Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = non-aqueous solution electrolytic method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3215 KB  
Article
Thick LiMn2O4 Electrode with Polymer Electrolyte for Electrochemical Extraction of Lithium from Brines
by Daiwei Yao, Jing Qin, Hongtan Liu, Mert Akin and Xiangyang Zhou
Batteries 2025, 11(12), 454; https://doi.org/10.3390/batteries11120454 - 10 Dec 2025
Abstract
Thick (900–1500 µm), crack-free lithium manganese oxide (LMO) electrodes with a polyvinylidene fluoride (PVDF)-based polymer electrolyte were prepared using an innovated slurry casting method. The selectivity and intercalation capacity of the thick electrodes of 900–1500 μm were evaluated in aqueous chloride solutions containing [...] Read more.
Thick (900–1500 µm), crack-free lithium manganese oxide (LMO) electrodes with a polyvinylidene fluoride (PVDF)-based polymer electrolyte were prepared using an innovated slurry casting method. The selectivity and intercalation capacity of the thick electrodes of 900–1500 μm were evaluated in aqueous chloride solutions containing main cations in synthetic Salar de Atacama brine using cyclic voltammetry (CV) measurements. The CV data indicated that a high Li+ selectivity of Li/Na = 152.7 could be achieved under potentiostatic conditions. With the thickest electrode, while the mass specific intercalation capacity was 6.234 mg per gram of LMO, the area specific capacity was increased by 3–11 folds compared to that for conventional thin electrodes to 0.282 mg per square centimeter. In addition, 82% of capacity was retained over 30 intercalation/dis-intercalation cycles. XRD and electrochemical analyses revealed that both Faradaic diffusion-controlled or battery-like intercalation and Faradaic non-diffusion controlled or pseudocapacitive intercalation contributed to the capacity and selectivity. This work demonstrates a practical technology for thick electrode fabrication that promises to result in a significant reduction in manufacturing and operational costs for lithium extraction from brines. Full article
(This article belongs to the Special Issue Solid Polymer Electrolytes for Lithium Batteries and Beyond)
Show Figures

Figure 1

32 pages, 2760 KB  
Review
Electrodeposition of Samarium Metal, Alloys, and Oxides: Advances in Aqueous and Non-Aqueous Electrolyte Systems
by Ewa Rudnik
Int. J. Mol. Sci. 2025, 26(22), 11176; https://doi.org/10.3390/ijms262211176 - 19 Nov 2025
Viewed by 390
Abstract
Samarium, a rare earth element, is crucial for advanced technological applications, particularly due to the exceptional magnetic properties of SmxCoy intermetallics, discovered over 50 years ago. However, its growing significance and demand have highlighted concerns about scarce, commercially viable natural [...] Read more.
Samarium, a rare earth element, is crucial for advanced technological applications, particularly due to the exceptional magnetic properties of SmxCoy intermetallics, discovered over 50 years ago. However, its growing significance and demand have highlighted concerns about scarce, commercially viable natural sources and the complex separation processes needed to isolate it from other lanthanides. In this context, electrodeposition has emerged as a versatile method for both synthesizing samarium materials and recovering the element. A major obstacle in applying electrolysis lies in the complex electrochemical behavior of samarium species, stemming from their highly negative electrochemical potential. While this limits the use of aqueous solutions, it also opens up possibilities for alternative solvents, such as molecular liquids, ionic liquids, deep eutectic solvents, and molten salts. The electrochemical properties of samarium have prompted exploration into electrodeposition techniques for material synthesis and recycling. This review discusses various aqueous and non-aqueous electrolyte compositions, different electrolysis modes, and the role of cathode substrates. It also shows the potential of electrolysis in the fabrication of various cathode products (metal, alloys/intermetallics, inorganic compounds), highlighting both challenges and opportunities in its practical implementation. Full article
Show Figures

