Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,511)

Search Parameters:
Keywords = non-oncogenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2724 KB  
Article
Chelidonine Induces Concurrent Elevation of pSer-STAT3 and Bcl-2 Levels in a Mitotic Subpopulation of Human T-Leukemia/Lymphoma Cells
by Saraa Baddour, János Szöllősi, László Mátyus, György Vámosi, István Csomós and Andrea Bodnár
Int. J. Mol. Sci. 2026, 27(3), 1200; https://doi.org/10.3390/ijms27031200 - 25 Jan 2026
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates a broad spectrum of genes with oncogenic potential, thereby serving as a critical driver of tumorigenesis. Canonical STAT3 function is mediated through tyrosine phosphorylation, which enables dimerization and transcriptional [...] Read more.
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates a broad spectrum of genes with oncogenic potential, thereby serving as a critical driver of tumorigenesis. Canonical STAT3 function is mediated through tyrosine phosphorylation, which enables dimerization and transcriptional activation, whereas serine phosphorylation of STAT3 has a postulated role in fine-tuning canonical functions and contributes to non-canonical roles as well. One of the transcriptional targets of STAT3 is the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, itself subject to phosphorylation-dependent regulation. In this study, we investigated the effect of chelidonine, an alkaloid component of Chelidonium majus L., on STAT3/Bcl-2 signaling in human T leukemia/lymphoma cells, reported to have numerous effects in common with microtubule-targeting agents (MTAs). Flow cytometry and confocal microscopy revealed that chelidonine transiently increased both serine-phosphorylated STAT3 (pSer-STAT3) and Bcl-2 levels in a distinct subpopulation of cells, with near-complete overlap between the affected cells. This effect appeared at least partially independent of interleukin-2 (IL-2) and was associated with the M-phase of the cell cycle, as indicated by enhanced phosphorylation of Bcl-2 at serine 70 and nuclear morphology characteristic of mitosis. Our study provides the first single-cell evidence that STAT3 and Bcl-2 undergo concurrent serine phosphorylation as a response to chelidonine treatment, with the effect tightly linked to the M-phase. Full article
(This article belongs to the Special Issue Antitumor Activity of Natural Products)
Show Figures

Figure 1

24 pages, 5858 KB  
Article
NADCdb: A Joint Transcriptomic Database for Non-AIDS-Defining Cancer Research in HIV-Positive Individuals
by Jiajia Xuan, Chunhua Xiao, Runhao Luo, Yonglei Luo, Qing-Yu He and Wanting Liu
Int. J. Mol. Sci. 2026, 27(3), 1169; https://doi.org/10.3390/ijms27031169 - 23 Jan 2026
Viewed by 54
Abstract
Non-AIDS-defining cancers (NADCs) have emerged as an increasingly prominent cause of non-AIDS-related morbidity and mortality among people living with HIV (PLWH). However, the scarcity of NADC clinical samples, compounded by privacy and security constraints, continues to present formidable obstacles to advancing pathological and [...] Read more.
Non-AIDS-defining cancers (NADCs) have emerged as an increasingly prominent cause of non-AIDS-related morbidity and mortality among people living with HIV (PLWH). However, the scarcity of NADC clinical samples, compounded by privacy and security constraints, continues to present formidable obstacles to advancing pathological and clinical investigations. In this study, we adopted a joint analysis strategy and deeply integrated and analyzed transcriptomic data from 12,486 PLWH and cancer patients to systematically identify potential key regulators for 23 NADCs. This effort culminated in NADCdb—a database specifically engineered for NADC pathological exploration, structured around three mechanistic frameworks rooted in the interplay of immunosuppression, chronic inflammation, carcinogenic viral infections, and HIV-derived oncogenic pathways. The “rNADC” module performed risk assessment by prioritizing genes with aberrant expression trajectories, deploying bidirectional stepwise regression coupled with logistic modeling to stratify the risks for 21 NADCs. The “dNADC” module, synergized patients’ dysregulated genes with their regulatory networks, using Random Forest (RF) and Conditional Inference Trees (CITs) to identify pathogenic drivers of NADCs, with an accuracy exceeding 75% (in the external validation cohort, the prediction accuracy of the HIV-associated clear cell renal cell carcinoma model exceeded 90%). Meanwhile, “iPredict” identified 1905 key immune biomarkers for 16 NADCs based on the distinct immune statuses of patients. Importantly, we conducted multi-dimensional profiling of these key determinants, including in-depth functional annotations, phenotype correlations, protein–protein interaction (PPI) networks, TF-miRNA-target regulatory networks, and drug prediction, to deeply dissect their mechanistic roles in NADC pathogenesis. In summary, NADCdb serves as a novel, centralized resource that integrates data and provides analytical frameworks, offering fresh perspectives and a valuable platform for the scientific exploration of NADCs. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology, 3rd Edition)
Show Figures

