage. Thus, this multi-hurdle approach demonstrated the synergistic potential of integrating nonthermal processing technologies with plant extracts, contributing to the extended shelf life and safety of the refrigerated shrimp for up to 21 days. Full article
Show Figures

Figure 1

18 pages, 1716 KiB  
Article
Pediatric Burn Treatment with Non-Thermal Atmospheric Plasma and Epifast®: Clinical Results
by Pablo Rodríguez-Ferreyra, Régulo López-Callejas, Teresa Narváez-Robles, Benjamín Gonzalo Rodríguez-Méndez, Omar Israel Gayosso-Cerón, Antonio Mercado-Cabrera, Irene Lule-Reyna, Othoniel Mondragón-Dagio, Raúl Valencia-Alvarado and Jesús Duarte-Mote
Eur. Burn J. 2025, 6(2), 20; https://doi.org/10.3390/ebj6020020 - 14 Apr 2025
Viewed by 1057
Abstract
The effective treatment of severe burns in pediatric patients is essential for minimizing complications and promoting optimal recovery. This study investigates the use of non-thermal atmospheric pressure plasma (NTAPP) as an adjuvant therapy in combination with Epifast® for the experimental group, compared [...] Read more.
The effective treatment of severe burns in pediatric patients is essential for minimizing complications and promoting optimal recovery. This study investigates the use of non-thermal atmospheric pressure plasma (NTAPP) as an adjuvant therapy in combination with Epifast® for the experimental group, compared to standard care involving early excisions and Epifast® for the control group. A randomized controlled trial was conducted with 40 pediatric patients suffering from superficial partial-thickness and deep dermal burns. The experimental group that received NTAPP daily demonstrated a significant reduction in the need for skin grafts, requiring only 10% compared to 40% in the control group (p = 0.02). Although there were no statistically significant differences in the length of hospital stay, the experimental group showed a trend toward shorter stays (9.85 days vs. 11.65 days; p = 0.38) and lower analgesic consumption (13.01 doses vs. 21.15 doses; p = 0.09). Additionally, the infection rate in the NTAPP-treated group was significantly lower at 25%, compared to 37.95% in the control group (p < 0.05). These findings suggest that NTAPP enhances wound healing while reducing surgical morbidity and the risk of infections. In conclusion, this study highlights the transformative potential of NTAPP as an innovative strategy in pediatric burn management. It combines clinical efficacy with a less invasive approach, representing a significant advance in regenerative medicine and opening new avenues for research into advanced therapies. Full article
(This article belongs to the Special Issue Controversial Issues in Intensive Care-Related Burn Injuries)
Show Figures

Figure 1

Back to TopTop