Microbial Decontamination of Fresh-Cut Carrots via Cold Atmospheric Plasma Treatment: Effect on Physicochemical and Nutritional Properties During Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Raw Material, Handling and Storage
2.3. Sample Inoculation
2.4. Sample Preparation for Plasma Treatment
2.5. CAP Treatment
2.5.1. Evaluation of CAP Parameters
2.5.2. CAP Treatment of Fresh-Cut Carrots and Storage
2.6. Microbial Load Examination
2.7. Physicochemical Quality Analysis
2.7.1. β-Carotene Measurement
2.7.2. Ascorbic Acid Measurement
2.7.3. Determination of TPC
2.7.4. Determination of TAA
2.7.5. Color Measurement
2.7.6. Texture Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of CAP Process Parameters for Microbial Inactivation
3.2. Microbiological and Physicochemical Assessment of Plasma-Treated Carrots During Storage
3.2.1. Microbiological Quality During Storage
3.2.2. Physicochemical Quality During Storage
Surface Color Change
β-Carotene Content
Ascorbic Acid Content
TPC
TAA
Texture
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAP | Cold atmospheric plasma |
TPC | Total phenolic content |
TAA | Total antioxidant activity |
ROS | Reactive oxygen species |
ROS | Reactive nitrogen species |
PPO | Polyphenol oxidase |
POD | Peroxidase |
References
- Ramos, B.; Miller, F.; Brandão, T.R.; Teixeira, P.; Silva, C.L. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- Ying, D.; Sanguansri, L.; Cheng, L.; Augustin, M.A. Nutrient-dense shelf-stable vegetable powders and extruded snacks made from carrots and broccoli. Foods 2021, 10, 2298. [Google Scholar] [CrossRef]
- Dallagi, W.; Rguez, S.; Hammami, M.; Bettaieb Rebey, I.; Bourgou, S.; Hamrouni Sellami, I. Optimization of processing conditions to enhance antioxidant and carotenoid contents of carrot juice. J. Food Meas. Charact. 2023, 17, 4384–4393. [Google Scholar] [CrossRef]
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and their health benefits. Foods 2019, 8, 424. [Google Scholar] [CrossRef] [PubMed]
- Tappi, S.; Gozzi, G.; Vannini, L.; Berardinelli, A.; Romani, S.; Ragni, L.; Rocculi, P. Cold plasma treatment for fresh-cut melon stabilization. Innov. Food Sci. Emerg. Technol. 2016, 33, 225–233. [Google Scholar] [CrossRef]
- Raja, P.; Abitha, M.; Ganapathy, S. Enhancing shelf-life of carrot (Daucus carota) during post-harvest processing. Curr. Hortic. 2022, 10, 51–54. [Google Scholar] [CrossRef]
- Becaro, A.A.; Puti, F.C.; Panosso, A.R.; Gern, J.C.; Brandão, H.M.; Correa, D.S.; Ferreira, M.D. Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles. Food Bioprocess Technol. 2016, 9, 637–649. [Google Scholar] [CrossRef]
- Santos, M.I.S.; Marques, C.; Mota, J.; Pedroso, L.; Lima, A. Applications of essential oils as antibacterial agents in minimally processed fruits and vegetables—A review. Microorganisms 2022, 10, 760. [Google Scholar] [CrossRef]
- Kangas, S.; Takkinen, J.; Hakkinen, M.; Nakari, U.-M.; Johansson, T.; Henttonen, H.; Virtaluoto, L.; Siitonen, A.; Ollgren, J.; Kuusi, M. Yersinia pseudotuberculosis O:1 traced to raw carrots, Finland. Emerg. Infect. Dis. 2008, 14, 1959. [Google Scholar] [CrossRef]
- Sivapalasingam, S.; Friedman, C.R.; Cohen, L.; Tauxe, R.V. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot. 2004, 67, 2342–2353. [Google Scholar] [CrossRef]