Figure 1

20 pages, 7811 KB  
Article
Fatty Acid Synthase as a Potential Metabolic Vulnerability in Ocular Adnexal Sebaceous Carcinoma
by Autumn Berlied, Isabella Boyack, Andre Vieira, Maria Gonzalez-Perez, Vikas Kumar and Cornelia Peterson
Cancers 2026, 18(2), 349; https://doi.org/10.3390/cancers18020349 - 22 Jan 2026
Viewed by 64
Abstract
Background: MYC dysregulation is frequent in ocular adnexal sebaceous carcinoma (SebCA), an aggressive malignancy without precision therapy. Fatty acid synthase (FASN) expression and lipid metabolism are commonly perturbed in high-MYC-expressing tumors; however, the role of MYC and FASN in the coregulation of [...] Read more.
Background: MYC dysregulation is frequent in ocular adnexal sebaceous carcinoma (SebCA), an aggressive malignancy without precision therapy. Fatty acid synthase (FASN) expression and lipid metabolism are commonly perturbed in high-MYC-expressing tumors; however, the role of MYC and FASN in the coregulation of lipid biosynthesis and tumorigenesis in SebCA is unknown. Methods: The aim of this study was to characterize the effects of FASN inhibition on MYC expression, oncogenic processes, and lipid profiles in vitro, using non-neoplastic human Meibomian gland epithelial cells (HMGECs) and three primary SebCA cell lines, and in vivo, utilizing a conditionally MYC-overexpressing mouse model. Results: FASN inhibition reduced cell viability, proliferation, and clonogenicity and altered the saturation profile of fatty acids across multiple lipid classes. The relative saturation of ceramides was the most variable between treatment conditions. MYC overexpression in the murine Meibomian gland promoted proliferation while suppressing sebaceous differentiation. Subsequent topical FASN inhibition further reduced sebaceous differentiation, attenuated PLIN2 expression, and induced apoptotic cell death. Conclusions: Collectively, these findings suggest that MYC expression in SebCA is responsive to FASN inhibition. Pharmacologic targeting of FASN reveals a metabolic vulnerability that may serve as a target for future therapeutic development. Full article
(This article belongs to the Special Issue Novel Treatments for Ocular and Periocular Cancers)
Show Figures

Graphical abstract

27 pages, 954 KB  
Review
Genome Agnostic Reprogramming of Acute Myelocytic Leukemia Hallmarks by Targeting Non-Oncogene Addictions with Azacitidine Plus Pioglitazone and All-Trans Retinoic Acid
by Dennis Christoph Harrer, Florian Lüke, Tobias Pukrop, Albrecht Reichle and Daniel Heudobler
Int. J. Mol. Sci. 2026, 27(2), 1067; https://doi.org/10.3390/ijms27021067 - 21 Jan 2026
Viewed by 227
Abstract
The search for new therapeutic principles is essential for treating relapsed/refractory (r/r) acute myeloid leukemia (AML). Novel principles include genome-agnostic differentiation induction, controlling AML-triggering inflammation, potentiating the immune response and ‘normalizing’ AML metabolism. This review summarizes data from a phase I study (10 [...] Read more.
The search for new therapeutic principles is essential for treating relapsed/refractory (r/r) acute myeloid leukemia (AML). Novel principles include genome-agnostic differentiation induction, controlling AML-triggering inflammation, potentiating the immune response and ‘normalizing’ AML metabolism. This review summarizes data from a phase I study (10 patients, pts) and three case reports reporting 7 pts on the treatment of r/r AML by reprogramming AML hallmarks using APA, low-dose azacitidine, pioglitazone (PPARα/γ agonist) and all-trans retinoic acid. APA reprograms the r/r AML phenotype in patients with clinically and molecularly/genetically unfavorable risk profiles (17 pts, 16 refractory, one relapsed) in a genome-agnostic manner, restoring the plasticity of AML hallmarks, thereby improving immune surveillance, attenuating inflammation-triggered promotion of AML and distant microbial inflammation (healing of fungal pneumonia during induction of complete remission (CR) with APA), while normalizing leukemia metabolism (restoring phagocytosis and ROS production in leukemic neutrophils). APA induces CR in 10 pts (59%), with only modest hematotoxicity following CR induction. This allows treatment to be carried out in an outpatient setting, including for elderly and comorbid patients. Triple transcriptional modulation, facilitated by epigenetic modelling with azacitidine, targets reprogramming of non-oncogene addiction networks in AML, re-establishing functionally active, closely interrelated myeloid hallmarks and AML cell death genome-agnostically. Full article
Show Figures

