Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = nociceptin/orphanin FQ receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 525 KB  
Review
Nociceptin and the NOP Receptor in Pain Management: From Molecular Insights to Clinical Applications
by Michelle Wu, Brandon Park and Xiang-Ping Chu
Anesth. Res. 2025, 2(3), 18; https://doi.org/10.3390/anesthres2030018 - 11 Aug 2025
Viewed by 2363
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a neuropeptide that activates the nociceptin opioid peptide (NOP) receptor, a G protein-coupled receptor structurally similar to classical opioid receptors but with distinct pharmacological properties. Unlike μ-opioid receptor (MOR) agonists, NOP receptor agonists provide analgesia with a reduced risk [...] Read more.
Nociceptin/orphanin FQ (N/OFQ) is a neuropeptide that activates the nociceptin opioid peptide (NOP) receptor, a G protein-coupled receptor structurally similar to classical opioid receptors but with distinct pharmacological properties. Unlike μ-opioid receptor (MOR) agonists, NOP receptor agonists provide analgesia with a reduced risk of respiratory depression, tolerance, and dependence. This review synthesizes current evidence from molecular studies, animal models, and clinical trials to evaluate the therapeutic potential of the N/OFQ–NOP system in pain management and anesthesia. A literature review was conducted through a PubMed search of English language articles published between 2015 and 2025 using keywords such as “nociceptin,” “NOP receptor,” “bifunctional NOP/MOR agonists,” and “analgesia.” Primary research articles, clinical trials, and relevant reviews were selected based on their relevance to NOP pharmacology and therapeutic application. Additional references were included through citation tracking of seminal papers. Comparisons with classical opioid systems were made to highlight key pharmacological differences, and therapeutic developments involving NOP-selective and bifunctional NOP/MOR agonists were examined. In preclinical models of chronic inflammatory and neuropathic pain, NOP receptor ago-nists reduced hyperalgesia by 30–70%, while producing minimal effects in acute pain as-says. In healthy human volunteers, bifunctional NOP/MOR agonists such as cebrano-padol provided significant pain relief, achieving ≥30% reduction in pain intensity in up to 70% of subjects, with lower incidence of respiratory depression compared with morphine. Sunobinop, another NOP/MOR agent, demonstrated reduced next-day residual effects and a favorable cognitive safety profile. Clinical data also suggest that co-activation of NOP and MOR may attenuate opioid-induced hyperalgesia and tolerance. However, challenges remain, including variability in receptor signaling and limited human trial data. The N/OFQ–NOP receptor system represents a promising and potentially safer target for analgesia and perioperative care. Future efforts should focus on developing optimized NOP ligands, incorporating personalized approaches based on receptor variability, and advancing clinical trials to integrate these agents into multimodal pain management and enhanced recovery protocols. Full article
Show Figures

Graphical abstract

23 pages, 747 KB  
Review
Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ–NOP Receptor System
by Pietro Pola, Alessia Frezza, Elaine C. Gavioli, Girolamo Calò and Chiara Ruzza
Brain Sci. 2024, 14(9), 936; https://doi.org/10.3390/brainsci14090936 - 19 Sep 2024
Cited by 1 | Viewed by 3974
Abstract
Exposure to physical and psychological stress modulates pain transmission in a dual manner. Stress-induced analgesia (SIA) refers to the reduction in pain sensitivity that can occur in response to acute stress. On the contrary, chronic stress exposure may lead to a phenomenon named [...] Read more.
Exposure to physical and psychological stress modulates pain transmission in a dual manner. Stress-induced analgesia (SIA) refers to the reduction in pain sensitivity that can occur in response to acute stress. On the contrary, chronic stress exposure may lead to a phenomenon named stress-induced hyperalgesia (SIH). SIH is a clinically relevant phenomenon since it has been well documented that physical and psychological stress exacerbates pain in patients with several chronic pain syndromes, including migraine. The availability of animal models of SIA and SIH is of high importance for understanding the biological mechanisms leading to these phenomena and for the identification of pharmacological targets useful to alleviate the burden of stress-exacerbated chronic pain. Among these targets, the nociceptin/orphanin FQ (N/OFQ)–N/OFQ peptide (NOP) receptor system has been identified as a key modulator of both pain transmission and stress susceptibility. This review describes first the experimental approaches to induce SIA and SIH in rodents. The second part of the manuscript summarizes the scientific evidence that suggests the N/OFQ–NOP receptor system as a player in the stress–pain interaction and candidates NOP antagonists as useful drugs to mitigate the detrimental effects of stress exposure on pain perception. Full article
(This article belongs to the Special Issue Stress, Resilience and Susceptibility)
Show Figures

