Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = non-isothermal heat treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4522 KiB  
Article
A Novel Adaptive Transient Model of Gas Invasion Risk Management While Drilling
by Yuqiang Zhang, Xuezhe Yao, Wenping Zhang and Zhaopeng Zhu
Appl. Sci. 2025, 15(13), 7256; https://doi.org/10.3390/app15137256 - 27 Jun 2025
Viewed by 223
Abstract
The deep and ultra-deep oil and gas resources often have the characteristics of high temperature and high pressure, with complex pressure systems and narrow safety density windows, so risks such as gas invasion and overflow are easy to occur during the drilling. In [...] Read more.
The deep and ultra-deep oil and gas resources often have the characteristics of high temperature and high pressure, with complex pressure systems and narrow safety density windows, so risks such as gas invasion and overflow are easy to occur during the drilling. In response to the problems of low management efficiency and large gas kick by traditional gas invasion treatment methods, this paper respectively established and compared three intelligent control models for bottom hole pressure (BHP) based on a PID controller, a fuzzy PID controller, and a fuzzy neural network PID controller based on the non-isothermal gas–liquid–solid three-phase transient flow heat transfer model in the annulus. The results show that compared with the PID controller and the fuzzy PID controller, the fuzzy neural network PID controller can adjust the control parameters adaptively and optimize the control rules in real-time; the efficiency of the fuzzy neural network PID controller to deal with a gas kick is improved by 45%, and the gas kick volume in the process of gas kick is reduced by 63.12%. The principal scientific novelty of this study lies in the integration of a fuzzy neural network PID controller with a non-isothermal three-phase flow model, enabling adaptive and robust bottom hole pressure regulation under complex gas invasion conditions, which is of great significance for reducing drilling risks and ensuring safe and efficient drilling. Full article
(This article belongs to the Special Issue Development and Application of Intelligent Drilling Technology)
Show Figures

Figure 1

19 pages, 6863 KiB  
Article
Effects of Heating Methods on Precipitation Behavior and Nucleation Activation Energy of γ′ Phase in Iron–Nickel-Based Alloy
by Zhengang Yang, Kejian Li, Jianhua Li, Jun Cheng, Chengkai Qian, Junjian Cai, Xin Huo, Xia Liu, Shengzhi Li, Qu Liu and Zhipeng Cai
Metals 2025, 15(4), 345; https://doi.org/10.3390/met15040345 - 21 Mar 2025
Viewed by 343
Abstract
Electromagnetic induction heating, which converts electromagnetic energy into thermal energy via electron-lattice collisions, and heat conduction heating, which transfers thermal energy through lattice vibrations, both have significant impacts on the solid-state precipitation behavior caused by atomic diffusion. This paper proposes a creep method [...] Read more.
Electromagnetic induction heating, which converts electromagnetic energy into thermal energy via electron-lattice collisions, and heat conduction heating, which transfers thermal energy through lattice vibrations, both have significant impacts on the solid-state precipitation behavior caused by atomic diffusion. This paper proposes a creep method based on heat conduction heating, which utilizes the turning point of negative creep to measure the isothermal transformation start curve of the γ′ phase in the alloy. The results are compared with the thermal expansion experiments under electromagnetic induction heating and simulations from the thermodynamic analysis software JMatPro. The results indicate that the nucleation incubation period of the γ′ phase in the creep experiment is longer, excluding the non-thermal effects of electricity, and more consistent with actual heat treatment conditions. The overlapping precipitation of other phases, such as M23C6 carbides at grain boundaries, reduces the γ′ phase’s fastest precipitation temperature determined by the creep and thermal expansion methods, thereby lowering the accuracy of the isothermal transformation curve. This study provides a reference for optimizing production processes and evaluating the service performance of precipitation-strengthened iron–nickel-based alloys. Full article
Show Figures