Figure 1

23 pages, 2194 KB  
Article
Unraveling the Impact of KRAS Accessory Proteins on Oncogenic Signaling Pathways
by Vanshika Garg, Raphael N. H. M. Hofmann, Moazzam Saleem, Amin Mirzaiebadizi, Ghazaleh Sadat Hashemi, Tooba Hameed, Bahareh Jooyeh, Silke Pudewell, Mehrnaz Mehrabipour, Niloufar Mosaddeghzadeh, Roland P. Piekorz and Mohammad Reza Ahmadian
Cells 2026, 15(2), 190; https://doi.org/10.3390/cells15020190 - 20 Jan 2026
Viewed by 329
Abstract
The oncogene KRAS drives tumor growth by activating pathways such as MAPK and PI3K-AKT in a constitutive manner. Although direct KRAS inhibitors exist, they are often limited in clinical use due to therapeutic resistance and toxicity. Therefore, alternative combinatorial therapeutic strategies are urgently [...] Read more.
The oncogene KRAS drives tumor growth by activating pathways such as MAPK and PI3K-AKT in a constitutive manner. Although direct KRAS inhibitors exist, they are often limited in clinical use due to therapeutic resistance and toxicity. Therefore, alternative combinatorial therapeutic strategies are urgently needed. This study examined the knockout of five KRAS-related proteins—galectin-3 (GAL3), phosphodiesterase delta (PDEδ), nucleophosmin (NPM1), IQ motif-containing GTPase-activating protein 1 (IQGAP1), and SHOC2—using CRISPR-Cas9 in adenocarcinoma cell lines harboring the KRAS(G12V) oncogenic mutation, as well as in the noncancerous HEK-293 cell line. These proteins act as critical modulators that regulate KRAS activity, cellular localization, and that of its downstream signaling components. We analyzed the downstream activation of ERK and AKT kinases and evaluated subsequent cancer cell proliferation. Knockout of GAL3 and PDEδ was highly effective, significantly reducing MAPK and PI3K-AKT pathway activity and substantially impairing cell proliferation. SHOC2 knockout selectively and potently disrupted MAPK activation, while NPM1 knockout resulted in the complex, reciprocal modulation of the two major pathways. Notably, knocking out IQGAP1 enhanced PI3K–AKT and mTORC2–AKT signaling without affecting the MAPK pathway. These distinct modulatory roles highlight the non-redundant functions of the accessory proteins. In conclusion, our findings establish GAL3 and PDEδ, two KRAS-associated proteins, as promising combinatorial drug targets. Targeting these modulators provides an effective alternative strategy to overcome resistance mechanisms and enhance the clinical utility of existing KRAS inhibitors. Full article
(This article belongs to the Special Issue Ras Family of Genes and Proteins: Structure, Function and Regulation)
Show Figures

Figure 1

14 pages, 2583 KB  
Case Report
Targeting the Uncommon: A Case Report of Osimertinib Response in Advanced NSCLC Patient with Dual EGFR (E701fs and L702fs) Frameshift Deletions
by Angel Kwan Qi Wong, Saqib Raza Khan, Danial Khan Hadi, Daniel Breadner and Mark David Vincent
Curr. Oncol. 2026, 33(1), 55; https://doi.org/10.3390/curroncol33010055 - 18 Jan 2026
Viewed by 154
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers with adenocarcinoma being the most common subtype. Patients with stage IV NSCLC typically have poor prognosis. In these patients, identification of actionable genomic alterations allows for the selection of targeted therapy [...] Read more.
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers with adenocarcinoma being the most common subtype. Patients with stage IV NSCLC typically have poor prognosis. In these patients, identification of actionable genomic alterations allows for the selection of targeted therapy rather than chemotherapy or chemo-immunotherapy. EGFR mutations are a common oncogenic driver in NSCLC and are targetable by tyrosine kinase inhibitors (TKIs). However, most of the studies primarily focus on common mutations, which are exon 19 deletions (Ex19del) and exon 21 (L858R) point mutations, and there is inconsistent data on efficacy in the treatment of patients with uncommon EGFR mutations. Currently, the first-line treatment for patients with common EGFR mutations involves a third-generation TKI, typically osimertinib. This case describes a 66-year-old gentleman with two uncommon EGFR frameshift deletions (E701fs and L702fs). His tumor staging was denoted as cT3N2M1b, stage IVA. The patient demonstrated a radiological and biochemical response to osimertinib as part of the OCELOT clinical trial (supported by a grant from AstraZeneca), with evidence of tumor marker decline and radiographic improvement within two months of osimertinib treatment initiation. This response has been durable with continued radiological stability and biochemical improvement at 11 months and ongoing. This case will help guide management for patients with this uncommon EGFR mutations and contribute to the scarce literature of EGFR frameshift deletions in advanced NSCLC patients. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Figure 1

