Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (784)

Search Parameters:
Keywords = noise coherence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6790 KB  
Article
MGFormer: Super-Resolution Reconstruction of Retinal OCT Images Based on a Multi-Granularity Transformer
by Jingmin Luan, Zhe Jiao, Yutian Li, Yanru Si, Jian Liu, Yao Yu, Dongni Yang, Jia Sun, Zehao Wei and Zhenhe Ma
Photonics 2025, 12(9), 850; https://doi.org/10.3390/photonics12090850 (registering DOI) - 25 Aug 2025
Abstract
Optical coherence tomography (OCT) acquisitions often reduce lateral sampling density to shorten scan time and suppress motion artifacts, but this strategy degrades the signal-to-noise ratio and obscures fine retinal microstructures. To recover these details without hardware modifications, we propose MGFormer, a lightweight Transformer [...] Read more.
Optical coherence tomography (OCT) acquisitions often reduce lateral sampling density to shorten scan time and suppress motion artifacts, but this strategy degrades the signal-to-noise ratio and obscures fine retinal microstructures. To recover these details without hardware modifications, we propose MGFormer, a lightweight Transformer for OCT super-resolution (SR) that integrates a multi-granularity attention mechanism with tensor distillation. A feature-enhancing convolution first sharpens edges; stacked multi-granularity attention blocks then fuse coarse-to-fine context, while a row-wise top-k operator retains the most informative tokens and preserves their positional order. We trained and evaluated MGFormer on B-scans from the Duke SD-OCT dataset at 2×, 4×, and 8× scaling factors. Relative to seven recent CNN- and Transformer-based SR models, MGFormer achieves the highest quantitative fidelity; at 4× it reaches 34.39 dB PSNR and 0.8399 SSIM, surpassing SwinIR by +0.52 dB and +0.026 SSIM, and reduces LPIPS by 21.4%. Compared with the same backbone without tensor distillation, FLOPs drop from 289G to 233G (−19.4%), and per-B-scan latency at 4× falls from 166.43 ms to 98.17 ms (−41.01%); the model size remains compact (105.68 MB). A blinded reader study shows higher scores for boundary sharpness (4.2 ± 0.3), pathology discernibility (4.1 ± 0.3), and diagnostic confidence (4.3 ± 0.2), exceeding SwinIR by 0.3–0.5 points. These results suggest that MGFormer can provide fast, high-fidelity OCT SR suitable for routine clinical workflows. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

43 pages, 5207 KB  
Article
Noise-Induced Transitions in Nonlinear Oscillators: From Quasi-Periodic Stability to Stochastic Chaos
by Adil Jhangeer and Atef Abdelkader
Fractal Fract. 2025, 9(8), 550; https://doi.org/10.3390/fractalfract9080550 - 21 Aug 2025
Viewed by 139
Abstract
This paper presents a comprehensive dynamical analysis of a nonlinear oscillator subjected to both deterministic and stochastic excitations. Utilizing a diverse suite of analytical tools—including phase portraits, Poincaré sections, Lyapunov exponents, recurrence plots, Fokker–Planck equations, and sensitivity diagnostics—we investigate the transitions between quasi-periodicity, [...] Read more.
This paper presents a comprehensive dynamical analysis of a nonlinear oscillator subjected to both deterministic and stochastic excitations. Utilizing a diverse suite of analytical tools—including phase portraits, Poincaré sections, Lyapunov exponents, recurrence plots, Fokker–Planck equations, and sensitivity diagnostics—we investigate the transitions between quasi-periodicity, chaos, and stochastic disorder. The study reveals that quasi-periodic attractors exhibit robust topological structure under moderate noise but progressively disintegrate as stochastic intensity increases, leading to high-dimensional chaotic-like behavior. Recurrence quantification and Lyapunov spectra validate the transition from coherent dynamics to noise-dominated regimes. Poincaré maps and sensitivity analysis expose multistability and intricate basin geometries, while the Fokker–Planck formalism uncovers non-equilibrium steady states characterized by circulating probability currents. Together, these results provide a unified framework for understanding the geometry, statistics, and stability of noisy nonlinear systems. The findings have broad implications for systems ranging from mechanical oscillators to biological rhythms and offer a roadmap for future investigations into fractional dynamics, topological analysis, and data-driven modeling. Full article
Show Figures