Figure 1

24 pages, 23935 KiB  
Article
Chemo-Mineralogical Changes in Six European Monumental Stones Caused by Cyclic Isothermal Treatment at 600 °C
by Matea Urbanek, Karin Wriessnig, Werner Artner, Farkas Pintér and Franz Ottner
Heritage 2025, 8(3), 107; https://doi.org/10.3390/heritage8030107 - 15 Mar 2025
Viewed by 729
Abstract
This experimental study analyses the extent of chemo-mineralogical changes that occur when a building stone encounters a cycling isothermal treatment at 600 °C. Four carbonate and two silicate European building stones were analysed in their fresh quarried and thermally treated conditions by means [...] Read more.
This experimental study analyses the extent of chemo-mineralogical changes that occur when a building stone encounters a cycling isothermal treatment at 600 °C. Four carbonate and two silicate European building stones were analysed in their fresh quarried and thermally treated conditions by means of colour measurements, in situ X-ray diffraction (XRD), and optical microscopy. Furthermore, powdered samples were characterised by Fourier-transform infrared spectroscopy, simultaneous thermal analysis, and cycling thermogravimetry (TG). The in situ XRD spectra revealed a surface-limited phase transformation of solid calcite and dolomite under isothermal conditions during the first 10 min at 600 °C and 500 °C, respectively. The onset of thermal decomposition and extent of phase transformation were governed by the microstructure of the solid samples. Inter- and intragranular microcracks are induced to varying degrees, and their incidence depended on the stone’s microstructure. Discolouration indicated a transformation of minor elements across the entire analysed sample volumes. Kaolinite was preserved even after three hours of thermal treatment at its dehydroxylation temperature due to its sheltering in confined pore spaces. Mass loss was more pronounced when cyclic treatment was employed compared to a non-periodic treatment, as determined by a TG analysis performed at same time intervals. Examining the chemo-mineralogical and microstructural changes caused by heat treatment allows us to study how and if regaining mechanical strength and restoring physical properties are possible for purposes of heritage restoration after fire damage. Full article
Show Figures

Figure 1

15 pages, 4130 KiB  
Article
Delivering Volumetric Hyperthermia to Head and Neck Cancer Patient-Specific Models Using an Ultrasound Spherical Random Phased Array Transducer
by Muhammad Zubair, Imad Uddin, Robert Dickinson and Chris J. Diederich
Bioengineering 2025, 12(1), 14; https://doi.org/10.3390/bioengineering12010014 - 28 Dec 2024
Cited by 1 | Viewed by 1135
Abstract
In exploring adjuvant therapies for head and neck cancer, hyperthermia (40–45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study [...] Read more.
In exploring adjuvant therapies for head and neck cancer, hyperthermia (40–45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer. Simulations in 3D patient-specific models for thyroid and oropharyngeal cancers assessed the transducer’s proficiency. The transducer consisting of 256 elements randomly positioned on a spherical shell, operated at a frequency of 1 MHz with various phasing schemes and power modulations to analyze 40, 41, and 43 °C isothermal volumes and the penetration depth of the heating volume, along with temperature uniformity within the target area using T10, T50, and T90 temperatures, across different tumor models. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. The results indicated the array’s ability to produce controlled heating volumes from 1 to 48 cm3 at 40 °C, 0.35 to 27 cm3 at 41 °C, and 0.1 to 8 cm3 at 43 °C. The heating depths ranged from 7 to 39 mm minimum and 52 to 59 mm maximum, measured from the skin’s inner surface. The transducer, with optimal phasing and water-cooled bolus, confined the heating to the targeted regions effectively. Multifocal sonications also improved the heating homogeneity, reducing the length-to-diameter ratio by 38% when using eight foci versus a single one. This approach shows potential for treating a range of tumors, notably deep-seated and challenging oropharyngeal cancers. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

13 pages, 5645 KiB  
Article
Austenite Growth Behavior and Prediction Modeling of Ti Microalloyed Steel
by Jun Wang, Man Liu, Lifan Wang, Ping He, Haijiang Hu and Guang Xu
Materials 2024, 17(13), 3236; https://doi.org/10.3390/ma17133236 - 1 Jul 2024
Cited by 2 | Viewed by 1147
Abstract
Previous studies on the austenite grain growth were mostly based on a fixed temperature, and the relationship between the austenite grain and austenitizing parameters was fitted according to the results. However, there is a lack of quantitative research on the austenite grain growth [...] Read more.
Previous studies on the austenite grain growth were mostly based on a fixed temperature, and the relationship between the austenite grain and austenitizing parameters was fitted according to the results. However, there is a lack of quantitative research on the austenite grain growth during the heating process. In the present work, based on the diffusion principle of the controlled Ti microalloying element, the diffusion process of carbonitrides containing Ti during the heating process was analyzed. Combined with the precipitation model and the austenite growth model, the prediction model of austenite grain growth of Ti microalloyed steel during different heat treatment processes was established. The austenite grain size versus the temperature at four different heating rates of 0.5, 1, 10, 100 °C/s was calculated. The grain growth behavior of austenite during the heating process of Ti microalloyed steel was studied by optical microscope, scanning electron microscope and transmission electron microscope. The experimental data of the austenite grain size was in good agreement with the calculation by the proposed model, which provides a new idea for the prediction of austenite grain size in non-equilibrium state during the heating process. In addition, for Ti-containing microalloyed steels, the austenite grain size increased with the increasing heating temperature, while it changed little by further prolonging isothermal time after certain heating time, which was related to the equilibrium degree of the precipitation and the dissolution of Ti element. The austenite grain coarsening temperature of the tested Ti microalloyed steel was estimated within 1100~1200 °C. Full article
Show Figures

