Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,467)

Search Parameters:
Keywords = non-isothermal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2890 KB  
Article
Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes
by Xin Luo, Wenxia Zhao, Lin Fu, Yun Deng, Weijie Xue, Changbo Zhang, Ian Beadham, Zhongyan Lu, Yuyao Liu, Fanshu Bi and Qingshuai Wang
Toxics 2026, 14(1), 64; https://doi.org/10.3390/toxics14010064 - 9 Jan 2026
Viewed by 121
Abstract
This study aims to develop a cost-effective and scalable modification strategy for valorizing lignin-rich biogas residue (BR) into high-performance adsorbents for anionic dye removal. To screen the optimal modification pathway, three distinct reagents, L-cysteine-based amino acid ionic liquids (AAILs, as green alternatives), conventional [...] Read more.
This study aims to develop a cost-effective and scalable modification strategy for valorizing lignin-rich biogas residue (BR) into high-performance adsorbents for anionic dye removal. To screen the optimal modification pathway, three distinct reagents, L-cysteine-based amino acid ionic liquids (AAILs, as green alternatives), conventional hydrochloric acid (HCl) and sodium hydroxide (NaOH, as traditional modification reagents), were compared in modifying non-carbonized BR for Congo Red (CR) adsorption. Comprehensive characterizations and adsorption tests revealed that each modifier exerted unique effects: NaOH only caused mild surface etching with limited performance improvement; AAILs achieved moderate adsorption capacity via a green, mild route; while HCl modification (BR-HCl) stood out with the most superior performance through a “selective dissolution-pore reconstruction” mechanism. Notably, despite a modest specific surface area increase to 12.05 m2/g, BR-HCl’s high CR adsorption capacity (120.21 mg/g at 45 °C) originated from the synergy of chemical bonding and enhanced electrostatic attraction—its isoelectric point (pHPZC ≈ 9.02) was significantly higher than that of AAIL- and NaOH-modified samples, enabling strong affinity for anionic CR across a wide pH range. BR-HCl attained over 99% CR removal at a dosage of 0.4 g/L, fitted well with Langmuir isotherm and pseudo-second-order kinetic models (confirming monolayer chemisorption), and retained 82% of its initial capacity after five regeneration cycles. These results demonstrate that while AAILs show promise as green modifiers and NaOH serves as a baseline, the facile, low-cost HCl modification offers the most pragmatic pathway to unlock BR’s potential for sustainable wastewater treatment. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

24 pages, 2852 KB  
Article
Valorizing Rice Husk Waste as a Biosorbent with Gamma-Induced Surface Modification for Enhanced Heavy-Metal Adsorption
by Kulthida Saemood, Siriphon Samutsan, Kasinee Hemvichian, Pattra Lertsarawut, Saowaluck Thong-In, Harinate Mungpayaban, Shinji Tokonami, Ryoma Tokonami, Tatsuhiro Takahashi and Kiadtisak Saenboonruang
Sustainability 2026, 18(1), 549; https://doi.org/10.3390/su18010549 - 5 Jan 2026
Viewed by 220
Abstract
This work investigated the effects of gamma irradiation on the adsorption capacities of rice husk (RH) for the removal of Cu2+, Cr3+, and Zn2+ ions from aqueous solutions, with potential applications in wastewater remediation. RH samples were gamma-irradiated [...] Read more.
This work investigated the effects of gamma irradiation on the adsorption capacities of rice husk (RH) for the removal of Cu2+, Cr3+, and Zn2+ ions from aqueous solutions, with potential applications in wastewater remediation. RH samples were gamma-irradiated at doses up to 40 kGy and characterized using SEM-EDS, XRF, FTIR, XRD, and BET analyses. While morphological and textural changes remained subtle, FTIR and SEM-EDS confirmed the formation and intensification of oxygen-containing functional groups, including –OH, –COOH, and C=O, as well as increased exposure of silica (Si–O) on the surfaces, which substantially enhanced surface reactivity of RH toward metal ions. Batch adsorption experiments revealed that 40-kGy irradiated RH samples (RH-40) exhibited the highest removal efficiencies compared to non-irradiated and lower-dose samples (RH-0, RH-10, RH-20, and RH-30), specifically with improvements of 415% for Cu2+, 502% for Cr3+, and 663% for Zn2+ compared to RH-0, determined at the initial concentration of 10 mg/L. Kinetic studies also showed rapid adsorption within the first 10–15 min, dominated initially by boundary-layer diffusion, followed by chemisorption-driven equilibrium behavior. The pseudo-second-order (PSO) model provided an excellent fit for all metals (R2 = 0.999), indicating maximum model-predicted kinetic capacities of 555.56 mg/g (Cu2+), 769.23 mg/g (Cr3+), and 434.78 mg/g (Zn2+). Langmuir isotherms also fitted well (R2 = 0.941–0.995), with predicted monolayer capacities of 535.33 mg/g (Cu2+), 491.64 mg/g (Cr3+), and 318.88 mg/g (Zn2+). Freundlich modeling further indicated favorable heterogeneous adsorption, with KF values of 42.614 (Zn2+), 20.443 (Cr3+), and 16.524 (Cu2+) and heterogeneity factors (n) greater than 1 for all metals. These overall results suggested that gamma irradiation substantially enhanced RH functionality that enabled fast and high-capacity heavy-metal adsorption through surface oxidation and carbon valorization. Gamma-irradiated RH, therefore, represented a promising, low-cost, and environmentally friendly biosorbent for wastewater treatment applications. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Graphical abstract

