Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = non-O157 STEC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4050 KB  
Article
Genomic Mapping of Brazilian Escherichia coli: Characterizing Shiga Toxin-Producing, Enteropathogenic, and Diffusely Adherent Strains Using an In Silico Approach
by Vinicius Silva Castro, Emmanuel W. Bumunang, Kim Stanford and Eduardo Eustáquio de Souza Figueiredo
Bacteria 2025, 4(4), 55; https://doi.org/10.3390/bacteria4040055 - 26 Oct 2025
Viewed by 902
Abstract
Background: Diarrheagenic Escherichia coli (DEC) remains relevant to public health and agri-food chains. The context in Brazil, as a major food producer and exporter, reinforces the need for genomic surveillance. Objective: We aimed to characterize Brazilian diffusely adhering (DAEC), enteropathogenic (EPEC), and [...] Read more.
Background: Diarrheagenic Escherichia coli (DEC) remains relevant to public health and agri-food chains. The context in Brazil, as a major food producer and exporter, reinforces the need for genomic surveillance. Objective: We aimed to characterize Brazilian diffusely adhering (DAEC), enteropathogenic (EPEC), and Shiga toxin-producing E. coli (STEC) sequences in silico across O-serogroups, in addition to sequence-type (ST), virulence, resistome, and phylogenomic relationships. Methodology: We retrieved 973 genomes assigned to Brazil from NCBI Pathogen Detection Database and performed virtual-PCR screening for key DEC-genes. We then typed O-serogroups (ABRicate/EcOH), Multi-Locus Sequencing Type (MLST), virulome (Ecoli_VF), resistome (ResFinder), and characterized stx genes. Results: DEC represented 18.7% of genomes, driven primarily by EPEC. In EPEC, the eae β-1 subtype was most common; we detected, for the first time in Brazilian sequences, ξ-eae subtype and ST583/ST301. Seventy-eight percent of DAEC isolates were multidrug-resistant (MDR), and two ST were newly reported in the country (ST2141/ST500). In STEC, O157 formed a largely susceptible clade with uniform eae γ-1, whereas 57% of non-O157 were MDR. New STs (ST32/ST1804) were observed, and three genomes were closely related to international isolates. Conclusions: Despite the low DEC representation in the dataset, new STs and eae subtypes were detected in Brazil. Also, MDR in DAEC and non-O157 STEC reinforces the need for antimicrobial-resistance genomic surveillance. Full article
Show Figures