Figure 1

11 pages, 1519 KB  
Article
Role of Spinal Cholecystokinin Octapeptide, Nociceptin/Orphanin FQ, and Hemokinin-1 in Diabetic Allodynia
by Takafumi Hayashi, Syu-ichi Kanno, Chizuko Watanabe, Damiana Scuteri, Yasuyuki Agatsuma, Akiyoshi Hara, Giacinto Bagetta, Tsukasa Sakurada and Shinobu Sakurada
Biomedicines 2024, 12(6), 1332; https://doi.org/10.3390/biomedicines12061332 - 15 Jun 2024
Cited by 3 | Viewed by 1458
Abstract
A complication of diabetes is neuropathic pain, which is difficult to control with medication. We have confirmed that neuropathic pain due to mechanical allodynia in diabetic mice is mediated by a characteristic neuropeptide in the spinal cord. We evaluated the strength of mechanical [...] Read more.
A complication of diabetes is neuropathic pain, which is difficult to control with medication. We have confirmed that neuropathic pain due to mechanical allodynia in diabetic mice is mediated by a characteristic neuropeptide in the spinal cord. We evaluated the strength of mechanical allodynia in mice using von Frey filaments. When mice were intravenously injected with streptozotocin, mechanical allodynia appeared 3 days later. Antibodies of representative neuropeptides were intrathecally (i.t.) administered to allodynia-induced mice 7 days after the intravenous administration of streptozotocin, and allodynia was reduced by anti-cholecystokinin octapeptide antibodies, anti-nociceptin/orphanin FQ antibodies, and anti-hemokinin-1 antibodies. In contrast, i.t.-administered anti-substance P antibodies, anti-somatostatin antibodies, and anti-angiotensin II antibodies did not affect streptozotocin-induced diabetic allodynia mice. Mechanical allodynia was attenuated by the i.t. administration of CCK-B receptor antagonists and ORL-1 receptor antagonists. The mRNA level of CCK-B receptors in streptozotocin-induced diabetic allodynia mice increased in the spinal cord, but not in the dorsal root ganglion. These results indicate that diabetic allodynia is caused by cholecystokinin octapeptide, nociceptin/orphanin FQ, and hemokinin-1 released from primary afferent neurons in the spinal cord that transmit pain to the brain via the spinal dorsal horn. Full article
Show Figures

Figure 1

15 pages, 4342 KB  
Article
Traumatic Brain Injury Induces Nociceptin/Orphanin FQ and Nociceptin Opioid Peptide Receptor Expression within 24 Hours
by Omar N. Al Yacoub, Yong Zhang, Panini S. Patankar and Kelly M. Standifer
Int. J. Mol. Sci. 2024, 25(3), 1658; https://doi.org/10.3390/ijms25031658 - 29 Jan 2024
Cited by 3 | Viewed by 2117
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and [...] Read more.
Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI. Full article
(This article belongs to the Special Issue Molecular and Physiological Mechanisms of Traumatic Brain Injury)
Show Figures

Figure 1

10 pages, 2905 KB  
Article
Nociceptin/Orphanin FQ Opioid Peptide-Receptor Expression in the Endometriosis-Associated Nerve Fibers—Possible Treatment Option?
by Qihui Guan, Renata Voltolini Velho, Alice Jordan, Sabrina Pommer, Irene Radde, Jalid Sehouli and Sylvia Mechsner
Cells 2023, 12(10), 1395; https://doi.org/10.3390/cells12101395 - 15 May 2023
Cited by 3 | Viewed by 2795
Abstract
Endometriosis (EM) is a chronic inflammatory disease affecting millions of women worldwide. Chronic pelvic pain is one of the main problems of this condition, leading to quality-of-life impairment. Currently, available treatment options are not able to treat these women accurately. A better understanding [...] Read more.
Endometriosis (EM) is a chronic inflammatory disease affecting millions of women worldwide. Chronic pelvic pain is one of the main problems of this condition, leading to quality-of-life impairment. Currently, available treatment options are not able to treat these women accurately. A better understanding of the pain mechanisms would be beneficial to integrate additional therapeutic management strategies, especially specific analgesic options. To understand pain in more detail, nociceptin/orphanin FQ peptide (NOP) receptor expression was analyzed in EM-associated nerve fibers (NFs) for the first time. Laparoscopically excised peritoneal samples from 94 symptomatic women (73 with EM and 21 controls) were immunohistochemically stained for NOP, protein gene product 9.5 (PGP9.5), substance P (SP), calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), and vasoactive intestinal peptide (VIP). Peritoneal NFs of EM patients and healthy controls were positive for NOP and often colocalized with SP-, CGRP-, TH-, and VIP-positive nerve fibers, suggesting that NOP is expressed in sensory and autonomic nerve fibers. In addition, NOP expression was increased in EM associate NF. Our findings highlight the potential of NOP agonists, particularly in chronic EM-associated pain syndromes and deserve further study, as the efficacy of NOP-selective agonists in clinical trials. Full article
(This article belongs to the Special Issue Molecular Advances and New Therapeutic Approaches in Endometriosis)
Show Figures