13 pages, 2269 KB  
Article
Low-Temperature Oxidation Behavior and Non-Isothermal Heat Release of Heavy Oil During Oxygen-Reduced Air Injection
by Wuchao Wang, Defei Chen, Zhaocai Pan, Jianfeng He, Jianxin Shen, Min Liu, Yanzhao Li, Meili Lan and Shuai Zhao
Energies 2026, 19(1), 225; https://doi.org/10.3390/en19010225 - 31 Dec 2025
Viewed by 143
Abstract
Oxygen-reduced air injection technology has demonstrated considerable potential for developing heavy oil reservoirs. However, the low-temperature oxidation (LTO) behavior and non-isothermal heat release of heavy oil under oxygen-reduced conditions remain poorly understood. Accordingly, this study systematically investigated the oxygen consumption characteristics of heavy [...] Read more.
Oxygen-reduced air injection technology has demonstrated considerable potential for developing heavy oil reservoirs. However, the low-temperature oxidation (LTO) behavior and non-isothermal heat release of heavy oil under oxygen-reduced conditions remain poorly understood. Accordingly, this study systematically investigated the oxygen consumption characteristics of heavy crude oil under two oxygen concentrations (8% and 10%) through isothermal static oxidation experiments. Additionally, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were employed to analyze the microstructural evolution of rock cuttings and the exothermic characteristics of heavy oil before and after oxidation. The results indicated that as the oxygen concentration increased from 8% to 10%, the pressure drop during the LTO process rose from 1.73 to 2.04 MPa, and the oxygen consumption rate increased from 1.47 × 10−5 to 2.06 × 10−5 mol/(h·mL). This demonstrated that higher oxygen partial pressure promoted LTO reactions, thereby generating more abundant coke precursors for the subsequent high-temperature oxidation (HTO) stage. SEM analysis revealed that the microstructure of the rock cuttings after oxidation transitioned from an originally smooth, “acicular” morphology to a “flaky” structure characterized by extensive crack development, which significantly improved the connectivity of the pore-fracture system. DSC analysis further demonstrated that the mineral components in the rock cuttings played a dual role during the oxidation process: at the LTO stage, their heat capacity effect suppressed the exothermic behavior during oxidation; whereas at the HTO stage, their larger specific surface area and the catalytic effect of clay minerals enhanced the heat release from coke combustion. This study thus provided a theoretical foundation for developing heavy oil reservoirs through oxygen-reduced air injection. Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs—3rd Edition)
Show Figures