Figure 1

14 pages, 3775 KiB  
Article
Energy Storage Performance of Electrode Materials Derived from Manganese Metal–Organic Frameworks
by Gyeongbeom Ryoo, Seon Kyung Kim, Do Kyung Lee, Young-Jin Kim, Yoon Soo Han and Kyung-Hye Jung
Nanomaterials 2024, 14(6), 503; https://doi.org/10.3390/nano14060503 - 11 Mar 2024
Cited by 6 | Viewed by 2395
Abstract
Metal–organic frameworks (MOFs) are porous materials assembled using metal and organic linkers, showing a high specific surface area and a tunable pore size. Large portions of metal open sites in MOFs can be exposed to electrolyte ions, meaning they have high potential to [...] Read more.
Metal–organic frameworks (MOFs) are porous materials assembled using metal and organic linkers, showing a high specific surface area and a tunable pore size. Large portions of metal open sites in MOFs can be exposed to electrolyte ions, meaning they have high potential to be used as electrode materials in energy storage devices such as supercapacitors. Also, they can be easily converted into porous metal oxides by heat treatment. In this study, we obtained high energy storage performance by preparing electrode materials through applying heat treatment to manganese MOFs (Mn-MOFs) under air. The chemical and structural properties of synthesized and thermally treated Mn-MOFs were measured by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The surface area and porosity were investigated by nitrogen adsorption/desorption isotherms. The electrochemical properties were studied by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) using a three-electrode cell. It was found that Mn-MOF electrodes that underwent heat treatment at 400 °C under air consisted of Mn2O3 with high specific surface area and porosity. They also showed a superior specific capacitance of 214.0 F g−1 and an energy density value of 29.7 Wh kg−1 (at 0.1 A g−1) compared to non-treated Mn-MOFs. Full article
Show Figures

Graphical abstract

17 pages, 14490 KiB  
Article
The Effect of Deformation and Isothermal Heat Treatment of a 5005 Aluminum Alloy
by Jon Holmestad, Calin Daniel Marioara, Benedikte Jørgensen Myrold and Ola Jensrud
Metals 2024, 14(2), 225; https://doi.org/10.3390/met14020225 - 12 Feb 2024
Cited by 3 | Viewed by 1853
Abstract
In the aluminum industry, forming is an important process step that introduces dislocations in the material. To investigate the effect of dislocation retention after ageing on 6xxx-series alloys, a non-heat-treatable 5005 alloy was selected to measure the change in mechanical properties due to [...] Read more.
In the aluminum industry, forming is an important process step that introduces dislocations in the material. To investigate the effect of dislocation retention after ageing on 6xxx-series alloys, a non-heat-treatable 5005 alloy was selected to measure the change in mechanical properties due to dislocation annihilation during dynamic recovery. However, the isothermal ageing treatment led to an unexpected and significant increase in mechanical properties after deformation. Increases in yield strength of 120% and tensile strength of 50% compared with the as-received material were achieved. However, this caused a significant decrease in elongation properties. The deformation start temperature did not have any impact on the final mechanical properties. TEM analysis attributed the increase in mechanical properties to an increased precipitation and dislocation density compared with the undeformed reference material. The precipitates are located along dislocation lines, showing that the solute elements are preferentially segregating to dislocations and precipitating. The precipitates were typical for the Al–Mg–Si(–Cu) system; therefore, the low amounts of Si and, to a lesser extent, Cu were responsible for the precipitation hardening in the 5005 alloy. Full article
Show Figures