15 pages, 1752 KB  
Review
Advances in Colorectal Cancer Cell Biology and Clonal Evolution
by Sopozme Toghey, Elizabeth J. Harvey-Jones, Jonathan D. Towler, Charlotte J. H. Hafkamp and Irene Y. Chong
Int. J. Mol. Sci. 2026, 27(2), 953; https://doi.org/10.3390/ijms27020953 - 18 Jan 2026
Viewed by 148
Abstract
Colorectal cancer (CRC) develops through evolutionary processes involving genomic alterations, epigenetic regulation, and microenvironmental interactions. While traditionally explained by the stepwise accumulation of driver mutations, contemporary evidence supports a ‘Big Bang’ model in which many early-arising clones expand simultaneously to establish extensive heterogeneity. [...] Read more.
Colorectal cancer (CRC) develops through evolutionary processes involving genomic alterations, epigenetic regulation, and microenvironmental interactions. While traditionally explained by the stepwise accumulation of driver mutations, contemporary evidence supports a ‘Big Bang’ model in which many early-arising clones expand simultaneously to establish extensive heterogeneity. We reviewed recent studies employing spatially resolved multi-omic sequencing of tumour glands combined with computational modelling. These approaches enable high-resolution reconstruction of clonal architecture, transcriptional states, and chromatin accessibility. Findings show that although early clonal mutations shape tumour expansion, gene expression variability can be independent of genetic ancestry and instead reflects phenotypic plasticity driven by microenvironmental cues. Epigenomic analyses identified recurrent somatic chromatin accessibility alterations in promotors and enhancers of oncogenic pathways, frequently in the absence of DNA mutations, suggesting alternative mechanisms of gene regulation. Immune-focused studies demonstrated that early silencing of antigen-presenting genes and loss of neoantigens facilitate immune escape despite active surveillance. CRC is shaped by an interplay of genome, epigenome, and immune evolution, with non-genetic mechanisms and tumour plasticity emerging as important drivers of progression and therapeutic resistance. Full article
(This article belongs to the Special Issue New Molecular Aspects of Colorectal Cancer)
Show Figures

Figure 1

25 pages, 3718 KB  
Article
The WISP1/Src/MIF Axis Promotes the Malignant Phenotype of Non-Invasive MCF7 Breast Cancer Cells
by Maria-Elpida Christopoulou, Panagiota Karamitsou, Alexios Aletras and Spyros S. Skandalis
Cells 2026, 15(2), 160; https://doi.org/10.3390/cells15020160 - 15 Jan 2026
Viewed by 199
Abstract
Breast cancer is a heterogeneous disease that exists in multiple subtypes, some of which still lack targeted and effective therapy. A major challenge is to unravel their underlying molecular mechanisms and bring to light novel therapeutic targets. In this study, we investigated the [...] Read more.
Breast cancer is a heterogeneous disease that exists in multiple subtypes, some of which still lack targeted and effective therapy. A major challenge is to unravel their underlying molecular mechanisms and bring to light novel therapeutic targets. In this study, we investigated the role of WNT-inducible signaling pathway protein 1 (WISP1) matricellular protein in the acquirement of an invasive phenotype by breast cancer cells. To this aim, we treated non-invasive MCF7 cells with WISP1 and assessed the expression levels of macrophage migration inhibitory factor (MIF) and its cellular receptor CD74. Next, we examined the expression of epithelial-to-mesenchymal transition (EMT) markers as well as molecular effectors of the tumor microenvironment, such as CD44, the main hyaluronan receptor that also acts as a co-receptor for MIF, the hyaluronan oncogenic network, and specific matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). The results showed that WISP1 potently induces the expression of MIF cytokine and affects the expression of specific extracellular matrix molecules with established roles in the promotion of malignant properties. Notably, Src kinases and MIF are critically involved in these processes. Collectively, the present study demonstrates for first time a WISP1/Src/MIF axis as well as its ability to induce an invasive phenotype in MCF7 cells and highlights novel cellular and molecular processes involved in the epithelial-to-mesenchymal transition and the development of invasive breast cancer. This suggests that specific cues from the tumor microenvironment can activate a migratory/invasive phenotype in a subpopulation of cells residing within the heterogeneous breast tumor. Full article
Show Figures