Graphical abstract

9 pages, 238 KB  
Communication
Survival of Pathogenic Escherichia coli Strains in Sand Subjected to Desiccation
by Rocío de la Cuesta, Mariana S. Sanin, Florencia Battaglia, Sandra L. Vasquez Pinochet, Cecilia C. Cundon, Adriana B. Bentancor, María P. Bonino and Ximena Blanco Crivelli
Bacteria 2025, 4(4), 53; https://doi.org/10.3390/bacteria4040053 - 2 Oct 2025
Viewed by 979
Abstract
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are E. coli pathovars of particular relevance to infant health. While the intestinal tract of humans and animals constitutes their primary habitat, these bacteria can also persist in natural environments such as sand. [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are E. coli pathovars of particular relevance to infant health. While the intestinal tract of humans and animals constitutes their primary habitat, these bacteria can also persist in natural environments such as sand. The aim of this study was to evaluate the persistence of STEC and EPEC strains in sand microcosms under controlled conditions of heat and desiccation in order to estimate their viability in this matrix and provide evidence regarding the potential risks associated with the use of sandboxes in public spaces. The study included STEC strains belonging to clinically important serotypes (O26:H11, O103:H2, O111:H8, O121:H19, O145:NM, O157:H7 and O174:H28), animal-derived EPEC strains, and a non-pathogenic E. coli strain (NCTC 12900). The strains were inoculated into sterile sand microcosms and maintained at 37 °C. Death curves, persistence in the matrix, presence of virulence genes, and ability to produce biofilm were evaluated. The death and persistence curves varied by serotype; some strains remained viable in the viable but non-culturable state for extended periods. All strains retained their virulence-associated genetic markers throughout the assays. None of the STEC strains was classified as a biofilm producer under the experimental conditions, whereas the two EPEC strains were identified as weak and moderate biofilm producers. However, no association was found between biofilm formation and persistence in the matrix. The findings provide an initial approach and provide relevant evidence of the capacity of STEC and EPEC strains to survive in sand, which could represent a potential risk in recreational environments. Full article
26 pages, 11049 KB  
Article
Dynamics of Physiological Changes of Shiga Toxin-Producing Escherichia coli O157:H7 on Romaine Lettuce During Pre-Processing Cold Storage, and Subsequent Effects on Virulence and Stress Tolerance
by Dimple Sharma, Joshua O. Owade, Corrine J. Kamphuis, Avery Evans, E. Shaney Rump, Cleary Catur, Jade Mitchell and Teresa M. Bergholz
Appl. Microbiol. 2025, 5(2), 45; https://doi.org/10.3390/applmicrobiol5020045 - 6 May 2025
Cited by 2 | Viewed by 1624
Abstract
If lettuce is contaminated in the field, Shiga toxin-producing E. coli (STEC) O157:H7 can survive through the distribution chain. Prolonged cold storage during transportation may impact pathogen physiology, affecting subsequent stress survival and virulence. Greenhouse-grown Romaine lettuce, inoculated with three STEC O157:H7 strains, [...] Read more.
If lettuce is contaminated in the field, Shiga toxin-producing E. coli (STEC) O157:H7 can survive through the distribution chain. Prolonged cold storage during transportation may impact pathogen physiology, affecting subsequent stress survival and virulence. Greenhouse-grown Romaine lettuce, inoculated with three STEC O157:H7 strains, was harvested after 24 h and stored at 2 °C for 5 d following 4 h at harvest temperature (9 °C or 17 °C). Culturable, persister, and viable but non-culturable (VBNC) cells were quantified. Virulence was evaluated using Galleria mellonella and acid tolerance at pH 2.5 and tolerance to 20–25 ppm free chlorine were quantified. Colder harvest temperature (9 °C) before cold storage led to greater transformation of STEC O157:H7 into dormant states and decreased virulence in most cases. Increasing length of cold storage led to decreased virulence and acid tolerance of STEC O157:H7 on lettuce, while having no significant effect on chlorine tolerance. These findings highlight that entry of STEC O157:H7 into dormant states during harvest and transportation at cold temperatures leads to decreased stress tolerance and virulence with increasing cold storage. Changes in STEC O157:H7 physiology on lettuce during cold storage can be integrated into risk assessment tools for producers, which can assist in identifying practices that minimize risk of STEC O157:H7 from consumption of lettuce. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 3rd Edition)
Show Figures

Figure 1

11 pages, 858 KB  
Article
Non-Melibiose Fermentation and Tellurite Resistance by Shigatoxigenic and Enteropathogenic Escherichia coli O80:H2 from Diseased Calves: Comparison with Human Shigatoxigenic E. coli O80:H2
by Rie Ikeda, Keiji Nakamura, Nicolas Korsak, Jean-Noël Duprez, Tetsuya Hayashi, Damien Thiry and Jacques G. Mainil
Vet. Sci. 2025, 12(3), 274; https://doi.org/10.3390/vetsci12030274 - 14 Mar 2025
Cited by 1 | Viewed by 1042
Abstract
Despite their prevalence in Europe, the source of contamination of humans by Attaching-Effacing Shigatoxigenic Escherichia coli (AE-STEC) O80:H2 remains unidentified. This study aimed to assess a procedure based on non-melibiose fermentation and resistance to tellurite to isolate AE-STEC and enteropathogenic (EPEC) O80:H2 from [...] Read more.
Despite their prevalence in Europe, the source of contamination of humans by Attaching-Effacing Shigatoxigenic Escherichia coli (AE-STEC) O80:H2 remains unidentified. This study aimed to assess a procedure based on non-melibiose fermentation and resistance to tellurite to isolate AE-STEC and enteropathogenic (EPEC) O80:H2 from healthy cattle. The genome sequences of 40 calf and human AE-STEC and EPEC O80:H2 were analyzed: (i) none harbored the mel operon, but the 70mel DNA sequence instead; (ii) the ter-type 1 operon was detected in 16 EPEC and stx1a or stx2a AE-STEC, while no ter-type 1 operon was detected in the remaining 24 EPEC and stx2d AE-STEC. The 21 calf AE-STEC and EPEC O80:H2 were tested phenotypically: (i) none fermented melibiose on melibiose-MacConkey agar plates; (ii) ten of the 11 ter-type 1-positive strains had Minimal Inhibitory Concentrations (MIC) ≥ 128 µg/mL to potassium tellurite; (iii) conversely, the ten ter-negative strains had MIC of two µg/mL. Accordingly, enrichment broths containing two µg/mL of potassium tellurite and inoculated with one high MIC (≥256 µg/mL) stx1a AE-STEC O80:H2 tested positive with the O80 PCR after overnight growth, but not the enrichment broths inoculated with one low MIC (two µg/mL) EPEC. Nevertheless, neither AE-STEC nor EPEC O80:H2 were recovered from 96 rectal fecal samples collected from healthy cattle at one slaughterhouse after overnight growth under the same conditions. In conclusion, this procedure may help to isolate stx1a and stx2a AE-STEC and EPEC O80:H2, but not stx2d AE-STEC that are tellurite sensitive, and new surveys using different procedures are necessary to identify their animal source, if any. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