Figure 1

15 pages, 3206 KB  
Article
Austenite Formation Kinetics of Dual-Phase Steels: Insights from a Mixed-Control Model Under Different Heating Conditions
by Huifang Lan, Xiaoying Hui, Jiangbo Du, Shuai Tang and Linxiu Du
Modelling 2026, 7(1), 7; https://doi.org/10.3390/modelling7010007 - 29 Dec 2025
Viewed by 175
Abstract
A semi-analytical mixed-control model based on the Non-Partitioned Local Equilibrium (NPLE) assumption was developed to simulate the austenite phase transformation kinetics during heating and isothermal processes. The model was validated by comparing the simulation results with experimental data, showing excellent agreement. The effects [...] Read more.
A semi-analytical mixed-control model based on the Non-Partitioned Local Equilibrium (NPLE) assumption was developed to simulate the austenite phase transformation kinetics during heating and isothermal processes. The model was validated by comparing the simulation results with experimental data, showing excellent agreement. The effects of various model parameters and process conditions on the phase transformation kinetics was investigated. The results indicate that higher heating rates lead to an increase in the austenite volume fraction at the start of the isothermal hold, accelerating the transformation and resulting in a more complete phase transformation. The transformation during the isothermal stage was found to follow a mixed control mode at all investigated heating rates. Increasing the mobility coefficient enhances interface migration, thereby accelerating the transformation kinetics, while decreasing the grain size promotes nucleation, further accelerating the phase transformation. Modifying the diffusion coefficient had a minor effect on transformation kinetics. Additionally, raising the isothermal temperature increased both the austenite volume fraction at the beginning and end of the isothermal process and the interface migration velocity, suggesting that temperature dominates the phase transformation rather than time. The phase transformation mode under different process conditions was also investigated. For both 5 °C/s and 100 °C/s heating rates, the phase transformation during the isothermal process was predominantly interface-controlled, as indicated by the mixed-mode parameter approaching 1, with a rapid increase followed by a decrease. Full article
Show Figures

Figure 1

31 pages, 39539 KB  
Article
Thermovibrationally Driven Ring-Shaped Particle Accumulations in Corner-Heated Cavities with the D2h Symmetry
by Balagopal Manayil Santhosh and Marcello Lappa
Micromachines 2026, 17(1), 39; https://doi.org/10.3390/mi17010039 - 29 Dec 2025
Viewed by 197
Abstract
Over the last decade, numerical simulations and experiments have confirmed the existence of a novel class of vibrationally excited solid-particle attractors in cubic cavities containing a fluid in non-isothermal conditions. The diversity of emerging particle structures, in both morphology and multiplicity, depends strongly [...] Read more.
Over the last decade, numerical simulations and experiments have confirmed the existence of a novel class of vibrationally excited solid-particle attractors in cubic cavities containing a fluid in non-isothermal conditions. The diversity of emerging particle structures, in both morphology and multiplicity, depends strongly on the uni- or multi-directional nature of the imposed temperature gradients. The present study seeks to broaden this theoretical framework by further increasing the complexity of the thermal “information” coded along the external boundary of the fluid container. In particular, in place of the thermal inhomogeneities located in the center of otherwise uniformly cooled or heated walls, here, a cubic cavity with temperature boundary conditions satisfying the D2h (in Schoenflies notation) or “mmm” (in Hermann–Mauguin notation) symmetry is considered. This configuration, equivalent to a bipartite vertex coloring of a cube leading to a total of 24 thermally controlled planar surfaces, possesses three mutually perpendicular twofold rotation axes and inversion symmetry through the cube’s center. To reduce the problem complexity by suppressing potential asymmetries due to fluid-dynamic instabilities of inertial nature, the numerical analysis is carried out under the assumption of dilute particle suspension and one-way solid–liquid phase coupling. The results show that a kaleidoscope of new particle structures is enabled, whose main distinguishing mark is the essentially one-dimensional (filamentary) nature. These show up as physically disjoint or intertwined particle circuits in striking contrast to the single-curvature or double-curvature spatially extended accumulation surfaces reported in earlier investigations. Full article
(This article belongs to the Special Issue Microfluidic Systems for Sustainable Energy)
Show Figures