Figure 1

31 pages, 3388 KB  
Review
Molecular Insights into Widespread Pseudouridine RNA Modifications: Implications for Women’s Health and Disease
by Qiwei Yang, Ayman Al-Hendy and Thomas G. Boyer
Biology 2026, 15(2), 142; https://doi.org/10.3390/biology15020142 - 14 Jan 2026
Viewed by 297
Abstract
Pseudouridine (Ψ), the most abundant RNA modification, plays essential roles in shaping RNA structure, stability, and translational output. Beyond cancer, Ψ is dynamically regulated across numerous physiological and pathological contexts—including immune activation, metabolic disorders, stress responses, and pregnancy-related conditions such as preeclampsia—where elevated [...] Read more.
Pseudouridine (Ψ), the most abundant RNA modification, plays essential roles in shaping RNA structure, stability, and translational output. Beyond cancer, Ψ is dynamically regulated across numerous physiological and pathological contexts—including immune activation, metabolic disorders, stress responses, and pregnancy-related conditions such as preeclampsia—where elevated Ψ levels reflect intensified RNA turnover and modification activity. These broad functional roles highlight pseudouridylation as a central regulator of cellular homeostasis. Emerging evidence demonstrates that Ψ dysregulation contributes directly to the development and progression of several women’s cancers, including breast, ovarian, endometrial, and cervical malignancies. Elevated Ψ levels in tissues, blood, and urine correlate with tumor burden, metastatic potential, and therapeutic responsiveness. Aberrant activity of Ψ synthases such as PUS1, PUS7, and the H/ACA ribonucleoprotein component dyskerin alters pseudouridylation patterns across multiple RNA substrates, including rRNA, tRNA, mRNA, lncRNAs, snoRNAs, and ncRNAs. These widespread modifications reshape ribosome function, modify transcript stability and translational efficiency, reprogram RNA–protein interactions, and activate oncogenic signaling programs. Advances in high-resolution, site-specific Ψ mapping technologies have further revealed mechanistic links between pseudouridylation and malignant transformation, highlighting how modification of distinct RNA classes contributes to altered cellular identity and tumor progression. Collectively, Ψ and its modifying enzymes represent promising biomarkers and therapeutic targets across women’s cancers, while also serving as sensitive indicators of diverse non-cancer physiological and disease states. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

14 pages, 426 KB  
Review
Genetic Basis of Familial Cancer Risk: A Narrative Review
by Eman Fares Sabik
DNA 2026, 6(1), 5; https://doi.org/10.3390/dna6010005 - 13 Jan 2026
Viewed by 189
Abstract
Familial cancers are caused by inherited mutations in specific genes that regulate cell growth, division, and repair. Approximately 5–10% of all cancer cases have a hereditary component, where germline mutations in certain genes increase an individual’s susceptibility to developing cancer. Two major categories [...] Read more.
Familial cancers are caused by inherited mutations in specific genes that regulate cell growth, division, and repair. Approximately 5–10% of all cancer cases have a hereditary component, where germline mutations in certain genes increase an individual’s susceptibility to developing cancer. Two major categories of genes are involved in cancer development: tumour suppressor genes and oncogenes. Both play critical roles in regulating normal cell behaviour, and when mutated, they can contribute to uncontrolled cell proliferation and tumour formation. In addition to genetic mutations, epigenetic alterations also play a significant role in familial cancer. Epigenetics refers to changes in gene expression due to DNA methylation, histone modifications, and the dysregulation of non-coding RNAs without alter the underlying DNA sequence. Familial cancer syndromes follow various inheritance patterns, including autosomal dominant, autosomal recessive, X-linked, and mitochondrial inheritance, each with distinct characteristics. Identifying genetic mutations associated with familial cancers is a cornerstone of genetic counselling, which helps individuals and families navigate the complex intersection of genetics, cancer risk, and prevention. Early identification of mutations enables personalized strategies for risk reduction, early detection, and, when applicable, targeted treatment options, ultimately improving patient outcomes. Full article
Show Figures