13 pages, 2530 KB  
Article
Using Pathogenic Escherichia coli Type III Secreted Effectors espK and espV as Markers to Reduce the Risk of Potentially Enterohemorrhagic Shiga Toxin-Producing Escherichia coli in Beef
by Joseph M. Bosilevac, Tatum S. Katz, Leslie E. Manis, Lorenza Rozier and Michael Day
Foods 2025, 14(3), 382; https://doi.org/10.3390/foods14030382 - 24 Jan 2025
Cited by 1 | Viewed by 2370
Abstract
Contamination of beef by certain strains of Shiga toxin-producing Escherichia coli (STEC) called enterohemorrhagic E. coli (EHEC) can lead to outbreaks of severe disease. Therefore, accurate monitoring tests are needed to identify high risk beef products and divert them from consumers. Most EHEC [...] Read more.
Contamination of beef by certain strains of Shiga toxin-producing Escherichia coli (STEC) called enterohemorrhagic E. coli (EHEC) can lead to outbreaks of severe disease. Therefore, accurate monitoring tests are needed to identify high risk beef products and divert them from consumers. Most EHEC testing focuses on the detection of their key virulence factors Shiga toxin (stx) and intimin (eae). However, these two factors can occur separately in lower risk nonpathogenic E. coli (STEC and enteropathogenic E. coli; EPEC) and confound testing if both are present. Accessory virulence factors like the Type III secreted effectors espK and espV may aid in increasing the specificity of EHEC testing. This work first evaluated collections of EHEC (n = 83), STEC (n = 100) and EPEC (n = 95), finding espK and/or espV in 100%, 0%, and 60% of each, respectively. Next, an inoculation study of beef trim samples (n = 118) examined the ability of including espK and espV in the monitoring test scheme to distinguish samples inoculated with EHEC from those inoculated with mixtures of STEC and EPEC (non-EHEC). Test accuracy was calculated as Area Under the Receiver Operating Characteristic curve (AUC) and found to be significantly (p < 0.05) different, increasing from 68.0% (stx/eae) to 76.8% by including espK and espV. Finally, 361 regulatory agency beef samples that had been identified as suspect for EHEC (stx+/eae+) were examined with the addition of espK and espV, and results compared to culture isolation. Culture isolation identified 42 EHEC, 82 STEC, and 67 EPEC isolates in 146 of the samples. In the case of these naturally contaminated samples, inclusion of espK and espV increased test accuracy compared to culture isolation from an AUC of 50.5% (random agreement) to 69.8% (good agreement). Results show that the inclusion of espK and espV can increase the specificity of identifying high risk EHEC contaminated beef and release beef contaminated with nonpathogenic or low risk E. coli. Further, use of espK and espV identified samples contaminated by common EHEC of serogroups O157, O26, and O103, as well as of less common serogroups O182, O177, and O5. Full article
Show Figures