Figure 1

12 pages, 3310 KB  
Article
Resolution Enhancement in Extreme Ultraviolet Ptychography Using a Refined Illumination Probe and Small-Etendue Source
by Seungchan Moon, Junho Hong, Taeho Lee and Jinho Ahn
Photonics 2025, 12(8), 831; https://doi.org/10.3390/photonics12080831 - 21 Aug 2025
Viewed by 136
Abstract
Extreme ultraviolet (EUV) ptychography is a promising actinic mask metrology technique capable of providing aberration-free images with subwavelength resolution. However, its performance is fundamentally constrained by the strong absorption of EUV light and the limited detection of high-frequency diffraction signals, which are critical [...] Read more.
Extreme ultraviolet (EUV) ptychography is a promising actinic mask metrology technique capable of providing aberration-free images with subwavelength resolution. However, its performance is fundamentally constrained by the strong absorption of EUV light and the limited detection of high-frequency diffraction signals, which are critical for resolving fine structural details. In this study, we demonstrate significant improvements in EUV ptychographic imaging by implementing an upgraded EUV source system with reduced source etendue and applying an illumination aperture to spatially refine the probe. This approach effectively enhances the photon flux and spatial coherence, resulting in an increased signal-to-noise ratio of the high-frequency diffraction components and an extended maximum detected spatial frequency. Simulations and experimental measurements using a Siemens star pattern confirmed that the refined probe enabled more robust phase retrieval and higher-resolution image reconstruction. Consequently, we achieved a half-pitch resolution of 46 nm, corresponding to a critical dimension of 11.5 nm at the wafer plane. These findings demonstrate the enhanced capability of EUV ptychography as a high-fidelity actinic metrology tool for next-generation EUV mask characterization. Full article
Show Figures

Figure 1

23 pages, 4675 KB  
Article
Time and Frequency Domain Analysis of IMU-Based Orientation Estimation Algorithms with Comparison to Robotic Arm Orientation as Reference
by Ruslan Sultan and Steffen Greiser
Sensors 2025, 25(16), 5161; https://doi.org/10.3390/s25165161 - 20 Aug 2025
Viewed by 285
Abstract
This work focuses on time and frequency domain analyses of IMU-based orientation estimation algorithms, including indirect Kalman (IKF), Madgwick (MF), and complementary (CF) filters. Euler angles and quaternions are used for orientation representation. A 6-DoF IMU is attached to a 6-joint UR5e robotic [...] Read more.
This work focuses on time and frequency domain analyses of IMU-based orientation estimation algorithms, including indirect Kalman (IKF), Madgwick (MF), and complementary (CF) filters. Euler angles and quaternions are used for orientation representation. A 6-DoF IMU is attached to a 6-joint UR5e robotic arm, with the robot’s orientation serving as the reference. Robotic arm data is obtained via an RTDE interface and IMU data via a CAN bus. Test signals include pose sequences, which are big-amplitude, slowly changing signals used to evaluate stationary and low-dynamics responses in the time domain, and small-amplitude, fast-changing generalized binary noise (GBN) signals used to evaluate dynamic responses in the frequency domain. To prevent poor filters’ performance, their parameters are tuned. In the time domain, RMSE and MaxAE are calculated for roll and pitch. In the frequency domain, composite frequency response and coherence are calculated using the Ockier method. RMSEs are computed for response magnitude and coherence, and averaged equivalent time delay (AETD) is derived from the response phase. In the time domain, MF and CF show the best overall performance. In the frequency domain, they again perform similarly well. IKF consistently performs the worst in both domains but achieves the lowest AETD. Full article
(This article belongs to the Special Issue Advances in Physical, Chemical, and Biosensors)
Show Figures