Figure 1

22 pages, 2568 KB  
Article
Molecular Pathology of Advanced NSCLC: Biomarkers and Therapeutic Decisions
by Melanie Winter, Jan Jeroch, Maximilian Wetz, Marc-Alexander Rauschendorf and Peter J. Wild
Cancers 2026, 18(2), 216; https://doi.org/10.3390/cancers18020216 - 9 Jan 2026
Viewed by 264
Abstract
Background: Advances in molecular pathology have transformed NSCLC (Non-Small Cell Lung Cancer) diagnosis, prognosis, and treatment by enabling precise tumor characterization and targeted therapeutic strategies. We review key genomic alterations in NSCLC, including EGFR (epidermal growth factor receptor) mutations, ALK (anaplastic lymphoma kinase) [...] Read more.
Background: Advances in molecular pathology have transformed NSCLC (Non-Small Cell Lung Cancer) diagnosis, prognosis, and treatment by enabling precise tumor characterization and targeted therapeutic strategies. We review key genomic alterations in NSCLC, including EGFR (epidermal growth factor receptor) mutations, ALK (anaplastic lymphoma kinase) and ROS1 (ROS proto-oncogene 1) rearrangements, BRAF (B-Raf proto-oncogene serine/threonine kinase) mutations, MET (mesenchymal–epithelial transition factor) alterations, KRAS (Kirsten rat sarcoma) mutations, HER2 (human epidermal growth factor receptor 2) alterations and emerging NTRK (neurotrophic receptor tyrosine kinase) fusions and AXL-related pathways. Methods: A total of 48 patients with NSCLC was analyzed, including 22 women and 26 men (mean age 70 years, range 44–86). Tumor specimens were classified histologically as adenocarcinomas (n = 81%) or squamous cell carcinomas (n = 19%). Smoking history, PD-L1 (programmed death-ligand 1) expression, and genetic alterations were assessed. NGS (Next-generation sequencing) identified genomic variants, which were classified according to ACMG (American College of Medical Genetics and Genomics) guidelines. Results: The cohort consisted of 29 former smokers, 13 current smokers, and 5 non-smokers (12%), with a mean smoking burden of 33 pack years. PD-L1 TPS (tumor proportion score) was ≥50% in 10 patients, ≥1–<50% in 22, and <1% in 15 patients. In total, 120 genomic variants were detected (allele frequency ≥ 5%). Of these, 52 (43%) were classified as likely pathogenic or pathogenic, 48 (40%) as variants of unknown significance, and 20 (17%) as benign or likely benign. The most frequently altered genes were TP53 (tumor protein p53) (31%), KRAS and EGFR (15% each), and STK11 (serine/threonine kinase 11) (12%). Adenocarcinomas accounted for 89% of all alterations, with TP53 (21%) and KRAS (15%) being most common, while squamous cell carcinomas predominantly harbored TP53 (38%) and MET (15%) mutations. In patients with PD-L1 TPS ≥ 50%, KRAS mutations were enriched (50%), particularly KRAS G12C and G12D, with frequent co-occurrence of TP53 mutations (20%). No pathogenic EGFR mutations were detected in this subgroup. Conclusions: Comprehensive genomic profiling in NSCLC revealed a high prevalence of clinically relevant mutations, with TP53, KRAS and EGFR as the dominant drivers. The strong association of KRAS mutations with high PD-L1 expression, irrespective of smoking history, highlights the interplay between genetic and immunological pathways in NSCLC. These findings support the routine implementation of broad molecular testing to guide precision oncology approaches in both adenocarcinoma and squamous cell carcinoma patients. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