Figure 1

21 pages, 2531 KB  
Article
Sustainable Adsorption of Antibiotics in Water: The Role of Biochar from Leather Tannery Waste and Sargassum Algae in Removing Ciprofloxacin and Sulfamethoxazole
by Sajedeh Jafarian, Somayeh Taghavi, Amir Mohammad Lashkar Bolouk and Michela Signoretto
Sustainability 2026, 18(1), 280; https://doi.org/10.3390/su18010280 - 26 Dec 2025
Viewed by 302
Abstract
A comparative study on the adsorption of ciprofloxacin (CIP) and sulfamethoxazole (SMX) onto CO2-activated biochars derived from leather tannery waste (ABT) and Sargassum brown macroalgae (ABS) is presented. N2 physisorption revealed that ABS possesses a higher Langmuir surface area (1305 [...] Read more.
A comparative study on the adsorption of ciprofloxacin (CIP) and sulfamethoxazole (SMX) onto CO2-activated biochars derived from leather tannery waste (ABT) and Sargassum brown macroalgae (ABS) is presented. N2 physisorption revealed that ABS possesses a higher Langmuir surface area (1305 m2/g) and a hierarchical micro–mesoporous structure, whereas ABT exhibits a lower surface area (412 m2/g) and a predominantly microporous texture. CHNS and FTIR analyses confirmed the presence of N-, O-, and S-containing heteroatoms and functional groups on both adsorbents, enhancing surface reactivity. Adsorption isotherms fitted well to the Langmuir model, with ABS showing superior maximum capacities of 256.41 mg/g (CIP) and 256.46 mg/g (SMX) compared to ABT (210.13 and 213.00 mg/g, respectively). Kinetic data followed a pseudo-second-order model (R2 > 0.998), with ABS exhibiting faster uptake due to its mesoporosity. Over eight reuse cycles, ABS retained >75% removal efficiency for both antibiotics, while ABT declined to 60–70%. pH-dependent adsorption behavior was governed by the point of zero charge (pHPZC≈ 9.0 for ABT; ≈7.2 for ABS), influencing electrostatic and non-electrostatic interactions. These findings demonstrate that ABS is a highly effective, sustainable adsorbent for antibiotic removal in water treatment applications. Full article
(This article belongs to the Special Issue Biomass Transformation and Sustainability)
Show Figures

Figure 1

13 pages, 2422 KB  
Article
Prediction of DC Breakdown Strength for Polymer Nanocomposite Based on Energy Depth of Trap
by Xiaohu Qi, Jian Guan, Xuri Xu, Zhen Zhang, Chuanyun Zhu, Chenyi Guo, Qifeng Shang and Yu Gao
Energies 2026, 19(1), 44; https://doi.org/10.3390/en19010044 - 21 Dec 2025
Viewed by 264
Abstract
Understanding the role of carrier traps in the determination of dielectric breakdown of polymer nanocomposite would yield a novel method for the estimation of breakdown strength of the material. In this study, we propose a novel approach to predict the DC breakdown strength [...] Read more.
Understanding the role of carrier traps in the determination of dielectric breakdown of polymer nanocomposite would yield a novel method for the estimation of breakdown strength of the material. In this study, we propose a novel approach to predict the DC breakdown strength of polyethylene (PE) and its nanocomposite at room temperature via the bipolar charge transport (BCT) model based on trap energy estimated from isothermal surface potential decay (ISPD). Test specimens of polyethylene (PE) and its nanocomposites, with a thickness of 110 μm, were fabricated using the hot-pressing method by incorporating 20 nm SiO2 particles as fillers. The distribution of carrier traps within these specimens was subsequently determined through ISPD measurements. The intrinsic breakdown strength of the sample was derived from the determined trap energy levels, by which the breakdown strength was predicted through the BCT model. Experimental DC breakdown tests were conducted on the specimens to validate the accuracy of the predictions. The results indicated that the DC breakdown strength predicted theoretically was in good agreement with that measured from the experiment. Such a prediction method provides a possible way to employ a non-destructive test to evaluate the DC breakdown strength of polymer nanocomposite. Full article
Show Figures