Figure 1

23 pages, 14694 KB  
Article
PLCNet: A 3D-CNN-Based Plant-Level Classification Network Hyperspectral Framework for Sweetpotato Virus Disease Detection
by Qiaofeng Zhang, Wei Wang, Han Su, Gaoxiang Yang, Jiawen Xue, Hui Hou, Xiaoyue Geng, Qinghe Cao and Zhen Xu
Remote Sens. 2025, 17(16), 2882; https://doi.org/10.3390/rs17162882 - 19 Aug 2025
Viewed by 291
Abstract
Sweetpotato virus disease (SPVD) poses a significant threat to global sweetpotato production; therefore, early, accurate field-scale detection is necessary. To address the limitations of the currently utilized assays, we propose PLCNet (Plant-Level Classification Network), a rapid, non-destructive SPVD identification framework using UAV-acquired hyperspectral [...] Read more.
Sweetpotato virus disease (SPVD) poses a significant threat to global sweetpotato production; therefore, early, accurate field-scale detection is necessary. To address the limitations of the currently utilized assays, we propose PLCNet (Plant-Level Classification Network), a rapid, non-destructive SPVD identification framework using UAV-acquired hyperspectral imagery. High-resolution data from early sweetpotato growth stages were processed via three feature selection methods—Random Forest (RF), Minimum Redundancy Maximum Relevance (mRMR), and Local Covariance Matrix (LCM)—in combination with 24 vegetation indices. Variance Inflation Factor (VIF) analysis reduced multicollinearity, yielding an optimized SPVD-sensitive feature set. First, using the RF-selected bands and vegetation indices, we benchmarked four classifiers—Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), Residual Network (ResNet), and 3D Convolutional Neural Network (3D-CNN). Under identical inputs, the 3D-CNN achieved superior performance (OA = 96.55%, Macro F1 = 95.36%, UA_mean = 0.9498, PA_mean = 0.9504), outperforming SVM, GBDT, and ResNet. Second, with the same spectral–spatial features and 3D-CNN backbone, we compared a pixel-level baseline (CropdocNet) against our plant-level PLCNet. CropdocNet exhibited spatial fragmentation and isolated errors, whereas PLCNet’s two-stage pipeline—deep feature extraction followed by connected-component analysis and majority voting—aggregated voxel predictions into coherent whole-plant labels, substantially reducing noise and enhancing biological interpretability. By integrating optimized feature selection, deep learning, and plant-level post-processing, PLCNet delivers a scalable, high-throughput solution for precise SPVD monitoring in agricultural fields. Full article
Show Figures

Figure 1

27 pages, 8177 KB  
Article
A Novel Scheme for High-Accuracy Frequency Estimation in Non-Contact Heart Rate Detection Based on Multi-Dimensional Accumulation and FIIB
by Shiqing Tang, Yunxue Liu, Jinwei Wang, Shie Wu, Xuefei Dong and Min Zhou
Sensors 2025, 25(16), 5097; https://doi.org/10.3390/s25165097 - 16 Aug 2025
Viewed by 329
Abstract
This paper proposes a novel heart rate detection scheme to address key challenges in millimeter-wave radar-based vital sign monitoring, including weak signals, various types of interference, and the demand for high-precision and super-resolution frequency estimation under practical computational constraints. First, we propose a [...] Read more.
This paper proposes a novel heart rate detection scheme to address key challenges in millimeter-wave radar-based vital sign monitoring, including weak signals, various types of interference, and the demand for high-precision and super-resolution frequency estimation under practical computational constraints. First, we propose a multi-dimensional coherent accumulation (MDCA) method to enhance the signal-to-noise ratio (SNR) by fully utilizing both spatial information from multiple receiving channels and temporal information from adjacent range bins. Additionally, we are the first to apply the fast iterative interpolated beamforming (FIIB) algorithm to radar-based heart rate detection, enabling super-resolution frequency estimation with low computational complexity. Compared to the traditional fast Fourier transform (FFT) method, the FIIB achieves an improvement of 1.08 beats per minute (bpm). A reordering strategy is also introduced to mitigate potential misjudgments by FIIB. Key parameters of FIIB, including the number of frequency components L and the number of iterations Q, are analyzed and recommended. Dozens of subjects were recruited for experiments, and the root mean square error (RMSE) of heart rate estimation was less than 1.12 bpm on average at a distance of 1 m. Extensive experiments validate the high accuracy and robust performance of the proposed framework in heart rate estimation. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Graphical abstract