- Orsat, V.; Gariepy, Y.; Raghavan, G.; Lyew, D. Radio-frequency treatment for ready-to-eat fresh carrots. Food Res. Int. 2001, 34, 527–536. [Google Scholar] [CrossRef]
- Cho, J.-L.; Kim, C.-K.; Park, J.; Kim, J. Efficacy of aerosolized chlorine dioxide in reducing pathogenic bacteria on washed carrots. Food Sci. Biotechnol. 2017, 26, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Reineke, K.; Langer, K.; Hertwig, C.; Ehlbeck, J.; Schlüter, O. The impact of different process gas compositions on the inactivation effect of an atmospheric pressure plasma jet on Bacillus spores. Innov. Food Sci. Emerg. Technol. 2015, 30, 112–118. [Google Scholar] [CrossRef]
- Ramkumar, R.; Arun Prasath, V.; Karpoora Sundara Pandian, N.; Patra, A.; Sharma, P.; Arulkumar, M.; Sivaranjani, S.; Govindarasu, P. Investigating the influence of pin-to-plate atmospheric cold plasma on the physiochemical, nutritional, and shelf-life study of two raisins varieties during storage. J. Food Meas. Charact. 2024, 18, 7774–7793. [Google Scholar] [CrossRef]
- Moisan, M.; Barbeau, J.; Crevier, M.-C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 2002, 74, 349–358. [Google Scholar] [CrossRef]
- Gök, V.; Aktop, S.; Özkan, M.; Tomar, O. The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma—A dry-cured beef product. Innov. Food Sci. Emerg. Technol. 2019, 56, 102188. [Google Scholar] [CrossRef]
- Wang, R.; Nian, W.; Wu, H.; Feng, H.; Zhang, K.; Zhang, J.; Zhu, W.; Becker, K.; Fang, J. Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical properties evaluation. Eur. Phys. J. D 2012, 66, 276. [Google Scholar] [CrossRef]
- Birania, S.; Attkan, A.K.; Kumar, S.; Kumar, N.; Singh, V.K. Cold plasma in food processing and preservation: A review. J. Food Process Eng. 2022, 45, e14110. [Google Scholar] [CrossRef]
- Feizollahi, E.; Misra, N.; Roopesh, M. Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 666–689. [Google Scholar] [CrossRef]
- Mahnot, N.K.; Siyu, L.-P.; Wan, Z.; Keener, K.M.; Misra, N. In-package cold plasma decontamination of fresh-cut carrots: Microbial and quality aspects. J. Phys. D Appl. Phys. 2020, 53, 154002. [Google Scholar]
- Silvetti, T.; Pedroni, M.; Brasca, M.; Vassallo, E.; Cocetta, G.; Ferrante, A.; De Noni, I.; Piazza, L.; Morandi, S. Assessment of possible application of an atmospheric pressure plasma jet for shelf life extension of fresh-cut salad. Foods 2021, 10, 513. [Google Scholar] [CrossRef] [PubMed]
- Ekesa, B.; Nabuuma, D.; Blomme, G.; Van den Bergh, I. Provitamin A carotenoid content of unripe and ripe banana cultivars for potential adoption in eastern Africa. J. Food Compos. Anal. 2015, 43, 1–6. [Google Scholar] [CrossRef]
- Spanos, G.A.; Wrolstad, R.E. Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. J. Agric. Food Chem. 1990, 38, 1565–1571. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Boun, H.; Huxsoll, C. Control of minimally processed carrot (Daucus carota) surface discoloration caused by abrasion peeling. J. Food Sci. 1991, 56, 416–418. [Google Scholar] [CrossRef]
- Nishime, T.; Borges, A.; Koga-Ito, C.; Machida, M.; Hein, L.; Kostov, K. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coat. Technol. 2017, 312, 19–24. [Google Scholar] [CrossRef]
- Butscher, D.; Van Loon, H.; Waskow, A.; von Rohr, P.R.; Schuppler, M. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int. J. Food Microbiol. 2016, 238, 222–232. [Google Scholar] [CrossRef]