Figure 1

14 pages, 2761 KB  
Article
Electrochemical Properties of Soluble CuCl·3TU Coordination Compound and Application in Electrolysis for Copper Foils
by Wancheng Zhao, Fangquan Xia and Dong Tian
Chemistry 2025, 7(4), 114; https://doi.org/10.3390/chemistry7040114 - 18 Jul 2025
Viewed by 910
Abstract
As the crucial current collector for lithium-ion batteries (LIBs), electrolytic copper foils are generally manufactured by electrodeposition in acidic copper sulfate solution. However, there are many disadvantages for traditional electrolytic copper foils, such as coarse grains, insufficient mechanical properties, and high energy consumption. [...] Read more.
As the crucial current collector for lithium-ion batteries (LIBs), electrolytic copper foils are generally manufactured by electrodeposition in acidic copper sulfate solution. However, there are many disadvantages for traditional electrolytic copper foils, such as coarse grains, insufficient mechanical properties, and high energy consumption. In order to improve the performances of electrolytic copper foil, a novel cuprous electrodeposition system was developed in this study. A soluble cuprous coordination compound was synthesized. In addition, XPS, FT-IR spectrum, as well as single-crystal X-ray diffraction illustrated that thiourea coordinated with Cu(I) through S atom and therefore stabilized Cu(I) by the formation of CuCl·3TU. Importantly, the corresponding electrochemical behaviors were investigated. In aqueous solution, two distinct reduction processes were demonstrated by linear sweep voltammetry (LSV) at rather negative potentials, including the reduction of adsorbed state and non-adsorbed state. Moreover, the observed inductive loops in electrochemical impedance spectroscopy further confirmed the adsorption phenomenon. More significantly, the designed cuprous electrodeposition system could contribute to low energy consumptions during electrolysis. and produce ultrathin nanocrystalline copper foils with appropriate roughness. Consequently, the electrolysis method based on CuCl·3TU could provide an improved approach for copper foils manufacturing in advanced LIBs fabrication. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

63 pages, 14545 KB  
Review
Sum-Frequency Generation Spectroscopy at Aqueous Electrochemical Interfaces
by Ba Lich Pham, Alireza Ranjbari, Abderrahmane Tadjeddine, Laetitia Dalstein and Christophe Humbert
Symmetry 2024, 16(12), 1699; https://doi.org/10.3390/sym16121699 - 21 Dec 2024
Cited by 1 | Viewed by 5352
Abstract
The electrochemical interface (EI) is the determining factor in the yield and mechanism of sustainable energy storage and conversion systems due to its intrinsic functionality as a dynamic junction with the symmetry breaking of the molecular arrangement for complex reaction fields of mass [...] Read more.
The electrochemical interface (EI) is the determining factor in the yield and mechanism of sustainable energy storage and conversion systems due to its intrinsic functionality as a dynamic junction with the symmetry breaking of the molecular arrangement for complex reaction fields of mass transport and heterogeneous electron transfer. At the EI, the externally applied potential stimulus drives the formation of the electrical double layer (EDL) and governs the adsorption of interfacial adsorbate species in aqueous electrolyte solutions. Water and its aqueous electrolyte systems are integral and quintessential elements in the technological innovation of various fields such as environmental sciences, electrocatalysis, photocatalysis, and biochemistry. Although deciphering the structure and orientation of water molecules at the electrode–electrolyte interface in a quantitative analysis is of utmost importance, assessing chemical phenomena at the buried EI was rather challenging due to the intricacy of selecting interface-specific methodologies. Based on the non-centrosymmetry of the interfaces’ electronic properties, sum-frequency generation (SFG) spectroscopy has been manifested to be specifically well suited for probing the EI with detailed and comprehensive characteristics of adsorbates’ chemical structures and electrochemical events. In this review, we holistically engage in a methodical and scrupulous assessment of the fundamental EDL models and navigate towards the connection of the renowned Stark effect and potential dependence of SFG spectra at heterogeneous electrode–electrolyte interfaces. We dissect the development, advantages, and available geometrical configurations of in situ SFG spectroscopy in harnessing the EI. A broad spectrum of applications in unraveling the water orientations and rationalizing the convoluted mechanism of fuel-generated electrocatalytic reactions with particular encumbrances and potential resolutions is underscored by leveraging SFG spectroscopy. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