14 pages, 3658 KB  
Article
Research on the Vector Coherent Factor Threshold Total Focusing Imaging Method for Austenitic Stainless Steel Based on Material Characteristics
by Tianwei Zhao, Ziyu Liu, Donghui Zhang, Junlong Wang and Guowen Peng
Metals 2025, 15(8), 901; https://doi.org/10.3390/met15080901 - 12 Aug 2025
Viewed by 231
Abstract
The degree of anisotropy and heterogeneity in coarse-grained materials significantly affects ultrasonic propagation behavior and scattering. This paper proposes a vector coherent factor threshold total focusing imaging method (VCF-T-TFM) for austenitic stainless steel, based on material properties, through a combination of simulation and [...] Read more.
The degree of anisotropy and heterogeneity in coarse-grained materials significantly affects ultrasonic propagation behavior and scattering. This paper proposes a vector coherent factor threshold total focusing imaging method (VCF-T-TFM) for austenitic stainless steel, based on material properties, through a combination of simulation and experimentation. Three types of austenitic stainless steel weld test blocks with varying degrees of heterogeneity were selected containing multiple side-drilled hole defects, each with a diameter of 2 mm. Full-matrix data were collected using a 32-element phased array probe with a center frequency of 5 MHz. The grain size and orientation of the material were quantitatively observed via electron backscatter diffraction (EBSD). By combining the instantaneous phase distribution of the TFM image, the coarse-grained material coherence compensation value (CA) and probability threshold (PT) were optimized for different heterogeneous regions, and the vector coherence imaging threshold (γ) was adjusted. The defect imaging results of homogeneous material (carbon steel) and three austenitic stainless steels with different levels of heterogeneity were compared, and the influence of coarse-grained, anisotropic heterogeneous structures on the imaging signal-to-noise ratio was analyzed. The results show that the VCF-T-TFM, which considers the influence of material properties on phase coherence, can suppress structural noise. Compared to compensation results that did not account for material properties, the signal-to-noise ratio was improved by 97.3%. Full article
(This article belongs to the Special Issue Non-Destructive Testing of Metallic Materials)
Show Figures

Figure 1

46 pages, 2177 KB  
Review
Computational Architectures for Precision Dairy Nutrition Digital Twins: A Technical Review and Implementation Framework
by Shreya Rao and Suresh Neethirajan
Sensors 2025, 25(16), 4899; https://doi.org/10.3390/s25164899 - 8 Aug 2025
Viewed by 608
Abstract
Sensor-enabled digital twins (DTs) are reshaping precision dairy nutrition by seamlessly integrating real-time barn telemetry with advanced biophysical simulations in the cloud. Drawing insights from 122 peer-reviewed studies spanning 2010–2025, this systematic review reveals how DT architectures for dairy cattle are conceptualized, validated, [...] Read more.
Sensor-enabled digital twins (DTs) are reshaping precision dairy nutrition by seamlessly integrating real-time barn telemetry with advanced biophysical simulations in the cloud. Drawing insights from 122 peer-reviewed studies spanning 2010–2025, this systematic review reveals how DT architectures for dairy cattle are conceptualized, validated, and deployed. We introduce a novel five-dimensional classification framework—spanning application domain, modeling paradigms, computational topology, validation protocols, and implementation maturity—to provide a coherent comparative lens across diverse DT implementations. Hybrid edge–cloud architectures emerge as optimal solutions, with lightweight CNN-LSTM models embedded in collar or rumen-bolus microcontrollers achieving over 90% accuracy in recognizing feeding and rumination behaviors. Simultaneously, remote cloud systems harness mechanistic fermentation simulations and multi-objective genetic algorithms to optimize feed composition, minimize greenhouse gas emissions, and balance amino acid nutrition. Field-tested prototypes indicate significant agronomic benefits, including 15–20% enhancements in feed conversion efficiency and water use reductions of up to 40%. Nevertheless, critical challenges remain: effectively fusing heterogeneous sensor data amid high barn noise, ensuring millisecond-level synchronization across unreliable rural networks, and rigorously verifying AI-generated nutritional recommendations across varying genotypes, lactation phases, and climates. Overcoming these gaps necessitates integrating explainable AI with biologically grounded digestion models, federated learning protocols for data privacy, and standardized PRISMA-based validation approaches. The distilled implementation roadmap offers actionable guidelines for sensor selection, middleware integration, and model lifecycle management, enabling proactive rather than reactive dairy management—an essential leap toward climate-smart, welfare-oriented, and economically resilient dairy farming. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