Figure 1

16 pages, 4378 KB  
Article
Opioid-Modulated Receptor Localization and Erk1/2 Phosphorylation in Cells Coexpressing μ-Opioid and Nociceptin Receptors
by Guan-Yu Zhuo, Ming-Chi Chen, Tzu-Yu Lin, Shih-Ting Lin, Daniel Tzu-Li Chen and Cynthia Wei-Sheng Lee
Int. J. Mol. Sci. 2023, 24(2), 1048; https://doi.org/10.3390/ijms24021048 - 5 Jan 2023
Cited by 5 | Viewed by 2656
Abstract
We attempted to examine the alterations elicited by opioids via coexpressed μ-opioid (MOP) and nociceptin/orphanin FQ (NOP) receptors for receptor localization and Erk1/2 (p44/42 MAPK) in human embryonic kidney (HEK) 293 cells. Through two-photon microscopy, the proximity of MOP and NOP receptors was [...] Read more.
We attempted to examine the alterations elicited by opioids via coexpressed μ-opioid (MOP) and nociceptin/orphanin FQ (NOP) receptors for receptor localization and Erk1/2 (p44/42 MAPK) in human embryonic kidney (HEK) 293 cells. Through two-photon microscopy, the proximity of MOP and NOP receptors was verified by fluorescence resonance energy transfer (FRET), and morphine but not buprenorphine facilitated the process of MOP-NOP heterodimerization. Single-particle tracking (SPT) further revealed that morphine or buprenorphine hindered the movement of the MOP-NOP heterodimers. After exposure to morphine or buprenorphine, receptor localization on lipid rafts was detected by immunocytochemistry, and phosphorylation of Erk1/2 was determined by immunoblotting in HEK 293 cells expressing MOP, NOP, or MOP+NOP receptors. Colocalization of MOP and NOP on lipid rafts was enhanced by morphine but not buprenorphine. Morphine stimulated the phosphorylation of Erk1/2 with a similar potency in HEK 293 cells expressing MOP and MOP+NOP receptors, but buprenorphine appeared to activate Erk1/2 solely through NOP receptors. Our results suggest that opioids can fine-tune the cellular localization of opioid receptors and phosphorylation of Erk1/2 in MOP+NOP-expressing cells. Full article
(This article belongs to the Special Issue Bioimaging for Advanced Explorations in Materials and Life Science)
Show Figures