29 pages, 4039 KB  
Review
Targeting Mesenchymal-Epidermal Transition (MET) Aberrations in Non-Small Cell Lung Cancer: Current Challenges and Therapeutic Advances
by Fahua Deng, Weijie Ma and Sixi Wei
Cancers 2026, 18(2), 207; https://doi.org/10.3390/cancers18020207 - 8 Jan 2026
Viewed by 471
Abstract
The mesenchymal–epithelial transition (MET) receptor is a tyrosine kinase activated by its sole known ligand, hepatocyte growth factor (HGF). MET signaling regulates key cellular processes, including proliferation, survival, migration, motility, and angiogenesis. Dysregulation and hyperactivation of this pathway are implicated in multiple malignancies, [...] Read more.
The mesenchymal–epithelial transition (MET) receptor is a tyrosine kinase activated by its sole known ligand, hepatocyte growth factor (HGF). MET signaling regulates key cellular processes, including proliferation, survival, migration, motility, and angiogenesis. Dysregulation and hyperactivation of this pathway are implicated in multiple malignancies, including lung, breast, colorectal, and gastrointestinal cancers. In non–small cell lung cancer (NSCLC), aberrant activation of the MET proto-oncogene contributes to 1% of known oncogenic drivers and is associated with poor clinical outcomes. Several mechanisms can induce MET hyperactivation, including MET gene amplification, transcriptional upregulation of MET or HGF, MET fusion genes, and MET exon 14 skipping mutations. Furthermore, MET pathway activation represents a frequent mechanism of acquired resistance to EGFR- and ALK-targeted tyrosine kinase inhibitors (TKIs) in EGFR- and ALK-driven NSCLCs. Although MET has long been recognized as a promising therapeutic target in NSCLC, the clinical efficacy of MET-targeted therapies has historically lagged behind that of EGFR and ALK inhibitors. Encouragingly, several MET TKIs such as capmatinib, tepotinib, and savolitinib have been approved for the treatment of MET exon 14 skipping mutations. They have also demonstrated potential in overcoming MET-driven resistance to EGFR TKIs or ALK TKIs. On 14 May 2025, the U.S. Food and Drug Administration granted accelerated approval to telisotuzumab vedotin-tllv for adult patients with locally advanced or metastatic non-squamous NSCLC whose tumors exhibit high c-Met protein overexpression and who have already received prior systemic therapy. In this review, we summarize the structure and physiological role of the MET receptor, the molecular mechanisms underlying aberrant MET activation, its contribution to acquired resistance against targeted therapies, and emerging strategies for effectively targeting MET alterations in NSCLC. Full article
Show Figures

Figure 1

19 pages, 6097 KB  
Article
Circuitous Ways of EWS::FLI1 Using Circular RNA ZNF609 to Evade Translational Repression by miR-145 in Ewing’s Sarcoma
by Aakash Koppula, Ahmed Abdelgawad, Brigette Romero, Victoria Beringer, Vijay Parashar and Mona Batish
Biomedicines 2026, 14(1), 129; https://doi.org/10.3390/biomedicines14010129 - 8 Jan 2026
Viewed by 320
Abstract
Background: Ewing’s sarcoma (EwS) is a pediatric bone and soft tissue cancer driven by the oncogenic fusion protein EWS::FLI1. Currently, EwS lacks targeted therapies, necessitating the identification of novel regulatory mechanisms. While the role of microRNAs and long non-coding RNAs has been explored [...] Read more.
Background: Ewing’s sarcoma (EwS) is a pediatric bone and soft tissue cancer driven by the oncogenic fusion protein EWS::FLI1. Currently, EwS lacks targeted therapies, necessitating the identification of novel regulatory mechanisms. While the role of microRNAs and long non-coding RNAs has been explored in EwS, the presence and functional significance of circular RNAs (circRNAs) in EwS is not reported. This is the first study to report the presence and role of oncogenic circRNA, circZNF609 in EwS tumor progression. Methods: Expression of circZNF609 was validated in 5 different EwS cell lines using qPCR. Cellular localization of circZNF609 was identified using circFISH. Functional assays for proliferation, migration and apoptosis were performed in wild type and circZNF609 knocked down (KD) cell lines to confirm its oncogenic role. The impact of circZNF609 on EWS::FLI1 protein levels was confirmed using western blots, immunofluorescence, and polysome fractionation. Mechanistic insights were gained utilizing bioinformatic, dual-luciferase reporter assays, rescue experiments, and microscopy to identify and validate the circRNA-miRNA-mRNA regulatory axis. Results: We report the first identification of circZNF609 in EwS, demonstrating that its expression is EWS::FLI1-dependent. Functional analysis reveals that circZNF609 promotes cell proliferation and metastasis while inhibiting apoptosis. Mechanistically, circZNF609 acts as a molecular sponge for miR-145-5p. By sequestering this miRNA, circZNF609 prevents the translational repression of EWS::FLI1, thereby sustaining oncogenic signaling. Conclusions: These findings identify circZNF609 as a novel post-transcriptional regulator of EWS::FLI1 and establish its critical role in EwS pathogenesis. Our results suggest that targeting the circZNF609/miR-145-5p/EWS::FLI1 axis may offer a promising therapeutic strategy for EwS. Full article
Show Figures