Figure 1

417 KB  
Article
Isolation of Shiga Toxin-Producing Escherichia coli O157 and Non-O157 from Retail Imported Frozen Beef Marketed in Saudi Arabia Using Immunomagnetic Separation and Multiplex PCR
by Ahlam Almulhim, Amer Alomar, Ibrahim Alhabib, Lamya Zohair Yamani and Nasreldin Elhadi
Germs 2024, 14(4), 352-361; https://doi.org/10.18683/germs.2024.1445 - 31 Dec 2024
Cited by 2 | Viewed by 454
Abstract
Introduction: Shiga toxin-producing Escherichia coli (STEC), particularly E. coli O157:H7, is a major contributor to foodborne outbreaks globally. Both E. coli O157 and non-O157 strains can lead to severe health issues, including hemolytic colitis and hemolytic uremic syndrome, which can result in kidney [...] Read more.
Introduction: Shiga toxin-producing Escherichia coli (STEC), particularly E. coli O157:H7, is a major contributor to foodborne outbreaks globally. Both E. coli O157 and non-O157 strains can lead to severe health issues, including hemolytic colitis and hemolytic uremic syndrome, which can result in kidney failure. Methods: Two hundred and one frozen beef samples were purchased from various supermarkets located in the Eastern Province of Saudi Arabia and subsequently enriched in tryptic soy broth (TSB). From the enriched samples in TSB, 1 mL portion was mixed with immunomagnetic beads (IMB) coated with specific antibodies targeting the E. coli O157 O antigen. The beads, which contained the captured bacteria, were then streaked onto CHROMagar O157 and Sorbitol MacConkey (SMAC) agar. The DNA extracted from these samples was examined using multiplex PCR to identify potential virulence gene markers, specifically stx-1, stx-2, and eae. Results: Of the 201 examined samples, 88 (43.8%) and 106 (52.7%) were positive for E. coli and produced colorless and mauve colonies on SMAC agar and CHROMagar O157, respectively. Out of 298 isolates in total, 174 isolates of E. coli were isolated with IMB enrichment. The highest detection rate of virulence gene markers was found among isolates that had been isolated using IMB enrichment, where 25 (8.4%), 2 (0.7%) and 12 (4%) isolates tested positive for stx1, stx2, and eae genes respectively. Among 42 isolates harboring potential virulence gene markers, 11 isolates were identified as E. coli O157 (stx1+/eae+ or stx2+/eae+). ERIC-PCR genotyping was able to determine the genetic relatedness among 42 isolates of E. coli O157 and E. coli non-O157 into 10 types with four identical related clusters and a genetic similarity rate above 90% homology from the identified isolates. Conclusions: The present study gives a clear perspective on STEC contamination in imported frozen beef marketed in Saudi Arabia. Because of the many possibilities of STEC contamination in imported frozen beef, further studies on the spread of STEC at various levels of imported frozen meat are needed on a long-term basis. Full article
Show Figures

Figure 1

7 pages, 201 KB  
Communication
Clinical Outcomes and Virulence Factors of Shiga Toxin-Producing Escherichia coli (STEC) from Southern Alberta, Canada, from 2020 to 2022
by Heather Glassman, Vivien Suttorp, Theron White, Kim Ziebell, Ashley Kearney, Kyrylo Bessonov, Vincent Li and Linda Chui
Pathogens 2024, 13(10), 822; https://doi.org/10.3390/pathogens13100822 - 24 Sep 2024
Cited by 3 | Viewed by 1736
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe clinical disease in humans, particularly in young children. Recent advances have led to greater availability of sequencing technologies. We sought to use whole genome sequencing data to identify the presence or absence of known virulence [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) can cause severe clinical disease in humans, particularly in young children. Recent advances have led to greater availability of sequencing technologies. We sought to use whole genome sequencing data to identify the presence or absence of known virulence factors in all clinical isolates submitted to our laboratory from Southern Alberta dated 2020–2022 and correlate these virulence factors with clinical outcomes obtained through chart review. Overall, the majority of HUS and hospitalizations were seen in patients with O157:H7 serotypes, and HUS cases were primarily in young children. The frequency of virulence factors differed between O157:H7 and non-O157 serotypes. Within the O157:H7 cases, certain virulence factors, including espP, espX1, and katP, were more frequent in HUS cases. The number of samples was too low to determine statistical significance. Full article
(This article belongs to the Special Issue Advanced Detection and Bioinformatics of Foodborne Pathogens)
16 pages, 1768 KB  
Article
A Health Threat from Farm to Fork: Shiga Toxin-Producing Escherichia coli Co-Harboring blaNDM-1 and mcr-1 in Various Sources of the Food Supply Chain
by Ayesha Sarwar, Bilal Aslam, Muhammad Hidayat Rasool, Mounir M. Salem Bekhit and James Sasanya
Pathogens 2024, 13(8), 659; https://doi.org/10.3390/pathogens13080659 - 6 Aug 2024
Cited by 5 | Viewed by 2359
Abstract
The dissemination of resistant pathogens through food supply chains poses a significant public health risk, spanning from farm to fork. This study analyzed the distribution of Shiga toxin-producing Escherichia coli (STEC) across various sources within the animal-based food supply chain. A total of [...] Read more.
The dissemination of resistant pathogens through food supply chains poses a significant public health risk, spanning from farm to fork. This study analyzed the distribution of Shiga toxin-producing Escherichia coli (STEC) across various sources within the animal-based food supply chain. A total of 500 samples were collected from livestock, poultry, the environment, fisheries, and dairy. Standard microbiological procedures were employed to isolate and identify E. coli isolates, which were further confirmed using MALDI-TOF and virulence-associated genes (VAGs) such as stx1, stx2, ompT, hylF, iutA, fimH, and iss. The phenotypic resistance patterns of the isolates were determined using the disc diffusion method, followed by molecular identification of antibiotic resistance genes (ARGs) through PCR. STEC were subjected to PCR-based O typing using specific primers for different O types. Overall, 154 (30.5%) samples were confirmed as E. coli, of which 77 (50%) were multidrug-resistant (MDR) E. coli. Among these, 52 (67.53%) isolates exhibited an array of VAGs, and 21 (40.38%) were confirmed as STEC based on the presence of stx1 and stx2. Additionally, 12 out of 52 (23.07%) isolates were identified as non-O157 STEC co-harbouring mcr-1 and blaNDM-1. O26 STEC was found to be the most prevalent among the non-O157 types. The results suggest that the detection of STEC in food supply chains may lead to serious health consequences, particularly in developing countries with limited healthcare resources. Full article
Show Figures