- Than, H.A.Q.; Nguyen, T.T.; Do, N.K.; Tran, M.A.N.; Pham, T.H. Inactivation of Diutina catenulata isolated from Longan fruit using atmospheric pressure cold plasma DBD in argon, air, and argon-air mixture. Food Bioprocess Technol. 2025, 18, 360–369. [Google Scholar] [CrossRef]
- Hertwig, C.; Leslie, A.; Meneses, N.; Reineke, K.; Rauh, C.; Schlüter, O. Inactivation of Salmonella Enteritidis PT30 on the surface of unpeeled almonds by cold plasma. Innov. Food Sci. Emerg. Technol. 2017, 44, 242–248. [Google Scholar] [CrossRef]
- Deng, X.; Shi, J.; Kong, M.G. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans. Plasma Sci. 2006, 34, 1310–1316. [Google Scholar] [CrossRef]
- Laroussi, M.; Leipold, F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 2004, 233, 81–86. [Google Scholar] [CrossRef]
- Georgescu, N.; Lungu, C.; Lupu, A. Chemical activation of the high voltage pulsed, cold atmospheric plasma jets. Rom. Rep. Phys. 2010, 62, 142–151. [Google Scholar]
- Oehmigen, K.; Hähnel, M.; Brandenburg, R.; Wilke, C.; Weltmann, K.D.; Von Woedtke, T. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 2010, 7, 250–257. [Google Scholar] [CrossRef]
- Surowsky, B.; Froehling, A.; Gottschalk, N.; Schlueter, O.; Knorr, D. Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. Int. J. Food Microbiol. 2014, 174, 63–71. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, C.; Zou, F.; Sun, Y.; Shang, N.; Wu, W. Impacts of cold plasma technology on sensory, nutritional and safety quality of food: A review. Foods 2022, 11, 2818. [Google Scholar] [CrossRef]
- Mei, Y.; Zhao, Y.; Yang, J.; Furr, H. Using edible coating to enhance nutritional and sensory qualities of baby carrots. J. Food Sci. 2002, 67, 1964–1968. [Google Scholar] [CrossRef]
- Yi, F.; Wang, J.; Xiang, Y.; Yun, Z.; Pan, Y.; Jiang, Y.; Zhang, Z. Physiological and quality changes in fresh-cut mango fruit as influenced by cold plasma. Postharvest Biol. Technol. 2022, 194, 112105. [Google Scholar] [CrossRef]
- Baier, M.; Ehlbeck, J.; Knorr, D.; Herppich, W.B.; Schlüter, O. Impact of plasma processed air (PPA) on quality parameters of fresh produce. Postharvest Biol. Technol. 2015, 100, 120–126. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Putnik, P.; Dragović-Uzelac, V.; Pedisić, S.; Jambrak, A.R.; Herceg, Z. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem. 2016, 190, 317–323. [Google Scholar] [CrossRef]
- Lemmens, L.; Tibäck, E.; Svelander, C.; Smout, C.; Ahrné, L.; Langton, M.; Alminger, M.; Van Loey, A.; Hendrickx, M. Thermal pretreatments of carrot pieces using different heating techniques: Effect on quality related aspects. Innov. Food Sci. Emerg. Technol. 2009, 10, 522–529. [Google Scholar] [CrossRef]
- Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [Google Scholar] [CrossRef]
- Santos Jr, L.; Cubas, A.; Moecke, E.; Ribeiro, D.; Amante, E. Use of cold plasma to inactivate Escherichia coli and physicochemical evaluation in pumpkin puree. J. Food Prot. 2018, 81, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.A.; Rodrigues, S. Cold plasma processing on fruits and fruit juices: A review on the effects of plasma on nutritional quality. Processes 2021, 9, 2098. [Google Scholar] [CrossRef]