Figure 1

20 pages, 2412 KB  
Article
Synergistic Temperature–Pressure Optimization in PEM Water Electrolysis: A 3D CFD Analysis for Efficient Green Ammonia Production
by Dexue Yang, Xiaomeng Zhang, Jianpeng Li, Fengwei Rong, Jiang Zhu, Guidong Li, Xu Ji and Ge He
Energies 2026, 19(1), 2; https://doi.org/10.3390/en19010002 - 19 Dec 2025
Viewed by 334
Abstract
To address the fluctuation and instability of renewable power generation and the steady-state demands of chemical processes, a single-channel, non-isothermal computational fluid dynamics 3D model was developed. This model explicitly incorporates the coupling effects of electrochemical reactions, two-phase flow, and heat transfer. Subsequently, [...] Read more.
To address the fluctuation and instability of renewable power generation and the steady-state demands of chemical processes, a single-channel, non-isothermal computational fluid dynamics 3D model was developed. This model explicitly incorporates the coupling effects of electrochemical reactions, two-phase flow, and heat transfer. Subsequently, the influence of key operating parameters on proton exchange membrane water electrolyzer (PEMWE) system performance was investigated. The model accurately predicts the current–voltage polarization curve and has been validated against experimental data. Furthermore, the CFD model was employed to investigate the coupled effects of several key parameters—including operating temperature, cathode pressure, membrane thickness, porosity of the porous transport layer, and water inlet rate—on the overall electrolysis performance. Based on the numerical simulation results, the evolution of the ohmic polarization curve under temperature gradient, the block effect of bubble transport under high pressure, and the influence mechanism of the microstructure of the multi-space transport layer on gas–liquid, two-phase flow distribution are mainly discussed. Operational strategy analysis indicates that the high-efficiency mode (4.3–4.5 kWh/Nm3) is suitable for renewable energy consumption scenarios, while the economy mode (4.7 kWh/Nm3) reduces compression energy consumption by 23% through pressure–temperature synergistic optimization, achieving energy consumption alignment with green ammonia synthesis processes. This provides theoretical support for the optimization design and dynamic regulation of proton exchange membrane water electrolyzers. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Production Technologies)
Show Figures

Figure 1

14 pages, 1588 KB  
Article
Preparation of a Supramolecular Assembly of Vitamin D in a β-Cyclodextrin Shell with Silver Nanoparticles
by Ryszhan Y. Bakirova, Serik D. Fazylov, Ainara S. Iskineyeva, Akmaral Zh. Sarsenbekova, Aleksandr K. Sviderskiy, Olzhas T. Seilkhanov, Ayaulym K. Mustafayeva, Anel Z. Mendibayeva, Bolatkul Dh. Ashirbekova, Mereke T. Agedilova and Gaukhar Khabdolda
Molecules 2025, 30(24), 4823; https://doi.org/10.3390/molecules30244823 - 18 Dec 2025
Viewed by 352
Abstract
An important aspect of food technology is that vitamin compounds can be used for a variety of purposes, such as developing methods to enhance the nutritional value of foods. This paper discusses the synthesis and properties of β-cyclodextrin (β-CD)-functionalized silver nanoparticles, and the [...] Read more.
An important aspect of food technology is that vitamin compounds can be used for a variety of purposes, such as developing methods to enhance the nutritional value of foods. This paper discusses the synthesis and properties of β-cyclodextrin (β-CD)-functionalized silver nanoparticles, and the use of the resulting β-CD-AgNP inclusion complex when loading vitamin D3 (cholecalciferol, VD3) molecules. β-Cyclodextrin was used as a reducing agent and a stabilizer in the production of silver nanoparticles. The preparation of VD3-β-CD-AgNP nanocompositions was confirmed by UV spectroscopy, transmission electron microscopy, and X-ray diffraction spectroscopy. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the resulting β-CD-VD3-AgNP nanocomposite was well dispersed with particle sizes ranging from 6 to 15 nm. 1H-, 13C-NMR and FTIR spectroscopy showed the reduction of silver ions and the formation of β-CD-encapsulated AgNPs. The kinetic parameters of the thermal decomposition reaction of the VD3-β-CD-AgNP nanocomposition have been determined under nonisothermal conditions that ensure the preservation of the kinetic triplet and a more accurate description of the process. The nanocomposition of VD3 with silver nanoparticles demonstrated antibacterial activity against the used bacteria. Full article
Show Figures