Figure 1

14 pages, 1469 KB  
Article
Shiga Toxin-Producing Escherichia coli Strains from Romania: A Whole Genome-Based Description
by Codruța-Romanița Usein, Mihaela Oprea, Sorin Dinu, Laura-Ioana Popa, Daniela Cristea, Cornelia-Mădălina Militaru, Andreea Ghiță, Mariana Costin, Ionela-Loredana Popa, Anca Croitoru, Cristina Bologa and Lavinia-Cipriana Rusu
Microorganisms 2024, 12(7), 1469; https://doi.org/10.3390/microorganisms12071469 - 19 Jul 2024
Cited by 4 | Viewed by 1801
Abstract
The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, [...] Read more.
The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, representing the culture-confirmed infections reported by the STEC Reference Laboratory between 2016 and 2023, were subjected to whole-genome sequencing (WGS) analysis and sequences were interpreted using both commercial and public free bioinformatics tools. The WGS analysis revealed a genetically diverse population of STEC dominated by non-O157 serogroups commonly reported in human STEC infections in the European Union. The O26:H11 strains of ST21 lineage played a major role in the clinical disease resulting in hospitalisation and cases of paediatric HUS in Romania surpassing the O157:H7 strains. The latter were all clade 7 and mostly ST1804. Notably, among the Romanian isolates was a stx2a-harbouring cryptic clade I strain associated with a HUS case, stx2f- and stx2e-positive strains, and hybrid strains displaying a mixture of intestinal and extraintestinal virulence genes were found. As a clearer picture emerges of the STEC strains responsible for infections in Romania, further surveillance efforts are needed to uncover their prevalence, sources, and reservoirs. Full article
Show Figures