Figure 1

18 pages, 1926 KB  
Article
Synthesis, Biological Activity and Molecular Docking of Chimeric Peptides Targeting Opioid and NOP Receptors
by Karol Wtorek, Alessia Ghidini, Luca Gentilucci, Anna Adamska-Bartłomiejczyk, Justyna Piekielna-Ciesielska, Chiara Ruzza, Chiara Sturaro, Girolamo Calò, Stefano Pieretti, Alicja Kluczyk, John McDonald, David G. Lambert and Anna Janecka
Int. J. Mol. Sci. 2022, 23(20), 12700; https://doi.org/10.3390/ijms232012700 - 21 Oct 2022
Cited by 4 | Viewed by 3844
Abstract
Recently, mixed opioid/NOP agonists came to the spotlight for their favorable functional profiles and promising outcomes in clinical trials as novel analgesics. This study reports on two novel chimeric peptides incorporating the fragment Tyr-c[D-Lys-Phe-Phe]Asp-NH2 (RP-170), a cyclic peptide with high [...] Read more.
Recently, mixed opioid/NOP agonists came to the spotlight for their favorable functional profiles and promising outcomes in clinical trials as novel analgesics. This study reports on two novel chimeric peptides incorporating the fragment Tyr-c[D-Lys-Phe-Phe]Asp-NH2 (RP-170), a cyclic peptide with high affinity for µ and κ opioid receptors (or MOP and KOP, respectively), conjugated with the peptide Ac-RYYRIK-NH2, a known ligand of the nociceptin/orphanin FQ receptor (NOP), yielding RP-170-RYYRIK-NH2 (KW-495) and RP-170-Gly3-RYYRIK-NH2 (KW-496). In vitro, the chimeric KW-496 gained affinity for KOP, hence becoming a dual KOP/MOP agonist, while KW-495 behaved as a mixed MOP/NOP agonist with low nM affinity. Hence, KW-495 was selected for further in vivo experiments. Intrathecal administration of this peptide in mice elicited antinociceptive effects in the hot-plate test; this action was sensitive to both the universal opioid receptor antagonist naloxone and the selective NOP antagonist SB-612111. The rotarod test revealed that KW-495 administration did not alter the mice motor coordination performance. Computational studies have been conducted on the two chimeras to investigate the structural determinants at the basis of the experimental activities, including any role of the Gly3 spacer. Full article
(This article belongs to the Special Issue Protein Structure–Function Relationships 2.0)
Show Figures

Graphical abstract

12 pages, 2268 KB  
Article
Formulation of Solid Lipid Nanoparticles Loaded with Nociceptin/Orphanin FQ (N/OFQ) and Characterization in a Murine Model of Airway Hyperresponsiveness
by Davida Mirra, Giuseppe Spaziano, Renata Esposito, Debora Santonocito, Rosanna Filosa, Fiorentina Roviezzo, Gaetano Malgieri, Gianluca D’Abrosca, Pasquale Iovino, Luca Gallelli, Roberto Fattorusso, Carmelo Puglia and Bruno D’Agostino
Pharmaceuticals 2022, 15(10), 1210; https://doi.org/10.3390/ph15101210 - 29 Sep 2022
Cited by 4 | Viewed by 2448
Abstract
Asthma is characterized by chronic inflammation and a variable degree of airway hyperresponsiveness (AHR). Our previous papers documented a role for Nociceptin/Orphanin FQ (N/OFQ) and its receptor N/OFQ peptide (NOP) in AHR. Therefore, the aim of this study was to improve the bioavailability [...] Read more.
Asthma is characterized by chronic inflammation and a variable degree of airway hyperresponsiveness (AHR). Our previous papers documented a role for Nociceptin/Orphanin FQ (N/OFQ) and its receptor N/OFQ peptide (NOP) in AHR. Therefore, the aim of this study was to improve the bioavailability of N/OFQ by developing solid lipid nanoparticles (SLNs). N/OFQ-loaded SLNs were prepared by the Quasi Emulsion Solvent Diffusion (QESD) technique and then characterized. Brown Norway rats were sensitized to ovalbumin (OVA) and treated with an intratracheal administration of saline solution or N/OFQ-SLN. Then, 24 h after the last challenge, functional histological and molecular evaluations were performed. SLNs showed a mean diameter of 233 ± 0.03 nm, a polydispersity index (PDI) value around 0.28 ± 0.02 and a drug release percentage of 84.3. The in vitro release of N/OFQ from SLNs showed that the release of the peptide starts already after two hours of incubation. Animals receiving N/OFQ-SLN showed a significative decrease in allergen-induced AHR compared to the control group. These results showed the positive effects of N/OFQ-SLNs on the inflammatory process and on the mechanical properties of the airways, suggesting that the innovative nanotechnological approach may be therapeutically beneficial for asthmatic patients. Full article
Show Figures