Figure 1

11 pages, 1829 KiB  
Article
Dynamic Thermal Treatments in Green Coconut Water Induce Dynamic Stress Adaptation of Listeria innocua That Increases Its Thermal Resistance
by Gerardo A. González-Tejedor, Alberto Garre, Asunción Iguaz, Ricardo Wong-Zhang, Pablo S. Fernández and Arícia Possas
Foods 2023, 12(21), 4015; https://doi.org/10.3390/foods12214015 - 3 Nov 2023
Cited by 2 | Viewed by 1796
Abstract
The global coconut water market is projected to grow in the upcoming years, attributed to its numerous health benefits. However, due to its susceptibility to microbial contamination and the limitations of non-thermal decontamination methods, thermal treatments remain the primary approach to ensure the [...] Read more.
The global coconut water market is projected to grow in the upcoming years, attributed to its numerous health benefits. However, due to its susceptibility to microbial contamination and the limitations of non-thermal decontamination methods, thermal treatments remain the primary approach to ensure the shelf-life stability and the microbiological safety of the product. In this study, the thermal inactivation of Listeria innocua, a Listeria monocytogenes surrogate, was evaluated in coconut water and in tryptone soy broth (TSB) under both isothermal (50–60 °C) and dynamic conditions (from 30 to 60 °C, with temperature increases of 0.5, 1 and 5 °C/min). Mathematical models were used to analyse the inactivation data. The Geeraerd model effectively described the thermal inactivation of L. innocua in both TSB and coconut water under isothermal conditions, with close agreement between experimental data and model fits. Parameter estimates and analysis revealed that acidified TSB is a suitable surrogate medium for studying the thermal inactivation of L. innocua in coconut water, despite minor differences observed in the shoulder length of inactivation curves, likely attributed to the media composition. The models fitted to the data obtained at isothermal conditions fail to predict L. innocua responses under dynamic conditions. This is attributed to the stress acclimation phenomenon that takes place under dynamic conditions, where bacterial cells adapt to initial sub-lethal treatment stages, leading to increased thermal resistance. Fitting the Bigelow model directly to dynamic data with fixed z-values reveals a three-fold increase in D-values with lower heating rates, supporting the role of stress acclimation. The findings of this study aid in designing pasteurization treatments targeting L. innocua in coconut water and enable the establishment of safe, mild heat treatments for refrigerated, high-quality coconut water. Full article
Show Figures

Figure 1

34 pages, 36237 KiB  
Article
A Rapid, Open-Source CCT Predictor for Low-Alloy Steels, and Its Application to Compositionally Heterogeneous Material
by Joshua Collins, Martina Piemonte, Mark Taylor, Jonathan Fellowes and Ed Pickering
Metals 2023, 13(7), 1168; https://doi.org/10.3390/met13071168 - 23 Jun 2023
Cited by 8 | Viewed by 4717
Abstract
The ability to predict transformation behaviour during steel processing, such as primary heat treatments or welding, is extremely beneficial for tailoring microstructures and properties to a desired application. In this work, a model for predicting the continuous cooling transformation (CCT) behaviour of low-alloy [...] Read more.
The ability to predict transformation behaviour during steel processing, such as primary heat treatments or welding, is extremely beneficial for tailoring microstructures and properties to a desired application. In this work, a model for predicting the continuous cooling transformation (CCT) behaviour of low-alloy steels is developed, using semi-empirical expressions for isothermal transformation behaviour. Coupling these expressions with Scheil’s additivity rule for converting isothermal to non-isothermal behaviour, continuous cooling behaviour can be predicted. The proposed model adds novel modifications to the Li model in order to improve CCT predictions through the addition of a carbon-partitioning model, thermodynamic boundary conditions, and a Koistinen–Marburger expression for martensitic behaviour. These modifications expanded predictions to include characteristic CCT behaviour, such as transformation suppression, and an estimation of the final constituent fractions. The proposed model has been shown to improve CCT predictions for EN3B, EN8, and SA-540 B24 steels by better reflecting experimental measurements. The proposed model was also adapted into a more complex simulation that considers the chemical heterogeneity of the examined SA-540 material, showing a further improvement to CCT predictions and demonstrating the versatility of the model. The model is rapid and open source. Full article
Show Figures