Figure 1

16 pages, 2334 KB  
Article
La-Doped ZnO/SBA-15 for Rapid and Recyclable Photodegradation of Rhodamine B Under Visible Light
by Ziyang Zhou, Weiye Yang, Jiuming Zhong, Hongyan Peng and Shihua Zhao
Molecules 2025, 30(24), 4800; https://doi.org/10.3390/molecules30244800 - 16 Dec 2025
Viewed by 352
Abstract
La-doped ZnO nanoclusters confined within mesoporous SBA-15 were synthesized using an impregnation–calcination method and evaluated for their visible-light-driven photocatalytic degradation of Rhodamine B (RhB). Small-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the preservation of the 2D hexagonal mesostructure of SBA-15 [...] Read more.
La-doped ZnO nanoclusters confined within mesoporous SBA-15 were synthesized using an impregnation–calcination method and evaluated for their visible-light-driven photocatalytic degradation of Rhodamine B (RhB). Small-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the preservation of the 2D hexagonal mesostructure of SBA-15 post-loading. In contrast, wide-angle XRD and Fourier-transform infrared spectroscopy (FT-IR) analyses revealed that the incorporated ZnO existed predominantly as highly dispersed amorphous or ultrafine clusters within the mesopores. N2 adsorption–desorption measurements exhibited Type IV isotherms with H1 hysteresis loops. Compared to pristine SBA-15, the specific surface area and pore volume of the composites decreased from 729.35 m2 g−1 to 521.32 m2 g−1 and from 1.09 cm3 g−1 to 0.85 cm3 g−1, respectively, accompanied by an apparent increase in the average pore diameter from 5.99 nm to 6.55 nm, attributed to non-uniform pore occupation. Under visible-light irradiation, the photocatalytic performance was highly dependent on the La doping level. Notably, the 5% La-ZnO/SBA-15 sample exhibited superior activity, achieving over 99% RhB removal within 40 min and demonstrating the highest apparent rate constant (k = 0.1152 min−1), surpassing both undoped ZnO/SBA-15 (k = 0.0467 min−1) and other doping levels. Reusability tests over four consecutive cycles showed a consistent degradation efficiency exceeding 93%, with only a ~7 percentage-point decline, indicating excellent structural stability and recyclability. Radical scavenging experiments identified h+, ·OH, and ·O2 as the primary reactive species. Furthermore, photoluminescence (PL) quenching observed at the optimal 5% La doping level suggested suppressed radiative recombination and enhanced charge carrier separation. Collectively, these results underscore the synergistic effect of La doping and mesoporous confinement in achieving fast, efficient, and recyclable photocatalytic degradation of organic pollutants. Full article
Show Figures

Figure 1

23 pages, 8350 KB  
Article
Quantifying Swirl Number Effects on Recirculation Zones and Vortex Dynamics in a Dual-Swirl Combustor
by Hafiz Ali Haider Sehole, Ghazanfar Mehdi, Rizwan Riaz, Absaar Ul Jabbar, Adnan Maqsood and Maria Grazia De Giorgi
Energies 2025, 18(24), 6568; https://doi.org/10.3390/en18246568 - 16 Dec 2025
Viewed by 468
Abstract
Swirl-stabilized combustors are central to gas turbine technology, where the swirl number critically determines flow structure and combustion stability. This work systematically investigates the isothermal flow in a dual-swirl combustor, focusing on two primary objectives: evaluating advanced turbulence models and quantifying the impact [...] Read more.
Swirl-stabilized combustors are central to gas turbine technology, where the swirl number critically determines flow structure and combustion stability. This work systematically investigates the isothermal flow in a dual-swirl combustor, focusing on two primary objectives: evaluating advanced turbulence models and quantifying the impact of geometric-induced swirl number variations. Large Eddy Simulation (LES), Detached Eddy Simulation (DES), Scale-Adaptive Simulation (SAS), and the k-ω SST RANS model are compared against experimental data. The results suggest that while all models capture the mean recirculation zones, the scale-resolving approaches (LES, DES, SAS) more accurately predict the unsteady dynamics, such as shear layer fluctuations and the precessing vortex core, which are challenging for the RANS model. Furthermore, a parametric study of vane angles (60° to 70°) reveals a non-monotonic relationship between geometry and the resulting swirl number, attributed to internal flow separation. An intermediate swirl number range (S ≈ 0.79) was found to promote stable and coherent recirculation zones, whereas higher swirl numbers led to more intermittent flow structures. These findings may provide practical guidance for selecting turbulence models and optimizing swirler geometry in the design of modern combustors. Full article
Show Figures