Figure 1

8 pages, 248 KB  
Article
Shiga Toxin-Producing Escherichia coli Isolated from Wild Ruminants in Liguria, North-West Italy
by Valeria Listorti, Lisa Guardone, Carolina Piccinini, Isabella Martini, Carla Ferraris, Carmela Ligotti, Maria Luisa Cristina, Nicola Pussini, Monica Pitti and Elisabetta Razzuoli
Pathogens 2024, 13(7), 576; https://doi.org/10.3390/pathogens13070576 - 11 Jul 2024
Cited by 2 | Viewed by 2377
Abstract
Wildlife may represent an important source of infectious diseases for humans and other wild and domestic animals. Wild ruminants can harbour and transmit Shiga toxin-producing Escherichia coli (STEC) to humans, and some strains even carry important antimicrobial resistance. In this study, 289 livers [...] Read more.
Wildlife may represent an important source of infectious diseases for humans and other wild and domestic animals. Wild ruminants can harbour and transmit Shiga toxin-producing Escherichia coli (STEC) to humans, and some strains even carry important antimicrobial resistance. In this study, 289 livers of wild roe deer, fallow deer, red deer and chamois collected in Liguria, north-west Italy, from 2019 to 2023 were analysed. Overall, 44 STEC strains were isolated from 28 samples. The characterisation of serogroups showed the presence of O104, O113, O145 and O146 serogroups, although for 28 colonies, the serogroup could not be determined. The most prevalent Shiga toxin gene in isolated strains was Stx2, and more specifically the subtype Stx2b. The other retrieved subtypes were Stx1a, Stx1c, Stx1d and Stx2g. The isolated strains generally proved to be susceptible to the tested antimicrobials. However, multi-drug resistances against highly critical antimicrobials were found in one strain isolated from a roe deer. This study highlights the importance of wildlife monitoring in the context of a “One Health” approach. Full article
(This article belongs to the Special Issue Current Research on Host–Pathogen Interaction in 2024)
12 pages, 1584 KB  
Article
Multiple-Drug Resistant Shiga Toxin-Producing E. coli in Raw Milk of Dairy Bovine
by Safir Ullah, Saeed Ul Hassan Khan, Muhammad Jamil Khan, Baharullah Khattak, Fozia Fozia, Ijaz Ahmad, Mohammad Ahmad Wadaan, Muhammad Farooq Khan, Almohannad Baabbad and Sagar M. Goyal
Trop. Med. Infect. Dis. 2024, 9(3), 64; https://doi.org/10.3390/tropicalmed9030064 - 19 Mar 2024
Cited by 13 | Viewed by 3870
Abstract
Introduction: Raw milk may contain pathogenic microorganisms harmful to humans, e.g., multidrug-resistant Escherichia coli non-O157:H7, which can cause severe colitis, hemolytic uremia, and meningitis in children. No studies are available on the prevalence of Shiga toxin-producing E. coli (STEC O157:H7) in sick or [...] Read more.
Introduction: Raw milk may contain pathogenic microorganisms harmful to humans, e.g., multidrug-resistant Escherichia coli non-O157:H7, which can cause severe colitis, hemolytic uremia, and meningitis in children. No studies are available on the prevalence of Shiga toxin-producing E. coli (STEC O157:H7) in sick or healthy dairy animals in the Khyber Pakhtunkhwa Province of Pakistan. Aim: This study aimed to isolate, characterize, and detect antibiotic resistance in STEC non-O157:H7 from unpasteurized milk of dairy bovines in this province. Materials and Methods: We collected raw milk samples (n = 800) from dairy farms, street vendors, and milk shops from different parts of the Khyber Pakhtunkhwa Province. E. coli was isolated from these samples followed by latex agglutination tests for serotyping. The detection of STEC was conducted phenotypically and confirmed by the detection of virulence genes genotypically. An antibiogram of STEC isolates was performed against 12 antibiotics using the disc diffusion method. Results: A total of 321 (40.12%) samples were found to be positive for E. coli in this study. These samples were processed for the presence of four virulence genes (Stx1, Stx2, ehxA, eae). Forty samples (5.0%) were STEC-positive. Of these, 38%, 25%, 19%, and 18% were positive for Stx1, Stx2, ehxA, and eae, respectively. Genotypically, we found that 1.37% of STEC isolates produced extended-spectrum beta-lactamase (ESBL) and contained the blaCTX M gene. Resistance to various antibiotics ranged from 18% to 77%. Conclusion: This study highlights the risk of virulent and multidrug-resistant STEC non-O157:H7 in raw milk and the need for proper quality surveillance and assurance plans to mitigate the potential public health threat. Full article
(This article belongs to the Special Issue Foodborne Zoonotic Bacterial Infections)
Show Figures

Figure 1

19 pages, 3658 KB  
Article
Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico
by Bianca A. Amézquita-López, Marcela Soto-Beltrán, Bertram G. Lee, Edgar F. Bon-Haro, Ofelia Y. Lugo-Melchor and Beatriz Quiñones
Microbiol. Res. 2024, 15(1), 385-403; https://doi.org/10.3390/microbiolres15010026 - 8 Mar 2024
Cited by 1 | Viewed by 4251
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic enteric pathogens linked to human gastroenteritis worldwide. To aid the development of pathogen control efforts, the present study characterized the genotypic diversity and pathogenic potential of STEC recovered from sources near agricultural fields in Northwest Mexico. [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) are zoonotic enteric pathogens linked to human gastroenteritis worldwide. To aid the development of pathogen control efforts, the present study characterized the genotypic diversity and pathogenic potential of STEC recovered from sources near agricultural fields in Northwest Mexico. Samples were collected from irrigation river water and domestic animal feces in farms proximal to agricultural fields and were subjected to enrichment followed by immunomagnetic separation and plating on selective media for the recovery of the STEC isolates. Comparative genomic analyses indicated that the recovered STEC with the clinically relevant serotypes O157:H7, O8:H19, and O113:H21 had virulence genes repertoires associated with host cell adherence, iron uptake and effector protein secretion. Subsequent phenotypic characterization revealed multidrug resistance against aminoglycoside, carbapenem, cephalosporin, fluoroquinolone, penicillin, phenicol, and tetracycline, highlighting the need for improved surveillance on the use of antimicrobials. The present study indicated for the first time that river water in the agricultural Culiacan Valley in Mexico is a relevant key route of transmission for STEC O157 and non-O157 with a virulence potential. In addition, feces from domestic farm animals near surface waterways can act as potential point sources of contamination and transport of diverse STEC with clinically relevant genotypes. Full article
Show Figures