- Bayati, M.; Lund, M.N.; Tiwari, B.K.; Poojary, M.M. Chemical and physical changes induced by cold plasma treatment of foods: A critical review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13376. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Santos, V.O.; Rodrigues, S. Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Res. Int. 2019, 115, 16–22. [Google Scholar] [CrossRef]
- Bozkurt, D.; Kwiatkowski, M.; Terebun, P.; Diatczyk, J.; Pawłat, J. Potential DBD-jet applications for preservation of nutritive compounds on the example of vitamin C in water solutions. In Environmental Engineering V; CRC Press: Boca Raton, FL, USA, 2018; p. 65. [Google Scholar]
- Critzer, F.J.; Kelly-Wintenberg, K.; South, S.L.; Golden, D.A. Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J. Food Prot. 2007, 70, 2290–2296. [Google Scholar] [CrossRef]
- Misra, N.; Roopesh, M. Cold plasma for sustainable food production and processing. In Green Food Processing Techniques; Chemat, F., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 431–453. [Google Scholar]
- Kenny, O.; O’Beirne, D. Antioxidant phytochemicals in fresh-cut carrot disks as affected by peeling method. Postharvest Biol. Technol. 2010, 58, 247–253. [Google Scholar] [CrossRef]
- Simões, A.D.; Tudela, J.A.; Allende, A.; Puschmann, R.; Gil, M.I. Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks. Postharvest Biol. Technol. 2009, 51, 364–370. [Google Scholar] [CrossRef]
- Li, M.; Ren, C.; Li, C.; Fan, Z.; Zhu, J.; Qu, C. Effect of Glow Discharge Cold Plasma Treatment on the Physicochemical Properties and Antioxidant Capacity of Maize. Foods 2025, 14, 1312. [Google Scholar] [CrossRef]
- Reyes, L.F.; Villarreal, J.E.; Cisneros-Zevallos, L. The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem. 2007, 101, 1254–1262. [Google Scholar] [CrossRef]
- Heredia, J.B.; Cisneros-Zevallos, L. The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biol. Technol. 2009, 51, 242–249. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Ji, N.; Jin, P.; Zhang, J.; Zheng, Y.; Zhang, X.; Li, F. Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. LWT 2019, 115, 108447. [Google Scholar] [CrossRef]
- Bagheri, H.; Abbaszadeh, S. Effect of cold plasma on quality retention of fresh-cut produce. J. Food Qual. 2020, 2020, 8866369. [Google Scholar] [CrossRef]
- Zheng, H.; Miao, T.; Shi, J.; Tian, M.; Wang, L.; Geng, X.; Zhang, Q. Effect of cold plasma treatment on the quality of fresh-cut hami melons during chilling storage. Horticulturae 2024, 10, 735. [Google Scholar] [CrossRef]
- Sudheesh, C.; Sunooj, K.V. Cold plasma processing of fresh-cut fruits and vegetables. In Fresh-Cut Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2020; pp. 339–356. [Google Scholar]
- Pour, A.K.; Khorram, S.; Ehsani, A.; Ostadrahimi, A.; Ghasempour, Z. Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. Innov. Food Sci. Emerg. Technol. 2022, 76, 102945. [Google Scholar]
- Wu, X.; Zhao, W.; Zeng, X.; Zhang, Q.-A.; Gao, G.; Song, S. Effects of cold plasma treatment on cherry quality during storage. Food Sci. Technol. Int. 2021, 27, 441–455. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhang, Y.; Hu, H.; Luo, S.; Zhang, L.; Zhou, H.; Li, P. Effects of in-package atmospheric cold plasma treatment on the qualitative, metabolic and microbial stability of fresh-cut pears. J. Sci. Food Agric. 2021, 101, 4473–4480. [Google Scholar] [CrossRef]