15 pages, 4355 KB  
Article
All-Layer Electrodeposition of a CdTe/Hg0.1Cd0.9Te/CdTe Photodetector for Short- and Mid-Wavelength Infrared Detection
by Vianey A. Candelas-Urrea, Carlos Villa-Angulo, Iván O. Hernández-Fuentes, Ricardo Morales-Carbajal and Rafael Villa-Angulo
Coatings 2024, 14(9), 1133; https://doi.org/10.3390/coatings14091133 - 3 Sep 2024
Cited by 1 | Viewed by 1956
Abstract
CdS, CdTe, Hg0.1Cd0.9Te, CdTe, and Ag films were progressively electrodeposited on ITO-coated soda–lime glass to manufacture a short- and mid-wavelength infrared photodetector. A distinctive feature of the applied electrodeposition method is the use of a non-aqueous solution containing ethylene [...] Read more.
CdS, CdTe, Hg0.1Cd0.9Te, CdTe, and Ag films were progressively electrodeposited on ITO-coated soda–lime glass to manufacture a short- and mid-wavelength infrared photodetector. A distinctive feature of the applied electrodeposition method is the use of a non-aqueous solution containing ethylene glycol (EG) as the electrolyte in a traditional three-electrode configuration for every film deposition. Using EG as a supplementary electrolyte and using the same deposition conditions with a potential below 0.75 V for all film coatings reduces their environmental incompatibility and offers a low-cost and low-energy route for fabricating the reported photodetector. The produced photodetector has a sensitivity of up to ≈957 nm with a detectivity (D*) of 2.86 × 1012 cm Hz1/2 W−1 and a dark current density (Jdark) of 10−6 mA cm−2. Furthermore, the manufactured photodiode exhibits self-powered performance because Voc and Jsc are self-generated, unlike previously reported photodiodes. The presented all-layer electrodeposition assembly approach can easily be adapted to fabricate sensing devices for different applications. Full article
(This article belongs to the Special Issue Optical Coatings: From Materials to Applications)
Show Figures

Figure 1

13 pages, 12422 KB  
Article
Fabricating Precise and Smooth Microgroove Structures on Zr-Based Metallic Glass Using Jet-ECM
by Dongdong Li, Pingmei Ming, Shen Niu, Guangbin Yang and Kuaile Cheng
Micromachines 2024, 15(4), 497; https://doi.org/10.3390/mi15040497 - 4 Apr 2024
Cited by 6 | Viewed by 1740
Abstract
Zr-based metallic glasses (MGs) are promising materials for mold manufacturing due to their unique mechanical and chemical properties. However, the high hardness of metallic glasses and their tendency to crystallize at high temperatures make it challenging to fabricate precise and smooth microscale structures [...] Read more.
Zr-based metallic glasses (MGs) are promising materials for mold manufacturing due to their unique mechanical and chemical properties. However, the high hardness of metallic glasses and their tendency to crystallize at high temperatures make it challenging to fabricate precise and smooth microscale structures on metallic glasses. This limitation hampers the development of metallic glasses as molds. Jet electrochemical machining (jet-ECM) is a non-contact subtractive manufacturing technology that utilizes a high-speed electrolyte to partially remove material from workpieces, making it highly suitable for processing difficult-to-machine materials. Nevertheless, few studies have explored microgroove structures on Zr-based MGs using sodium nitrate electrolytes by jet-ECM. Therefore, this paper advocates the utilization of the jet-ECM technique to fabricate precise and smooth microgroove structures using a sodium nitrate electrolyte. The electrochemical characteristics were studied in sodium nitrate solution. Then, the effects of the applied voltages and nozzle travel rates on machining performance were investigated. Finally, micro-helical and micro-S structures with high geometric dimensional consistency and low surface roughness were successfully fabricated, with widths and depths measuring 433.7 ± 2.4 µm and 101.4 ± 1.6 µm, respectively. Their surface roughness was determined to be 0.118 ± 0.002 µm. Compared to non-aqueous-based methods for jet-ECM of Zr-based MGs, the depth of the microgrooves was increased from 20 μm to 101 μm. Furthermore, the processed microstructures had no uneven edges in the peripheral areas and no visible flow marks on the bottom. Full article
Show Figures