Figure 1

10 pages, 1407 KB  
Article
Genetic Characterization of Intimin Gene (eae) in Clinical Shiga Toxin-Producing Escherichia coli Strains from Pediatric Patients in Finland
by Lei Wang, Xiangning Bai, Elisa Ylinen, Ji Zhang, Harri Saxén and Andreas Matussek
Toxins 2023, 15(12), 669; https://doi.org/10.3390/toxins15120669 - 23 Nov 2023
Cited by 4 | Viewed by 3288
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections cause outbreaks of severe disease in children ranging from bloody diarrhea to hemolytic uremic syndrome (HUS). The adherent factor intimin, encoded by eae, can facilitate the colonization process of strains and is frequently associated with [...] Read more.
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections cause outbreaks of severe disease in children ranging from bloody diarrhea to hemolytic uremic syndrome (HUS). The adherent factor intimin, encoded by eae, can facilitate the colonization process of strains and is frequently associated with severe disease. The purpose of this study was to examine and analyze the prevalence and polymorphisms of eae in clinical STEC strains from pediatric patients under 17 years old with and without HUS, and to assess the pathogenic risk of different eae subtypes. We studied 240 STEC strains isolated from pediatric patients in Finland with whole genome sequencing. The gene eae was present in 209 (87.1%) strains, among which 49 (23.4%) were from patients with HUS, and 160 (76.6%) were from patients without HUS. O157:H7 (126, 60.3%) was the most predominant serotype among eae-positive STEC strains. Twenty-three different eae genotypes were identified, which were categorized into five eae subtypes, i.e., γ1, β3, ε1, θ and ζ3. The subtype eae-γ1 was significantly overrepresented in strains from patients aged 5–17 years, while β3 and ε1 were more commonly found in strains from patients under 5 years. All O157:H7 strains carried eae-γ1; among non-O157 strains, strains of each serotype harbored one eae subtype. No association was observed between the presence of eae/its subtypes and HUS. However, the combination of eae-γ1+stx2a was significantly associated with HUS. In conclusion, this study demonstrated a high occurrence and genetic variety of eae in clinical STEC from pediatric patients under 17 years old in Finland, and that eae is not essential for STEC-associated HUS. However, the combination of certain eae subtypes with stx subtypes, i.e., eae-γ1+stx2a, may be used as risk predictors for the development of severe disease in children. Full article
Show Figures

Figure 1

22 pages, 2583 KB  
Review
Safety Properties of Escherichia coli O157:H7 Specific Bacteriophages: Recent Advances for Food Safety
by Bukola Opeyemi Oluwarinde, Daniel Jesuwenu Ajose, Tesleem Olatunde Abolarinwa, Peter Kotsoana Montso, Ilse Du Preez, Henry Akum Njom and Collins Njie Ateba
Foods 2023, 12(21), 3989; https://doi.org/10.3390/foods12213989 - 31 Oct 2023
Cited by 27 | Viewed by 9365
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is typically detected on food products mainly due to cross-contamination with faecal matter. The serotype O157:H7 has been of major public health concern due to the severity of illness caused, prevalence, and management. In the food chain, the main [...] Read more.
Shiga-toxin-producing Escherichia coli (STEC) is typically detected on food products mainly due to cross-contamination with faecal matter. The serotype O157:H7 has been of major public health concern due to the severity of illness caused, prevalence, and management. In the food chain, the main methods of controlling contamination by foodborne pathogens often involve the application of antimicrobial agents, which are now becoming less efficient. There is a growing need for the development of new approaches to combat these pathogens, especially those that harbour antimicrobial resistant and virulent determinants. Strategies to also limit their presence on food contact surfaces and food matrices are needed to prevent their transmission. Recent studies have revealed that bacteriophages are useful non-antibiotic options for biocontrol of E. coli O157:H7 in both animals and humans. Phage biocontrol can significantly reduce E. coli O157:H7, thereby improving food safety. However, before being certified as potential biocontrol agents, the safety of the phage candidates must be resolved to satisfy regulatory standards, particularly regarding phage resistance, antigenic properties, and toxigenic properties. In this review, we provide a general description of the main virulence elements of E. coli O157:H7 and present detailed reports that support the proposals that phages infecting E. coli O157:H7 are potential biocontrol agents. This paper also outlines the mechanism of E. coli O157:H7 resistance to phages and the safety concerns associated with the use of phages as a biocontrol. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