Figure 1

22 pages, 22239 KB  
Article
Computational Modeling of Multiple-Phase Transformations in API X70 and X80 Steels
by Ry Karl, Jonas Valloton, Chad Cathcart, Tihe Zhou, Fateh Fazeli, J. Barry Wiskel and Hani Henein
Metals 2025, 15(12), 1379; https://doi.org/10.3390/met15121379 - 16 Dec 2025
Viewed by 328
Abstract
Continuous cooling transformation (CCT) diagrams for two thermo-mechanically controlled processed (TMCP) steels were produced using a modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) model, which accounted for the simultaneous transformation of multiple phases under non-isothermal conditions. A basin hopping algorithm was used to sequentially optimize the model [...] Read more.
Continuous cooling transformation (CCT) diagrams for two thermo-mechanically controlled processed (TMCP) steels were produced using a modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) model, which accounted for the simultaneous transformation of multiple phases under non-isothermal conditions. A basin hopping algorithm was used to sequentially optimize the model parameters for each phase. Samples were prepared using a dilatometer which replicated the deformation and cooling rates experienced during TMCP. Scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) were used to identify and quantify the phases present in each steel. CCT diagrams illustrating the start and stop temperatures of each phase were constructed for both steel samples. Through inclusion of the stop temperatures of each phase transformation, the utility of the CCT diagrams were expanded. This was done by introducing the possibility of applying the Scheil additive principle with respect to the beginning and end of each phase transformation. With this modification, the CCT diagrams are now more appropriately suited to predict the phase transformations that occur on the ROT, where non-continuous cooling occurs. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

15 pages, 1387 KB  
Article
A Dual-Gene Colorimetric LAMP Assay for Genus-Level Detection of Salmonella and Specific Identification of the Non-Motile Serovar S. Gallinarum Gallinarum
by Safae Skenndri, Fatima Ezzahra Lahkak, Taha El Kamli, Zineb Agargar, Imane Abdellaoui Maane and Saâdia Nassik
Int. J. Mol. Sci. 2025, 26(24), 12083; https://doi.org/10.3390/ijms262412083 - 16 Dec 2025
Viewed by 285
Abstract
Salmonella enterica serovar Gallinarum is a non-motile serovar and is the causative agent of fowl typhoid, and poses a major challenge to poultry production, particularly where rapid diagnostics are lacking. Existing methods are either time-consuming or fail to distinguish motile from non-motile serotypes. [...] Read more.
Salmonella enterica serovar Gallinarum is a non-motile serovar and is the causative agent of fowl typhoid, and poses a major challenge to poultry production, particularly where rapid diagnostics are lacking. Existing methods are either time-consuming or fail to distinguish motile from non-motile serotypes. We developed a dual-target colorimetric LAMP that detects Salmonella spp. via invA and discriminates S. Gallinarum via TRX (a taxon-restricted sequence), using two separate singleplex reactions. Specificity testing confirmed 100% accuracy, with exclusive amplification of S. Gallinarum through TRX. Analytical sensitivity was comparable to real-time PCR, detecting down to 2.41 CFU/µL (invA) and 1.65 CFU/µL (TRX). Applied to cloacal swabs from experimentally infected chickens (n = 12), the assay consistently outperformed bacteriological culture, detecting up to 25% more positives during early infection when bacterial loads were low or cells were non-culturable. This dual-target LAMP provides a rapid, sensitive, and serovar-discriminating diagnostic tool with strong potential for point-of-care use and real-time surveillance in poultry farms, thereby improving sanitary control of fowl typhoid and reducing associated economic losses. Full article
Show Figures