Figure 1

13 pages, 2205 KB  
Article
Influence of Electrolyte Choice on Zinc Electrodeposition
by Kranthi Kumar Maniam, Corentin Penot and Shiladitya Paul
Materials 2024, 17(4), 851; https://doi.org/10.3390/ma17040851 - 10 Feb 2024
Cited by 11 | Viewed by 4254
Abstract
Zinc electrodeposition serves as a crucial electrochemical process widely employed in various industries, particularly in automotive manufacturing, owing to its cost effectiveness compared to traditional methods. However, traditional zinc electrodeposition using aqueous solutions faces challenges related to toxicity and hydrogen gas generation. Non-aqueous [...] Read more.
Zinc electrodeposition serves as a crucial electrochemical process widely employed in various industries, particularly in automotive manufacturing, owing to its cost effectiveness compared to traditional methods. However, traditional zinc electrodeposition using aqueous solutions faces challenges related to toxicity and hydrogen gas generation. Non-aqueous electrolytes such as ionic liquids (ILs) and deep eutectic solvents (DESs) have gained attention, with choline-chloride-based DESs showing promise despite raising environmental concerns. In this study, zinc electrodeposition on mild steel was investigated using three distinct electrolytes: (i) halide-free aqueous solutions, (ii) chloride-based DES, and (iii) halide-free acetate-based organic solutions. The study examined the influence of deposition time on the growth of Zn on mild steel substrates from these electrolytes using physical characterization techniques, including scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate that glycol + acetate-based non-aqueous organic solutions provide an eco-friendly alternative, exhibiting comparable efficiency, enhanced crystalline growth, and promising corrosion resistance. This research contributes valuable insights into the impact of electrolyte choice on zinc electrodeposition, offering a pathway towards more sustainable and efficient processes. Through a comprehensive comparison and analysis of these methods, it advances our understanding of the practical applications of zinc electrodeposition technology. Full article
(This article belongs to the Special Issue Electrochemical Deposition and Characterization of Thin Films)
Show Figures

Figure 1

15 pages, 4026 KB  
Article
Capacitance Determination for the Evaluation of Electrochemically Active Surface Area in a Catalyst Layer of NiFe-Layered Double Hydroxides for Anion Exchange Membrane Water Electrolyser
by Zhong Xie, Wei Qu, Elizabeth A. Fisher, Jason Fahlman, Koichiro Asazawa, Takao Hayashi, Hiroshi Shirataki and Hideaki Murase
Materials 2024, 17(3), 556; https://doi.org/10.3390/ma17030556 - 24 Jan 2024
Cited by 19 | Viewed by 5573
Abstract
The determination of the electrochemically active surface area (ECSA) of a catalyst layer (CL) of a non-precious metal catalyst is of fundamental importance in optimizing the design of a durable CL for anion exchange membrane (AEM) water electrolysis, but has yet to be [...] Read more.
The determination of the electrochemically active surface area (ECSA) of a catalyst layer (CL) of a non-precious metal catalyst is of fundamental importance in optimizing the design of a durable CL for anion exchange membrane (AEM) water electrolysis, but has yet to be developed. Traditional double layer capacitance (Cdl), measured by cyclic voltammetry (CV), is not suitable for the estimation of the ECSA due to the nonconductive nature of Ni-based oxides and hydroxides in the non-Faradaic region. This paper analyses the applicability of electrochemical impedance spectroscopy (EIS) compared to CV in determining capacitances for the estimation of the ECSA of AEM-based CLs in an aqueous KOH electrolyte solution. A porous electrode transmission line (TML) model was employed to obtain the capacitance–voltage dependence from 1.0 V to 1.5 V at 20 mV intervals, covering both non-Faradic and Faradic regions. This allows for the identification of the contribution of a NiFe-layered double hydroxide (LDH) catalyst and supports in a CL, to capacitances in both non-Faradic and Faradic regions. A nearly constant double layer capacitance (Qdl) observed in the non-Faradic region represents the interfaces between catalyst supports and electrolytes. The capacitance determined in the Faradic region by EIS experiences a peak capacitance (QF), which represents the maximum achievable ECSA in an AEMCL during reactions. The EIS method was additionally validated in durability testing. An approximate 30% loss of QF was noted while Qdl remained unchanged following an eight-week test at 1 A/cm2 constant current density, implying that QF, determined by EIS, is sensitive to and therefore suitable for assessing the loss of ECSA. This universal method can provide a reasonable estimate of catalyst utilization and enable the monitoring of catalyst degradation in CLs, in particular in liquid alkaline electrolyte water electrolysis systems. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