Gas | Jet Nozzle to Substrate Distance (mm) | Exposure Time (s) | Microbial Reduction (log CFU g−1) | Surface Temperature (°C) | Central Temperature (°C) |
---|---|---|---|---|---|
Argon | 10 | 10 | 1.73 ± 1.41 B | 26.1 ± 1.0 C | 19.1 ± 0.5 A |
30 | 1.93 ± 0.14 B | 32.4 ± 0.9 E | 19.5 ± 0.7 A | ||
60 | 4.54 ± 0.14 A | 42.3 ± 0.3 F | 20.0 ± 0.9 A | ||
20 | 10 | 0.79 ± 0.03 B | 22.7 ± 1.0 B | 19.0 ± 0.3 A | |
30 | 0.73 ± 0.01 B | 28.0 ± 1.4 D | 19.6 ± 0.4 A | ||
60 | 1.84 ± 0.09 B | 32.2 ± 1.7 E | 20.1 ± 0.6 A | ||
30 | 10 | 0.44 ± 0.02 B | 20.6 ± 0.6 A | 18.7 ± 0.4 A | |
30 | 0.60 ± 0.11 B | 24.9 ± 0.4 C | 19.0 ± 0.5 A | ||
60 | 1.04 ± 0.13 B | 28.2 ± 0.4 D | 19.6 ± 0.8 A |
Gas | Jet Nozzle to Substrate Distance (mm) | Exposure Time (s) | Microbial Reduction (log CFU g−1) | Surface Temperature (°C) | Central Temperature (°C) |
---|---|---|---|---|---|
Dry Air | 20 | 10 | 2.29 ± 0.23 BC | 46.0 ± 2.8 C | 20.3 ± 2.2 A |
30 | 3.43 ± 0.19 E | 59.1 ± 1.5 D | 20.6 ± 1.7 A | ||
60 | 5.05 ± 0.11 F | 73.1 ± 1.6 E | 23.4 ± 1.5 A | ||
30 | 10 | 1.85 ± 0.27 B | 36.6 ± 3.0 B | 19.5 ± 0.4 A | |
30 | 3.07 ± 0.47 CDE | 46.0 ± 2.1 C | 19.9 ± 0.3 A | ||
60 | 4.20 ± 0.33 EF | 49.4 ± 2.5 C | 22.1 ± 1.3 A | ||
40 | 10 | 0.89 ± 0.16 A | 32.0 ± 2.3 A | 20.5 ± 0.4 A | |
30 | 1.34 ± 0.16 AB | 36.5 ± 0.7 B | 21.2 ± 1.2 A | ||
60 | 2.35 ± 0.29 BCD | 44.0 ± 1.4 C | 20.8 ± 0.4 A |
Sample | E. coli ATCC 25922 Counts (log CFU g−1) During the Storage | |||
---|---|---|---|---|
0th Week | 1st Week | 2nd Week | 3rd Week | |
Control (inoculated) | 6.92 ± 0.11 Aa | 6.96 ± 0.15 Aa | 6.42 ± 0.24 Ab | 6.03 ± 0.11 Ac |
Argon Plasma (10 mm-60 s) | 2.65 ±0.12 Ba | 1.92 ± 0.15 Bb | 1.67 ± 0.19 Bbc | 1.26 ± 0.20 Bd |
Dry Air Plasma (30 mm-60 s) | 2.34 ± 0.21 Ba | <1 * | <1 | <1 |
Storage (Week) | Argon Plasma | Dry Air Plasma | ||||
---|---|---|---|---|---|---|
ΔE | WI | ΔE | WI | |||
Control | Plasma-Treated | Control | Plasma-Treated | |||
0 | 2.88 ± 0.80 A | 36.38 ± 0.65 Aa | 36.74 ± 0.48 Aa | 3.03 ± 0.56 A | 36.51 ± 0.53 Aa | 38.47 ± 0.35 Ab |
1 | 1.63 ± 0.57 A | 36.71 ± 0.34 Aa | 37.22 ± 0.31 Aa | 2.19 ± 0.41 A | 36.29 ± 0.65 Aa | 38.94 ± 0.54 Bb |
2 | 2.05 ± 0.23 A | 37.81 ± 0.22 Ba | 38.13 ± 0.29 Ba | 2.03 ± 0.64 A | 37.36 ± 0.18 Ba | 39.55 ± 0.37 Bb |
3 | 1.85 ± 0.41 A | 38.45 ± 0.37 Ca | 38.88 ± 0.14 Ca | 2.14 ± 0.96 A | 38.83 ± 0.26 Ca | 40.74 ± 0.21 Cb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakla, E.; Bağcı, U. Microbial Decontamination of Fresh-Cut Carrots via Cold Atmospheric Plasma Treatment: Effect on Physicochemical and Nutritional Properties During Storage. Foods 2025, 14, 1599. https://doi.org/10.3390/foods14091599
Bakla E, Bağcı U. Microbial Decontamination of Fresh-Cut Carrots via Cold Atmospheric Plasma Treatment: Effect on Physicochemical and Nutritional Properties During Storage. Foods. 2025; 14(9):1599. https://doi.org/10.3390/foods14091599
Chicago/Turabian StyleBakla, Efe, and Ufuk Bağcı. 2025. "Microbial Decontamination of Fresh-Cut Carrots via Cold Atmospheric Plasma Treatment: Effect on Physicochemical and Nutritional Properties During Storage" Foods 14, no. 9: 1599. https://doi.org/10.3390/foods14091599
APA StyleBakla, E., & Bağcı, U. (2025). Microbial Decontamination of Fresh-Cut Carrots via Cold Atmospheric Plasma Treatment: Effect on Physicochemical and Nutritional Properties During Storage. Foods, 14(9), 1599. https://doi.org/10.3390/foods14091599