Graphical abstract

20 pages, 4835 KB  
Article
Cell-Penetrating Peptide-Mediated siRNA Targeting of LDHC Suppresses Tumor Growth in a Triple-Negative Breast Cancer Zebrafish Xenograft Model
by Hanan Qasem, Adviti Naik, Tricia Gomez, Janarthanan Ponraj, Umar Jafar, Martin Sikhondze, Remy Thomas, Khaled A. Mahmoud and Julie Decock
Pharmaceutics 2026, 18(1), 78; https://doi.org/10.3390/pharmaceutics18010078 - 7 Jan 2026
Viewed by 322
Abstract
Background: Lactate Dehydrogenase C (LDHC) is a promising therapeutic target due to its highly tumor-specific expression, immunogenicity, and oncogenic functions. We previously showed that LDHC silencing in triple-negative breast cancer (TNBC) cells enhances treatment response to DNA-damage response-related drugs, supporting its therapeutic [...] Read more.
Background: Lactate Dehydrogenase C (LDHC) is a promising therapeutic target due to its highly tumor-specific expression, immunogenicity, and oncogenic functions. We previously showed that LDHC silencing in triple-negative breast cancer (TNBC) cells enhances treatment response to DNA-damage response-related drugs, supporting its therapeutic potential. However, no selective LDHC inhibitors exist, highlighting the need for innovative targeting strategies. Methods: We assessed the physicochemical properties and evaluated the delivery efficiency, anti-tumor activity, and safety of four cell-penetrating peptides (CPPs)—R10, 10R-RGD, cRGD-10R, and iRGD-10R—for siRNA-mediated LDHC silencing in TNBC. Clonogenic assays were used to evaluate effects on olaparib sensitivity, and TNBC zebrafish xenografts were utilized to study in vivo anti-tumor activity. Results: All CPP:siRNA complexes formed uniform nanocomplexes (129–168 nm) with low polydispersity indices (<0.25) and positive zeta potentials (+6.47 to +29.6 mV). Complexes remained stable in human serum for 24 h and showed no significant cytotoxicity in TNBC and non-cancerous cell lines. The 10R-RGD and cRGD-10R:siLDHC complexes achieved 40% LDHC protein knockdown, reduced TNBC clonogenicity by 30–36%, and enhanced olaparib sensitivity. Treatment of TNBC zebrafish xenografts with 10R-RGD or cRGD-10R:siLDHC complexes significantly reduced tumor growth by approximately 50% without major toxicity. Conclusions: These results demonstrate that CPP-mediated siRNA delivery enables selective LDHC silencing with tumor growth inhibition in triple-negative breast cancer models. This approach represents a novel, effective, and safe proof-of-concept therapeutic strategy to target LDHC, with potential translational relevance as a standalone therapy or in combination with common anti-cancer drugs. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

21 pages, 652 KB  
Review
The Role of microRNAs as Potential Biomarkers in Diffuse Large B-Cell Lymphoma
by Eirini Panteli, Epameinondas Koumpis, Vasileios Georgoulis, Georgios Petros Barakos, Evangelos Kolettas, Panagiotis Kanavaros, Alexandra Papoudou-Bai and Eleftheria Hatzimichael
Non-Coding RNA 2026, 12(1), 2; https://doi.org/10.3390/ncrna12010002 - 7 Jan 2026
Viewed by 324
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common and clinically aggressive subtype of non-Hodgkin lymphoma (NHL). While novel therapies such as rituximab and polatuzumab vedotin have led to improved outcomes, approximately 35% of patients eventually develop relapsed or refractory disease. MicroRNAs (miRNAs), [...] Read more.
Diffuse large B-cell lymphoma (DLBCL) is the most common and clinically aggressive subtype of non-Hodgkin lymphoma (NHL). While novel therapies such as rituximab and polatuzumab vedotin have led to improved outcomes, approximately 35% of patients eventually develop relapsed or refractory disease. MicroRNAs (miRNAs), a class of endogenous single-stranded RNAs approximately 22 nucleotides in length, play a pivotal role in the regulation of gene expression at the post-transcriptional level through interactions with complementary target RNAs and contribute significantly to the development, progression, and treatment response of DLBCL. Oncogenic miRNAs, such as miR-155, miR-21, and the miR-17–92 cluster, promote proliferation, survival, immune evasion, and therapy resistance by modulating pathways including PI3K/AKT, NF-κB, and MYC. Conversely, tumor-suppressive miRNAs such as miR-34a, miR-144, miR-181a, and miR-124-3p inhibit oncogene activity and enhance apoptosis, with their loss often associated with adverse outcomes. Among these, miR-155 and miR-21 are particularly well studied, playing central roles in both tumor progression and remodeling of the tumor microenvironment. This review summarizes current evidence on the biological and clinical relevance of miRNAs in DLBCL, emphasizing their diagnostic and prognostic potential. Full article
Show Figures

Figure 1

Back to TopTop