Figure 1

15 pages, 2697 KiB  
Article
A Kinetic Study on Crystallization in TiO2-SiO2-CaO-Al2O3 Glass under Nucleation Saturation Conditions for the High Value-Added Utilization of CaO-SiO2-Based Solid Wastes
by Zhen Wang and Renze Xu
Materials 2023, 16(11), 4165; https://doi.org/10.3390/ma16114165 - 2 Jun 2023
Cited by 1 | Viewed by 1936
Abstract
A kinetic study of the non-isothermal crystallization of CaO-SiO2-Al2O3-TiO2 glass was carried out using the Matusita–Sakka equation and differential thermal analysis. As starting materials, fine-particle glass samples (<58 µm), case defined as ‘‘nucleation saturation’’ (i.e., containing [...] Read more.
A kinetic study of the non-isothermal crystallization of CaO-SiO2-Al2O3-TiO2 glass was carried out using the Matusita–Sakka equation and differential thermal analysis. As starting materials, fine-particle glass samples (<58 µm), case defined as ‘‘nucleation saturation’’ (i.e., containing such a large number of nuclei that the nucleus number is invariable during the DTA process), became dense bulk glass–ceramics through heat treatment, demonstrating the strong heterogeneous nucleation phenomenon at the juncture of particle boundaries under “nucleation saturation” conditions. Three types of crystal phase are formed during the heat treatment process: CaSiO3, Ca3TiSi2(AlSiTi)3O14, and CaTiO3. As the TiO2 content increases, the main crystal shifts from CaSiO3 to Ca3TiSi2(AlSiTi)3O14. The EG values (activation energy of crystal growth) are in the 286–789 kJ/mol range. With increasing TiO2, EG initially decreases (the minimum appears at 14% TiO2), and then, increases. When added within 14%, TiO2 is shown to be an efficient nucleating agent that promotes the growth of wollastonite in a two-dimensional mechanism. As TiO2 further increases to exceed 18%, it is no longer just a nucleating agent but becomes one of the major components in the studied glass, so, in turn, it undermines the crystallization of wollastonite by forming Ti-bearing compounds, resulting in a tendency toward surface crystallization and higher activation energy of crystal growth. For glass samples with fine particles, it is important to note the “nucleation saturation” case for a better understanding of the crystallization process. Full article
Show Figures

Figure 1

18 pages, 12482 KiB  
Article
Effects of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of the Brazed Joint of a Novel Fourth-Generation Nickel-Based Single Crystal Superalloy
by Zhipeng Zhang, Jide Liu, Chongwei Zhu, Yuyu Huang, Xinguang Wang, Yizhou Zhou, Jianjun Wang and Jinguo Li
Materials 2023, 16(8), 3008; https://doi.org/10.3390/ma16083008 - 11 Apr 2023
Cited by 2 | Viewed by 2669
Abstract
A novel fourth-generation nickel-based single crystal superalloy was brazed with Co-based filler alloy. The effects of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of brazed joints were investigated. The experimental and CALPHAD simulation results show that the non-isothermal solidification zone [...] Read more.
A novel fourth-generation nickel-based single crystal superalloy was brazed with Co-based filler alloy. The effects of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of brazed joints were investigated. The experimental and CALPHAD simulation results show that the non-isothermal solidification zone was composed of M3B2, MB-type boride and MC carbide, and the isothermal solidification zone was composed of γ and γ’ phases. After the PWHT, the distribution of borides and the morphology of the γ’ phase were changed. The change of the γ’ phase was mainly attributed to the effect of borides on the diffusion behavior of Al and Ta atoms. In the process of PWHT, stress concentration leads to the nucleation and growth of grains during recrystallization, thus forming high angle grain boundaries in the joint. The microhardness was slightly increased compared to the joint before PWHT. The relationship between microstructure and microhardness during the PWHT of the joint was discussed. In addition, the tensile strength and stress fracture life of the joints were significantly increased after the PWHT. The reasons for the improved mechanical properties of the joints were analyzed and the fracture mechanism of the joints was elucidated. These research results can provide important guidance for the brazing work of fourth-generation nickel-based single crystal superalloy. Full article
Show Figures