Figure 1

42 pages, 1624 KB  
Review
Opioidergic Signaling—A Neglected, Yet Potentially Important Player in Atopic Dermatitis
by Dorottya Ádám, József Arany, Kinga Fanni Tóth, Balázs István Tóth, Attila Gábor Szöllősi and Attila Oláh
Int. J. Mol. Sci. 2022, 23(8), 4140; https://doi.org/10.3390/ijms23084140 - 8 Apr 2022
Cited by 12 | Viewed by 4843
Abstract
Atopic dermatitis (AD) is one of the most common skin diseases, the prevalence of which is especially high among children. Although our understanding about its pathogenesis has substantially grown in recent years, and hence, several novel therapeutic targets have been successfully exploited in [...] Read more.
Atopic dermatitis (AD) is one of the most common skin diseases, the prevalence of which is especially high among children. Although our understanding about its pathogenesis has substantially grown in recent years, and hence, several novel therapeutic targets have been successfully exploited in the management of the disease, we still lack curative treatments for it. Thus, there is an unmet societal demand to identify further details of its pathogenesis to thereby pave the way for novel therapeutic approaches with favorable side effect profiles. It is commonly accepted that dysfunction of the complex cutaneous barrier plays a central role in the development of AD; therefore, the signaling pathways involved in the regulation of this quite complex process are likely to be involved in the pathogenesis of the disease and can provide novel, promising, yet unexplored therapeutic targets. Thus, in the current review, we aim to summarize the available potentially AD-relevant data regarding one such signaling pathway, namely cutaneous opioidergic signaling. Full article
(This article belongs to the Special Issue Atopic Dermatitis and Psoriasis Pathogenesis: Going beyond Paradigms)
Show Figures

Figure 1

25 pages, 2474 KB  
Review
Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue
by Giovannamaria Petrocelli, Luca Pampanella, Provvidenza M. Abruzzo, Carlo Ventura, Silvia Canaider and Federica Facchin
Int. J. Mol. Sci. 2022, 23(7), 3819; https://doi.org/10.3390/ijms23073819 - 30 Mar 2022
Cited by 14 | Viewed by 7111
Abstract
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid [...] Read more.
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids’ ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia–reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis. Full article
(This article belongs to the Special Issue Endogenous Opioids in Stem Cell Development, Stress, and Aging)
Show Figures

Figure 1

19 pages, 3770 KB  
Article
Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the µ-, δ-, κ-Opioid and Nociceptin Receptors
by Kristina Puls, Helmut Schmidhammer, Gerhard Wolber and Mariana Spetea
Molecules 2022, 27(3), 919; https://doi.org/10.3390/molecules27030919 - 28 Jan 2022
Cited by 11 | Viewed by 3784
Abstract
Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual μ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, [...] Read more.
Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual μ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, its binding mode at the opioid receptors remains elusive. Here, we present a comprehensive in silico evaluation of HS-731 binding at all opioid receptors. We provide insights into dynamic interaction patterns explaining the different binding and activity of HS-731 on the opioid receptors. For this purpose, we conducted docking, performed molecular dynamics (MD) simulations and generated dynamic pharmacophores (dynophores). Our results highlight two residues important for HS-731 recognition at the classical opioid receptors (MOR, DOR and KOR), particular the conserved residue 5.39 (K) and the non-conserved residue 6.58 (MOR: K, DOR: W and KOR: E). Furthermore, we assume a salt bridge between the transmembrane helices (TM) 5 and 6 via K2275.39 and E2976.58 to be responsible for the partial agonism of HS-731 at the KOR. Additionally, we experimentally demonstrated the absence of affinity of HS-731 to the nociceptin/orphanin FQ peptide (NOP) receptor. We consider the morphinan phenol Y1303.33 responsible for this affinity lack. Y1303.33 points deep into the NOP receptor binding pocket preventing HS-731 binding to the orthosteric binding pocket. These findings provide significant structural insights into HS-731 interaction pattern with the opioid receptors that are important for understanding the pharmacology of this peripheral opioid analgesic. Full article
Show Figures

Graphical abstract

18 pages, 14837 KB  
Review
Spotlight on Nociceptin/Orphanin FQ Receptor in the Treatment of Pain
by Amal El Daibani and Tao Che
Molecules 2022, 27(3), 595; https://doi.org/10.3390/molecules27030595 - 18 Jan 2022
Cited by 21 | Viewed by 6243
Abstract
In our society today, pain has become a main source of strain on most individuals. It is crucial to develop novel treatments against pain while focusing on decreasing their adverse effects. Throughout the extent of development for new pain therapies, the nociceptin/orphanin FQ [...] Read more.
In our society today, pain has become a main source of strain on most individuals. It is crucial to develop novel treatments against pain while focusing on decreasing their adverse effects. Throughout the extent of development for new pain therapies, the nociceptin/orphanin FQ receptor (NOP receptor) has appeared to be an encouraging focal point. Concentrating on NOP receptor to treat chronic pain with limited range of unwanted effects serves as a suitable alternative to prototypical opioid morphine that could potentially lead to life-threatening effects caused by respiratory depression in overdose, as well as generate abuse and addiction. In addition to these harmful effects, the uprising opioid epidemic is responsible for becoming one of the most disastrous public health issues in the US. In this article, the contributing molecular and cellular structure in controlling the cellular trafficking of NOP receptor and studies that support the role of NOP receptor and its ligands in pain management are reviewed. Full article
Show Figures