23 pages, 17755 KB  
Article
Estimating Aboveground Biomass of Mangrove Forests in Indonesia Using Spatial Attention Coupled Bayesian Aggregator
by Xinyue Zhu, Zhaohui Xue, Siyu Qian and Chenrun Sun
Forests 2025, 16(8), 1296; https://doi.org/10.3390/f16081296 - 8 Aug 2025
Viewed by 417
Abstract
Mangroves play a crucial part in the worldwide blue carbon cycle because they store a lot of carbon in their biomass and soil. Accurate estimation of aboveground biomass (AGB) is essential for quantifying carbon stocks and understanding ecological responses to climate and human [...] Read more.
Mangroves play a crucial part in the worldwide blue carbon cycle because they store a lot of carbon in their biomass and soil. Accurate estimation of aboveground biomass (AGB) is essential for quantifying carbon stocks and understanding ecological responses to climate and human disturbances. However, regional-scale AGB mapping remains difficult due to fragmented mangrove distributions, limited field data, and cross-site heterogeneity. To address these challenges, we propose a Spatial Attention Coupled Bayesian Aggregator (SAC-BA), which integrates field measurements with multi-source remote sensing (Landsat 8, Sentinel-1), terrain data, and climate variables using advanced ensemble learning. Four machine learning models (Random Forest (RF), Cubist, Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost)) were first trained, and their outputs were fused using Bayesian model averaging with spatial attention weights and constraints based on Local Indicators of Spatial Association (LISAs), which identify spatial clusters (e.g., high–high, low–low) to improve accuracy and spatial coherence. SAC-BA achieved the highest performance (coefficient of determination (R2) = 0.82, root mean square error = 29.90 Mg/ha), outperforming all individual models and traditional BMA. The resulting 30-m AGB map of Indonesian mangroves in 2017 estimated a total of 217.17 × 106 Mg, with a mean of 103.20 Mg/ha. The predicted AGB map effectively captured spatial variability, reduced noise at ecological boundaries, and maintained high confidence predictions in core mangrove zones. These results highlight the advantages of incorporating spatial structure and uncertainty into ensemble modeling. SAC-BA provides a reliable and transferable framework for regional AGB estimation, supporting improved carbon assessment and mangrove conservation efforts. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 4437 KB  
Article
NeuroQ: Quantum-Inspired Brain Emulation
by Jordi Vallverdú and Gemma Rius
Biomimetics 2025, 10(8), 516; https://doi.org/10.3390/biomimetics10080516 - 7 Aug 2025
Viewed by 632
Abstract
Traditional brain emulation approaches often rely on classical computational models that inadequately capture the stochastic, nonlinear, and potentially coherent features of biological neural systems. In this position paper, we introduce NeuroQ a quantum-inspired framework grounded in stochastic mechanics, particularly Nelson’s formulation. By reformulating [...] Read more.
Traditional brain emulation approaches often rely on classical computational models that inadequately capture the stochastic, nonlinear, and potentially coherent features of biological neural systems. In this position paper, we introduce NeuroQ a quantum-inspired framework grounded in stochastic mechanics, particularly Nelson’s formulation. By reformulating the FitzHugh–Nagumo neuron model with structured noise, we derive a Schrödinger-like equation that encodes membrane dynamics in a quantum-like formalism. This formulation enables the use of quantum simulation strategies—including Hamiltonian encoding, variational eigensolvers, and continuous-variable models—for neural emulation. We outline a conceptual roadmap for implementing NeuroQ on near-term quantum platforms and discuss its broader implications for neuromorphic quantum hardware, artificial consciousness, and time-symmetric cognitive architectures. Rather than demonstrating a working prototype, this work aims to establish a coherent theoretical foundation for future research in quantum brain emulation. Full article
(This article belongs to the Special Issue Recent Advances in Bioinspired Robot and Intelligent Systems)
Show Figures