10 pages, 4954 KB  
Communication
Corrosion Resistance of Steel S355MC in Crude Glycerol
by Marián Palcut, Žaneta Gerhátová, Patrik Šulhánek and Peter Gogola
Technologies 2023, 11(3), 69; https://doi.org/10.3390/technologies11030069 - 21 May 2023
Cited by 5 | Viewed by 3430
Abstract
Corrosion is the degradation of materials in oxidizing environments. In aqueous solutions, it is initiated by the surface reaction of the metallic material with the surrounding electrolyte. The corrosion rate of metals can be significantly reduced by the presence of organic compounds. Crude [...] Read more.
Corrosion is the degradation of materials in oxidizing environments. In aqueous solutions, it is initiated by the surface reaction of the metallic material with the surrounding electrolyte. The corrosion rate of metals can be significantly reduced by the presence of organic compounds. Crude glycerol is an organic by-product of biodiesel, soap, and fatty acid production. It is produced in substantial amounts through transesterification. Crude glycerol contains several impurities and has low economic value. Its disposal in the environment is unwanted and potential applications need to be explored. In the present short communication, steel corrosion in crude glycerol has been investigated for the first time. The corrosion behavior of low-alloy structural steel S355MC in non-purified crude glycerol was studied by electrochemical methods. The results were compared with the use of tap water. The open-circuit potential (OCP) of S355MC in crude glycerol was more negative compared with that of tap water. The OCP was stable over time, indicating the rapid passivation of the steel substrate. The corrosion resistance was further studied by electrode polarization. On the polarization curve of S355MC in crude glycerol, a wide passivation region was found. Furthermore, the corrosion rate was 2.2 times smaller compared with that of tap water. The surface exposed to tap water was significantly degraded by red rust. The surface of S355MC after exposure to crude glycerol, on the other hand, was less affected by corrosion and covered with a protective layer. The results demonstrate a significant corrosion-inhibiting activity of crude glycerol that could be utilized in various technologies. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

15 pages, 3491 KB  
Article
Low-Cost Zinc–Alginate-Based Hydrogel–Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes
by Zhuoyuan Zheng, Haichuan Cao, Wenhui Shi, Chunling She, Xianlong Zhou, Lili Liu and Yusong Zhu
Polymers 2023, 15(1), 212; https://doi.org/10.3390/polym15010212 - 31 Dec 2022
Cited by 26 | Viewed by 3881
Abstract
Aqueous zinc-ion batteries (ZIBs) represent an attractive choice for energy storage. However, ZIBs suffer from dendrite growth and an irreversible consumption of Zn metal, leading to capacity degradation and a low lifetime. In this work, a zinc–alginate (ZA) hydrogel–polymer electrolyte (HGPE) with a [...] Read more.
Aqueous zinc-ion batteries (ZIBs) represent an attractive choice for energy storage. However, ZIBs suffer from dendrite growth and an irreversible consumption of Zn metal, leading to capacity degradation and a low lifetime. In this work, a zinc–alginate (ZA) hydrogel–polymer electrolyte (HGPE) with a non-porous structure was prepared via the solution-casting method and ion displacement reaction. The resulting ZA-based HGPE exhibits a high ionic conductivity (1.24 mS cm−1 at room temperature), excellent mechanical properties (28 MPa), good thermal and electrochemical stability, and an outstanding zinc ion transference number (0.59). The ZA-based HGPE with dense structure is proven to benefit the prevention of the uneven distribution of ion current and facilitates the reduction of excessive interfacial resistance within the battery. In addition, it greatly promotes the uniform deposition of zinc ions on the electrode, thereby inhibiting the growth of zinc dendrites. The corresponding zinc symmetric battery with ZA-based HGPE can be cycled stably for 800 h at a current density of 1 mA cm−2, demonstrating the stable and reversible zinc plating/stripping behaviors on the electrode surfaces. Furthermore, the quasi-solid-state ZIB with zinc, ZA-based HGPE, and Ca0.24V2O5 (CVO) as the anode, electrolyte, and cathode materials, respectively, show a stable cyclic performance for 600 cycles at a large current density of 3 C (1 C = 400 mA g−1), in which the capacity retention rate is 88.7%. This research provides a new strategy for promoting the application of the aqueous ZIBs with high performance and environmental benignity. Full article
(This article belongs to the Special Issue Advanced Polymeric Membranes for Energy Applications)
Show Figures