Figure 1

26 pages, 1240 KB  
Review
Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders
by Massimo Ubaldi, Nazzareno Cannella, Anna Maria Borruto, Michele Petrella, Maria Vittoria Micioni Di Bonaventura, Laura Soverchia, Serena Stopponi, Friedbert Weiss, Carlo Cifani and Roberto Ciccocioppo
Int. J. Mol. Sci. 2021, 22(23), 12956; https://doi.org/10.3390/ijms222312956 - 30 Nov 2021
Cited by 28 | Viewed by 7933
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do [...] Read more.
Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety. Full article
(This article belongs to the Special Issue Peptides for Health Benefits 2021)
Show Figures

Figure 1

20 pages, 1150 KB  
Article
Dysregulation of Nociceptin/Orphanin FQ and Dynorphin Systems in the Extended Amygdala of Alcohol Preferring Marchigian Sardinian (msP) Rats
by Francesca Felicia Caputi, Serena Stopponi, Laura Rullo, Martina Palmisano, Massimo Ubaldi, Sanzio Candeletti, Roberto Ciccocioppo and Patrizia Romualdi
Int. J. Mol. Sci. 2021, 22(5), 2448; https://doi.org/10.3390/ijms22052448 - 28 Feb 2021
Cited by 14 | Viewed by 3564
Abstract
Previous studies have shown that genetically selected Marchigian Sardinian alcohol-preferring (msP) rats consume excessive amounts of ethanol to self-medicate from negative moods and to relieve innate hypersensitivity to stress. This phenotype resembling a subset of alcohol use disorder (AUD) patients, appears to be [...] Read more.
Previous studies have shown that genetically selected Marchigian Sardinian alcohol-preferring (msP) rats consume excessive amounts of ethanol to self-medicate from negative moods and to relieve innate hypersensitivity to stress. This phenotype resembling a subset of alcohol use disorder (AUD) patients, appears to be linked to a dysregulation of the equilibrium between stress and antistress mechanisms in the extended amygdala. Here, comparing water and alcohol exposed msP and Wistar rats we evaluate the transcript expression of the anti-stress opioid-like peptide nociceptin/orphanin FQ (N/OFQ) and its receptor NOP as well as of dynorphin (DYN) and its cognate κ-opioid receptor (KOP). In addition, we measured the transcript levels of corticotropin-releasing factor (CRF), CRF receptor 1 (CRF1R), brain-derived neurotrophic factor (BDNF) and of the tropomyosin receptor kinase B receptor (Trk-B). Results showed an innately up-regulation of the CRFergic system, mediating negative mood and stress responses, as well as an inherent up-regulation of the anti-stress N/OFQ system, both in the amygdala (AMY) and bed nucleus of the stria terminalis (BNST) of msP rats. The up-regulation of this latter system may reflect an attempt to buffer the negative condition elicited by the hyperactivity of pro-stress mechanisms since results showed that voluntary alcohol consumption dampened N/OFQ. Alcohol exposure also reduced the expression of dynorphin and CRF transmissions in the AMY of msP rats. In the BNST, alcohol intake led to a more complex reorganization of these systems increasing receptor transcripts in msP rats, along with an increase of CRF and a decrease of N/OFQ transcripts, respectively. Moreover, mimicking the effects of alcohol in the AMY we observed that the activation of NOP receptor by intracerebroventricular administration of N/OFQ in msP rats caused an increase of BDNF and a decrease of CRF transcripts. Our study indicates that both stress and anti-stress mechanisms are dysregulated in the extended AMY of msP rats. The voluntary alcohol drinking, as well as NOP agonism, have a significant impact on neuropeptidergic systems arrangement, bringing the systems back to normalization. Full article
(This article belongs to the Special Issue Opioid Receptors and Endorphinergic Systems 2.0)
Show Figures

Figure 1

27 pages, 1248 KB  
Review
Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance
by Ewa Gibula-Tarlowska and Jolanta H. Kotlinska
Biomolecules 2020, 10(10), 1376; https://doi.org/10.3390/biom10101376 - 28 Sep 2020
Cited by 19 | Viewed by 5640
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of [...] Read more.
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse. Full article
Show Figures

Figure 1

Back to TopTop