Figure 1

14 pages, 2107 KB  
Article
Optimal Coherence Length Control in Interferometric Fiber Optic Hydrophones via PRBS Modulation: Theory and Experiment
by Wujie Wang, Qihao Hu, Lina Ma, Fan Shang, Hongze Leng and Junqiang Song
Sensors 2025, 25(15), 4711; https://doi.org/10.3390/s25154711 - 30 Jul 2025
Viewed by 326
Abstract
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, [...] Read more.
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, establishing the first theoretical model that quantitatively links PRBS parameter to coherence length, elucidating the mechanism underlying its suppression of parasitic interference noise. Furthermore, our research findings demonstrate that while reducing the laser coherence length effectively mitigates parasitic interference noise in IFOHs, this reduction also leads to elevated background noise caused by diminished interference visibility. Consequently, the modulation of coherence length requires a balanced optimization approach that not only suppresses parasitic noise but also minimizes visibility-introduced background noise, thereby determining the system-specific optimal coherence length. Through theoretical modeling and experimental validation, we determined that for IFOH systems with a 500 ns delay, the optimal coherence lengths for link fibers of 3.3 km and 10 km are 0.93 m and 0.78 m, respectively. At the optimal coherence length, the background noise level in the 3.3 km system reaches −84.5 dB (re: rad/√Hz @1 kHz), representing an additional noise suppression of 4.5 dB beyond the original suppression. This study provides a comprehensive theoretical and experimental solution to the long-standing contradiction between high laser monochromaticity, stability and appropriate coherence length, establishing a coherence modulation noise suppression framework for hydrophones, gyroscopes, distributed acoustic sensing (DAS), and other fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 838 KB  
Article
High-Fidelity Operations on Silicon Donor Qubits Using Dynamical Decoupling Gates
by Jing Cheng, Shihang Zhang, Banghong Guo, Huanwen Xie and Peihao Huang
Entropy 2025, 27(8), 805; https://doi.org/10.3390/e27080805 - 28 Jul 2025
Viewed by 356
Abstract
Dynamic decoupling (DD) can suppress decoherence caused by environmental noise, while in hybrid system it also hinders coherent manipulation between qubits. We realized the universal high-fidelity quantum gate set and the preparation of Bell states using dynamical decoupling gates (DD gates) in a [...] Read more.
Dynamic decoupling (DD) can suppress decoherence caused by environmental noise, while in hybrid system it also hinders coherent manipulation between qubits. We realized the universal high-fidelity quantum gate set and the preparation of Bell states using dynamical decoupling gates (DD gates) in a silicon-based phosphorus-doped (Si:P) system, effectively resolving the contradiction between decoherence protection and manipulation of qubits. The simulation results show that the fidelity of the universal quantum gate set are all above 99%, and the fidelity of Bell state preparation is over 96%. This work realized the compatibility between coherent protection and high-fidelity manipulation of quantum states, provided a reliable theoretical support for high-fidelity quantum computing. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

32 pages, 18111 KB  
Article
Across-Beam Signal Integration Approach with Ubiquitous Digital Array Radar for High-Speed Target Detection
by Le Wang, Haihong Tao, Aodi Yang, Fusen Yang, Xiaoyu Xu, Huihui Ma and Jia Su
Remote Sens. 2025, 17(15), 2597; https://doi.org/10.3390/rs17152597 - 25 Jul 2025
Viewed by 306
Abstract
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. [...] Read more.
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. Nevertheless, target motion introduces severe across-range unit (ARU), across-Doppler unit (ADU), and across-beam unit (ABU) effects, dispersing target energy across the range–Doppler-beam space. This paper proposes a beam domain angle rotation compensation and keystone-matched filtering (BARC-KTMF) algorithm to address the “three-crossing” challenge. This algorithm first corrects ABU by rotating beam–domain coordinates to align scattered energy into the final beam unit, reshaping the signal distribution pattern. Then, the KTMF method is utilized to focus target energy in the time-frequency domain. Furthermore, a special spatial windowing technique is developed to improve computational efficiency through parallel block processing. Simulation results show that the proposed approach achieves an excellent signal-to-noise ratio (SNR) gain over the typical single-beam and multi-beam long-time coherent integration (LTCI) methods under low SNR conditions. Additionally, the presented algorithm also has the capability of coarse estimation for the target incident angle. This work extends the LTCI technique to the beam domain, offering a robust framework for high-speed weak target detection. Full article
Show Figures