Figure 1

18 pages, 3905 KB  
Article
Thermodynamic Profiling Reveals DNA Polymerase Template Binding, Substrate Incorporation, and Exonuclease Function
by Yaping Sun, Wu Lin, Kang Fu, Jie Gao, Xianhui Zhao, Yun He and Hui Tian
Int. J. Mol. Sci. 2025, 26(24), 11909; https://doi.org/10.3390/ijms262411909 - 10 Dec 2025
Viewed by 320
Abstract
Isothermal titration calorimetry (ITC) provides direct insight into the energetics of DNA polymerase function, including binding, catalysis, and exonuclease activity. We characterized a Phi29 mutant polymerase (SS_01) engineered to incorporate non-natural nucleotides in the presence of Mg2+, a function absent in [...] Read more.
Isothermal titration calorimetry (ITC) provides direct insight into the energetics of DNA polymerase function, including binding, catalysis, and exonuclease activity. We characterized a Phi29 mutant polymerase (SS_01) engineered to incorporate non-natural nucleotides in the presence of Mg2+, a function absent in the wild-type enzyme. ITC analyses revealed that SS_01 binding to the primed template was strongly influenced by metal ions. In the presence of Mg2+, the polymerase displayed tight binding (KD = 243 nM) and a clear exothermic signal, indicating activation of a large fraction of catalytically competent molecules. By contrast, in the presence of Ca2+, binding produced weaker exothermic signals (KD = 317 nM), suggesting less efficient binding complex formation. During dNTP- or oligonucleotide-tagged dNTP-driven polymerization, ITC profiles with Mg2+ exhibited pronounced endothermic heat changes, whereas with Ca2+, only minimal heat changes were observed. When binding only oligonucleotide-tagged dNTPs, the polymerases showed distinct thermodynamic behavior: in the presence of Mg2+, high substrate concentrations induced endothermic responses, while in the absence of catalytic ions, binding remained exothermic. Exonuclease activity monitored using unmodified oligonucleotides yielded strong exothermic signals in the presence of Mg2+ but weak responses in the presence of Ca2+, confirming strict ion dependence. Together, these data demonstrate that ITC directly captures the metal ion-dependent energetics of SS_01, providing mechanistic insight into its polymerization and exonuclease functions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

27 pages, 6828 KB  
Article
Evaluation of the Inhibitory Efficiency of Yohimbine on Corrosion of OLC52 Carbon Steel and Aluminum in Acidic Acetic/Acetate Media
by George-Daniel Dima, Mircea Laurențiu Dan, Nataliia Rudenko and Nicolae Vaszilcsin
Coatings 2025, 15(12), 1458; https://doi.org/10.3390/coatings15121458 - 10 Dec 2025
Viewed by 260
Abstract
The present study assesses the effectiveness of the indole-type alkaloid Yohimbine (YHB) as a green corrosion inhibitor for OLC52 carbon steel and Al in 0.25/0.25 mol L−1 acetic acid/potassium acetate solutions relevant for de-icing applications. Electrochemical techniques, including cyclic and linear sweep [...] Read more.
The present study assesses the effectiveness of the indole-type alkaloid Yohimbine (YHB) as a green corrosion inhibitor for OLC52 carbon steel and Al in 0.25/0.25 mol L−1 acetic acid/potassium acetate solutions relevant for de-icing applications. Electrochemical techniques, including cyclic and linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy have been combined with the evaluation of adsorption isotherms and molecular modeling calculations. YHB significantly decreases the corrosion rate for both metals, attaining inhibitory efficiencies of up to 95% for OLC52 and 91% for Al at 298 K, while maintaining high protection efficiency even at higher temperatures. The Langmuir adsorption model and the values of Gadso between −31 and −41 kJ mol−1 indicate a spontaneous adsorption process defined by a mixed physicochemical mechanism, resulting in the formation of a compact protective film. Quantum molecular descriptors support the ability of YHB molecules to interact with metal surfaces via donor–acceptor interactions and electrostatic interactions. The findings demonstrate the potential of YHB as an environmentally friendly inhibitor for the protection of ferrous and non-ferrous alloys in mildly acidic acetic/acetate media used in de-icing solutions. Full article
Show Figures

Figure 1

Back to TopTop