13 pages, 345 KB  
Article
Serotypes, Pathotypes, Shiga Toxin Variants and Antimicrobial Resistance in Diarrheagenic Escherichia coli Isolated from Rectal Swabs and Sheep Carcasses in an Abattoir in Mexico
by Edgar Enriquez-Gómez, Jorge Acosta-Dibarrat, Martín Talavera-Rojas, Edgardo Soriano-Vargas, Armando Navarro, Rosario Morales-Espinosa, Valente Velázquez-Ordoñez and Luis Cal-Pereyra
Agriculture 2023, 13(8), 1604; https://doi.org/10.3390/agriculture13081604 - 13 Aug 2023
Cited by 4 | Viewed by 3076
Abstract
Sheep represent one of the main reservoirs of diarrheagenic Escherichia coli; this microorganism is an etiological agent of food-borne diseases; therefore, this work aimed to identify and characterize the principal pathotypes of diarrheagenic E. coli (DEC) obtained through rectal swabs and carcasses [...] Read more.
Sheep represent one of the main reservoirs of diarrheagenic Escherichia coli; this microorganism is an etiological agent of food-borne diseases; therefore, this work aimed to identify and characterize the principal pathotypes of diarrheagenic E. coli (DEC) obtained through rectal swabs and carcasses samples from sheep slaughtered in an abattoir at the central region of Mexico. The isolates were subjected to bacteriological identification, serotyping; phylogenetic classification; detection for virulence factors, and antimicrobial sensibility. A total of 90 E. coli isolates were obtained. It was observed through 49 E. coli isolates (54%), 8 of them from carcasses, and 43 from feces was DEC. DEC serotypes with health public relevance were found: O76:H19 (n = 5), O146:H21 (n = 3), O91:H10 (n = 1), O6:NM (n = 1), and O8:NM (n = 1). Regarding the presence of Shiga toxin-producing E.coli (STEC), 43/90 (47.7%) isolates have the stx1 w/o stx2 genes, and therefore were assigned as STEC non-O157; only one isolate expressed stx1 and eae genes and was classified as t-STEC (typical STEC). Additionally, 3/90 (3.3%) harbored only the eae gene and were classified as enteropathogenic E. coli (EPEC), the stp gene was found in 2/90 isolates (2.2%) and were classified as enterotoxigenic E. coli (ETEC); 1/90 (1.1%) isolates harboring the ipaH were classified as enteroinvasive E. coli EIEC. Regarding stx1 genes subtypes, stx1c only was found in 60.5% (26/43), followed by stx1a-stx1c 20.9% (9/43) and stx1a-stx1d 2.3% (1/43). The presence of both, stx1 and stx2 genes was found in 7/43 isolates (16.3%) from rectal swabs; the combination stx1c-stx2g was detected in 3/43 isolates (6.9%), while 4 (9.4%) isolates showed different patterns (stx1a-stx1c-stx2g; stx1c-stx2b-stx2g; stx1c-stx2b and stx1a-stx1c-stx2b-stx2g). STEC isolates showed the major diversity of phylogenetic groups, although phylogroup B1 was predominant in 90.6% (39/43) while there was only one isolate (2.3%) in each remaining phylogroup (A, B2, C, and F). All EPEC, ETEC, and EIEC isolates were clustered in phylogroup B1. We observed that 27.9% (12/43) of STEC isolates carried at least one antibiotic resistance: nine isolates expressed the tetB gene, one isolate the tetA gene, two isolates the sul2 gene, one isolate the sul1 and one isolate the sul1-tetB genes. These results highlight the importance of diarrheagenic E. coli as a potential risk for public health during the slaughtering process. Full article
(This article belongs to the Section Farm Animal Production)
Back to TopTop