Graphical abstract

16 pages, 13319 KB  
Article
Research on Acoustic Field Correction Vector-Coherent Total Focusing Imaging Method Based on Coarse-Grained Elastic Anisotropic Material Properties
by Tianwei Zhao, Ziyu Liu, Donghui Zhang, Junlong Wang and Guowen Peng
Sensors 2025, 25(15), 4550; https://doi.org/10.3390/s25154550 - 23 Jul 2025
Viewed by 298
Abstract
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ [...] Read more.
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ properties, is proposed. To demonstrate the effectiveness of this method, a test specimen, an austenitic stainless steel nozzle weld, was employed. Seven side-drilled hole defects located at varying positions and depths, each with a diameter of 2 mm, were examined. An ultrasound simulation model was developed based on material backscatter diffraction results, and the scattering attenuation compensation factor was optimized. The acoustic field correction function was derived by combining acoustic field directivity with diffusion attenuation compensation. The phase coherence weighting coefficients were calculated, followed by image reconstruction. The results show that the proposed method significantly improves imaging amplitude uniformity and reduces the structural noise caused by the coarse crystal structure of austenitic stainless steel. Compared to conventional total focus imaging, the detection SNR of the seven defects increased by 2.34 dB to 10.95 dB. Additionally, the defect localization error was reduced from 0.1 mm to 0.05 mm, with a range of 0.70 mm to 0.88 mm. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

23 pages, 6991 KB  
Article
Comparing the Accuracy of Soil Moisture Estimates Derived from Bulk and Energy-Resolved Gamma Radiation Measurements
by Sonia Akter, Johan Alexander Huisman and Heye Reemt Bogena
Sensors 2025, 25(14), 4453; https://doi.org/10.3390/s25144453 - 17 Jul 2025
Viewed by 444
Abstract
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost [...] Read more.
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost counter-tube detector. Since this detector type provides a bulk GR response across a wide energy range, EGR signals are influenced by several confounding factors, e.g., soil radon emanation, biomass. To what extent these confounding factors deteriorate the accuracy of SM estimates obtained from EGR is not fully understood. Therefore, the aim of this study was to compare the accuracy of SM estimates from EGR with those from reference 40K GR (1460 keV) measurements which are much less influenced by these factors. For this, a Geiger–Mueller counter (G–M), which is commonly used for EGR monitoring, and a gamma spectrometer were installed side by side in an agricultural field equipped with in situ sensors to measure reference SM and a meteorological station. The EGRG–M and spectrometry-based 40K measurements were related to reference SM using a functional relationship derived from theory. We found that daily SM can be predicted with an RMSE of 3.39 vol. % from 40K using the theoretical value of α = 1.11 obtained from the effective ratio of GR mass attenuation coefficients for the water and solid phase. A lower accuracy was achieved for the EGRG–M measurements (RMSE = 6.90 vol. %). Wavelet coherence analysis revealed that the EGRG–M measurements were influenced by radon-induced noise in winter. Additionally, biomass shielding had a stronger impact on EGRG–M than on 40K GR estimates of SM during summer. In summary, our study provides a better understanding on the lower prediction accuracy of EGRG–M and suggests that correcting for biomass can improve SM estimation from the bulk EGR data of operational radioactivity monitoring networks. Full article
(This article belongs to the Special Issue Sensors in Smart Irrigation Systems)
Show Figures

Figure 1

Back to TopTop