Graphical abstract

19 pages, 4715 KiB  
Article
Thermal Behavior of Estonian Graptolite–Argillite from Different Deposits
by Tiit Kaljuvee, Kaia Tõnsuaadu, Marve Einard, Valdek Mikli, Eliise-Koidula Kivimäe, Toivo Kallaste and Andres Trikkel
Processes 2022, 10(10), 1986; https://doi.org/10.3390/pr10101986 - 1 Oct 2022
Cited by 4 | Viewed by 1573
Abstract
Graptolite–argillites (black shales) are studied as potential source of different metals. In the processing technologies of graptolite–argillites, a preceding thermal treatment is often applied. In this study, the thermal behavior of Estonian graptolite–argillite (GA) samples from Toolse, Sillamäe and Pakri areas were studied [...] Read more.
Graptolite–argillites (black shales) are studied as potential source of different metals. In the processing technologies of graptolite–argillites, a preceding thermal treatment is often applied. In this study, the thermal behavior of Estonian graptolite–argillite (GA) samples from Toolse, Sillamäe and Pakri areas were studied using a Setaram Labsys Evo 1600 thermoanalyzer coupled with the Pfeiffer OmniStar Mass Spectrometer. The products of thermal treatment were studied by XRD, FTIR, and SEM analytical methods. The experiments were carried out under non-isothermal conditions of up to 1200 °C at different heating rates in the atmosphere containing 79% Ar and 21% O2. The differential isoconversional Friedman method was applied for calculating the kinetic parameters. All studied GA samples are characterized with high content of orthoclase (between 38.0 and 57.3%) and quartz (between 23.8 and 35.5%), and with lower content of muscovite, jarosite, pyrite, etc. The content of organic carbon in GA samples studied varied between 7.3 and 14.2%. The results indicated that, up to 200 °C, the emission of hygroscopic and physically bound water takes place. Between 200 °C and 500–550 °C, this is followed by thermo-oxidative decomposition of organic matter. The first step of thermo-oxidation of pyrite with the emission of water, carbon and sulphur dioxide, nitrogen oxides, and different hydrocarbon fragments indicated the complicated composition of organic matter. At higher temperatures, between 550 °C and 900 °C, the transformations continued by dehydroxylation processes in clay minerals, and the decomposition of jarosite and carbonates took place. At temperatures above 1000–1050 °C, a slow increase in the emission of sulphur dioxide followed, indicating the beginning of the second step of thermo-oxidative decomposition of pyrite, which was not completed for temperatures of up to 1000 °C. Kinetic calculations prove the complicated mechanism of thermal decomposition of GA samples: for Pakri GA samples, it occurs in two steps, and for Silllamäe and Toolse GA samples, it occurs in three steps. Preliminary tests for the estimation of the influence of pre-roasting of GA samples on the solubility of different elements contained in GA at the following leaching in sulphuric acid is based on Toolse GA sample. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 2875 KiB  
Article
Pyrolysis Characteristics and Non-Isothermal Kinetics of Integrated Circuits
by Ziwei Chen, Linhao Liu, Hao Wang, Lili Liu and Xidong Wang
Materials 2022, 15(13), 4460; https://doi.org/10.3390/ma15134460 - 24 Jun 2022
Cited by 5 | Viewed by 1871
Abstract
Due to the complexity of components and high hazard of emissions, thermochemical conversions of plastics among waste-integrated circuits (ICs) are more favorable compared with the common treatment options of electronic waste (E-waste), such as chemical treatment and burning. In this study, the waste [...] Read more.
Due to the complexity of components and high hazard of emissions, thermochemical conversions of plastics among waste-integrated circuits (ICs) are more favorable compared with the common treatment options of electronic waste (E-waste), such as chemical treatment and burning. In this study, the waste random-access memory, as the representative IC, was used to investigate the thermal degradation behaviors of this type of E-waste, including a quantitative analysis of pyrolysis characteristics and non-isothermal kinetics. The results show that the pyrolysis of the ICs can be divided into three different decomposition stages. The pyrolysis temperature and gas atmosphere play an important role in the pyrolysis reaction, and the heating rate greatly affects the rate of the pyrolysis reaction. The non-isothermal kinetic parameters and reaction mechanisms of ICs are determined using the Friedman method, Coats and Redfern (CR) method, and Kissinger method. The results show that the actual average activation energy of the pyrolysis reaction of ICs should be between 170 and 200 kJ·mol−1. The optimally fitting model for the ICs pyrolysis is the three-step parallel model consisting of the random nucleation model (Am) and reaction order model (Cn). Full article
Show Figures