Figure 1

12 pages, 1769 KB  
Article
Copper (II)-Catalyzed Oxidation of Ascorbic Acid: Ionic Strength Effect and Analytical Use in Aqueous Solution
by Anastasia E. Murekhina, Daniil N. Yarullin, Maria A. Sovina, Pavel A. Kitaev and George A. Gamov
Inorganics 2022, 10(7), 102; https://doi.org/10.3390/inorganics10070102 - 18 Jul 2022
Cited by 18 | Viewed by 6650
Abstract
Copper is an important metal both in living organisms and in the industrial activity of humans, it is also a distributed water pollutant and a toxic agent capable of inducing acute and chronic health disorders. There are several fluorescent chemosensors for copper (II) [...] Read more.
Copper is an important metal both in living organisms and in the industrial activity of humans, it is also a distributed water pollutant and a toxic agent capable of inducing acute and chronic health disorders. There are several fluorescent chemosensors for copper (II) determination in solutions; however, they are often difficult to synthesize and solvent-sensitive, requiring a non-aqueous medium. The present paper improves the known analytical technique for copper (II) ions, where the linear dependence between the ascorbic acid oxidation rate constant and copper (II) concentration is used. The limits of detection and quantification of the copper (II) analysis kinetic method are determined to be 82 nM and 275 nM, respectively. In addition, the selectivity of the chosen indicator reaction is shown: Cu2+ cations can be quantified in the presence of the 5–20 fold excess of Co2+, Ni2+, and Zn2+ ions. The La3+, Ce3+, and UO22+ ions also do not catalyze the ascorbic acid oxidation reaction. The effect of the concentration of the common background electrolytes is studied, the anomalous influence for chloride-containing salts is observed and discussed. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

11 pages, 5156 KB  
Article
Drift Suppression of Solution-Gated Graphene Field-Effect Transistors by Cation Doping for Sensing Platforms
by Naruto Miyakawa, Ayumi Shinagawa, Yasuko Kajiwara, Shota Ushiba, Takao Ono, Yasushi Kanai, Shinsuke Tani, Masahiko Kimura and Kazuhiko Matsumoto
Sensors 2021, 21(22), 7455; https://doi.org/10.3390/s21227455 - 10 Nov 2021
Cited by 18 | Viewed by 5085
Abstract
Solution-gated graphene field-effect transistors (SG-GFETs) provide an ideal platform for sensing biomolecules owing to their high electron/hole mobilities and 2D nature. However, the transfer curve often drifts in an electrolyte solution during measurements, making it difficult to accurately estimate the analyte concentration. One [...] Read more.
Solution-gated graphene field-effect transistors (SG-GFETs) provide an ideal platform for sensing biomolecules owing to their high electron/hole mobilities and 2D nature. However, the transfer curve often drifts in an electrolyte solution during measurements, making it difficult to accurately estimate the analyte concentration. One possible reason for this drift is that p-doping of GFETs is gradually countered by cations in the solution, because the cations can permeate into the polymer residue and/or between graphene and SiO2 substrates. Therefore, we propose doping sufficient cations to counter p-doping of GFETs prior to the measurements. For the pre-treatment, GFETs were immersed in a 15 mM sodium chloride aqueous solution for 25 h. The pretreated GFETs showed that the charge neutrality point (CNP) drifted by less than 3 mV during 1 h of measurement in a phosphate buffer, while the non-treated GFETs showed that the CNP was severely drifted by approximately 50 mV, demonstrating a 96% reduction of the drift by the pre-treatment. X-ray photoelectron spectroscopy analysis revealed the accumulation of sodium ions in the GFETs through pre-treatment. Our method is useful for suppressing drift, thus allowing accurate estimation of the target analyte concentration. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

14 pages, 1928 KB  
Article
Electrophoretic Determination of Symmetric and Asymmetric Dimethylarginine in Human Blood Plasma with Whole Capillary Sample Injection
by Petr Tůma, Blanka Sommerová, Dušan Koval and François Couderc
Int. J. Mol. Sci. 2021, 22(6), 2970; https://doi.org/10.3390/ijms22062970 - 15 Mar 2021
Cited by 8 | Viewed by 2728
Abstract
Asymmetric and symmetric dimethylarginines are toxic non-coded amino acids. They are formed by post-translational modifications and play multifunctional roles in some human diseases. Their determination in human blood plasma is performed using capillary electrophoresis with contactless conductivity detection. The separations are performed in [...] Read more.
Asymmetric and symmetric dimethylarginines are toxic non-coded amino acids. They are formed by post-translational modifications and play multifunctional roles in some human diseases. Their determination in human blood plasma is performed using capillary electrophoresis with contactless conductivity detection. The separations are performed in a capillary covered with covalently bonded PAMAPTAC polymer, which generates anionic electroosmotic flow and the separation takes place in the counter-current regime. The background electrolyte is a 750 mM aqueous solution of acetic acid with pH 2.45. The plasma samples for analysis are treated by the addition of acetonitrile and injected into the capillary in a large volume, reaching 94.5% of the total volume of the capillary, and subsequently subjected to electrophoretic stacking. The attained LODs are 16 nm for ADMA and 22 nM for SDMA. The electrophoretic resolution of both isomers has a value of 5.3. The developed method is sufficiently sensitive for the determination of plasmatic levels of ADMA and SDMA. The determination does not require derivatization and the individual steps in the electrophoretic stacking are fully automated. The determined plasmatic levels for healthy individuals vary in the range 0.36–0.62 µM for ADMA and 0.32–0.70 µM for SDMA. Full article
Show Figures

Figure 1

12 pages, 1611 KB  
Article
Integrated Membrane–Electrocoagulation System for Removal of Celestine Blue Dyes in Wastewater
by Muhammad Syaamil Saad, Lila Balasubramaniam, Mohd Dzul Hakim Wirzal, Nur Syakinah Abd Halim, Muhammad Roil Bilad, Nik Abdul Hadi Md Nordin, Zulfan Adi Putra and Fuad Nabil Ramli
Membranes 2020, 10(8), 184; https://doi.org/10.3390/membranes10080184 - 13 Aug 2020
Cited by 32 | Viewed by 4257
Abstract
The textile industry provides for the needs of people especially in apparel and household items. The industry also discharges dye-containing wastewater that is typically challenging to treat. Despite the application of the biological and chemical treatments for the treatment of textile wastewater, these [...] Read more.
The textile industry provides for the needs of people especially in apparel and household items. The industry also discharges dye-containing wastewater that is typically challenging to treat. Despite the application of the biological and chemical treatments for the treatment of textile wastewater, these methods have their own drawbacks such as non-environment friendly, high cost and energy intensive. This research investigates the efficiency of the celestine blue dye removal from simulated textile wastewater by electrocoagulation (EC) method using iron (Fe) electrodes through an electrolytic cell, integrated with nylon 6,6 nanofiber (NF) membrane filtration for the separation of the flocculants from aqueous water. Based on the results, the integrated system achieves a high dye removal efficiency of 79.4%, by using 1000 ppm of sodium chloride as the electrolyte and 2 V of voltage at a constant pH of 7 and 10 ppm celestine blue dye solution, compared to the standalone EC method in which only 43.2% removal was achieved. Atomic absorption spectroscopy analysis was used to identify the traces of iron in the residual EC solution confirming the absence of iron. The EC-integrated membrane system thus shows superior performance compared to the conventional method whereby an additional 10–30% of dye was removed at 1 V and 2 V using similar energy consumptions. Full article
(This article belongs to the Special Issue Enhancing the Efficiency of Membrane Processes for Water Treatment)
Show Figures

Graphical abstract

14 pages, 1241 KB  
Article
Dipolophoresis and Travelling-Wave Dipolophoresis of Metal Microparticles
by Jose Eladio Flores-Mena, Pablo García-Sánchez and Antonio Ramos
Micromachines 2020, 11(3), 259; https://doi.org/10.3390/mi11030259 - 28 Feb 2020
Cited by 8 | Viewed by 3048
Abstract
We study theoretically and numerically the electrokinetic behavior of metal microparticles immersed in aqueous electrolytes. We consider small particles subjected to non-homogeneous ac electric fields and we describe their motion as arising from the combination of electrical forces (dielectrophoresis) and the electroosmotic flows [...] Read more.
We study theoretically and numerically the electrokinetic behavior of metal microparticles immersed in aqueous electrolytes. We consider small particles subjected to non-homogeneous ac electric fields and we describe their motion as arising from the combination of electrical forces (dielectrophoresis) and the electroosmotic flows on the particle surface (induced-charge electrophoresis). The net particle motion is known as dipolophoresis. We also study the particle motion induced by travelling electric fields. We find analytical expressions for the dielectrophoresis and induced-charge electrophoresis of metal spheres and we compare them with numerical solutions. This validates our numerical method, which we also use to study the dipolophoresis of metal cylinders. Full article
(This article belongs to the Special Issue 10th Anniversary of Micromachines)
Show Figures

Figure 1

Back to TopTop