Figure 1

23 pages, 6445 KiB  
Article
Potential of Flax Shives and Beech Wood-Derived Biochar in Methylene Blue and Carbamazepine Removal from Aqueous Solutions
by Hicham Zeghioud, Lydia Fryda, Angélique Mahieu, Rian Visser and Abdoulaye Kane
Materials 2022, 15(8), 2824; https://doi.org/10.3390/ma15082824 - 12 Apr 2022
Cited by 19 | Viewed by 2723
Abstract
Flax shives and beech wood residues represent biomass streams that are abundant in Northwest Europe. These primary feedstocks were evaluated for their suitability to produce biochar as a low environmental-impact adsorbent. The efficacy of the produced biochars was tested by their adsorption capacity [...] Read more.
Flax shives and beech wood residues represent biomass streams that are abundant in Northwest Europe. These primary feedstocks were evaluated for their suitability to produce biochar as a low environmental-impact adsorbent. The efficacy of the produced biochars was tested by their adsorption capacity towards methylene blue (MB). A series of adsorption tests with carbamazepine is also presented, focusing on the better performing beech wood biochar. Post treatment of the biochars with citric acid (CA) and oxidation of the surface by heating at 250 °C in a muffle oven were carried out to enhance the adsorption capacities of both flax shives biochar (FSBC) and beech biochar (BBC). The resulting physicochemical characteristics are described. The thermally treated biochars have specific surface areas of 388 m2·g−1 and 272 m2·g−1 compared to the untreated biochars with 368 and 142 m2·g−1 for BBC and FSBC, respectively. CA treatment leads to enhancement of the oxygenated surface functional groups and the adsorption capacities of both studied biochars. The non-linear Langmuir and Freundlich models show the best fit for both the isotherm data for MB and the CMZ adsorption with a good correlation between the experimental and calculated adsorption capacities. The effect of adsorbent dosages and initial concentrations of MB and CMZ on the adsorption efficiency is discussed. It can be concluded that beech biochar is a very promising pollutant adsorbent only requiring a mild, low-cost, and low-environmental impact activation treatment for best performance. Full article
(This article belongs to the Special Issue Bio-Based Materials and Their Environmental Applications)
Show Figures

Graphical abstract

19 pages, 6057 KiB  
Article
Prediction of the Non-Isothermal Austenitization Kinetics of Fe-C-Cr Low Alloy Steels with Lamellar Pearlite Microstructure
by Zhiqiang Li, Shengyang Zhang, Yang He, Guangjie Xiong, Yude Liu and Fuyong Su
Materials 2022, 15(6), 2131; https://doi.org/10.3390/ma15062131 - 14 Mar 2022
Viewed by 1869
Abstract
The austenitization of low alloy steels during rapid heating processes was involved in many kinds of advanced heat treatment technologies. Most of the previous research on the austenitization kinetics was focused on the spherical pearlite microstructures, which were different from the lamellar pearlite [...] Read more.
The austenitization of low alloy steels during rapid heating processes was involved in many kinds of advanced heat treatment technologies. Most of the previous research on the austenitization kinetics was focused on the spherical pearlite microstructures, which were different from the lamellar pearlite microstructures. In the present research, to predict the non-isothermal austenitization process of an Fe-C-Cr steel with lamellar pearlite, a novel 3-dimensional (3D) cellular automata model, which considered the influences of the coupling diffusion of Cr and C, and the interfacial diffusion between pearlite lamellae and the pearlite lamellar orientation, was established based on the thermodynamic equilibrium data obtained from the Thermo-Calc software and the simulation results of the DICTRA module. To clarify the influences of the heating rate on the austenitization kinetics and validate the simulation results, the austenitization processes of a Fe-1C-1.41Cr steel for different heating rates were studied with a series of dilatometric experiments. The good agreements between the cellular automata simulation results and the experimental results showed that the newly proposed cellular automata model is reasonable. The experimental results show an obvious change of the transition activity energies from the low to high heating rates. The transition from partitioning local equilibrium (PLE) to non-partitioning local equilibrium (NPLE) mechanisms was proved with DICTRA simulations. Basing on the simulation results, the influences of the pearlite lamellae orientation on the austenitization kinetics and the topological aspects of austenite grains were evaluated. In addition, the topological aspects of the rapidly austenitized grains were also compared to the normal grains. Full article
Show Figures

Figure 1

Back to TopTop