Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = noble gas bonding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 344
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

17 pages, 7127 KiB  
Article
In Situ Growth of Mn-Co3O4 on Mesoporous ZSM-5 Zeolite for Boosting Lean Methane Catalytic Oxidation
by Yuxuan Zhang, Ruibo Wei, Lin Yang, Jinming Ge, Feiyang Hu, Tingting Zhang, Fangyin Lu, Haiwang Wang and Jian Qi
Catalysts 2024, 14(7), 397; https://doi.org/10.3390/catal14070397 - 23 Jun 2024
Cited by 1 | Viewed by 1649
Abstract
The low-temperature oxidation of methane gas in coal mine exhaust gas is important for reducing the greenhouse effect and protecting the environment. Unfortunately, the carbon–hydrogen bonds in methane molecules are highly stable, requiring higher reaction temperatures to achieve effective catalytic oxidation. However, metal [...] Read more.
The low-temperature oxidation of methane gas in coal mine exhaust gas is important for reducing the greenhouse effect and protecting the environment. Unfortunately, the carbon–hydrogen bonds in methane molecules are highly stable, requiring higher reaction temperatures to achieve effective catalytic oxidation. However, metal oxide-based catalysts face the problem of easy sintering and the deactivation of active components at high temperatures, which is an important challenge that catalysts need to overcome in practical applications. In this work, a series of Mn-Co3O4 active components were grown in situ on ZSM-5 zeolite with mesoporous pore structures treated with an alkaline solution via a hydrothermal synthesis method. Due to the presence of polyethylene glycol as a structure-directing agent, manganese can be uniformly doped into the Co3O4 lattice. The large specific surface area of ZSM-5 zeolite allows the active component Mn-Co3O4 to be uniformly dispersed, effectively preventing the sintering and growth of active component particles during the catalytic reaction process. It is worth mentioning that the Mn-Co3O4/meso-ZSM-5-6.67 catalyst has a methane conversion rate of up to 90% at a space velocity of 36,000 mL·g−1·h−1 and a reaction temperature of 363 °C. This is mainly due to the mesoporous ZSM-5 carrier with a high specific surface area, which is conducive to the adsorption and mass transfer of reaction molecules. The active component has an abundance of oxygen vacancies, which is conducive to the activation of reaction molecules and enhances its catalytic activity, which is even higher than that of noble metal-based catalysts. The new ideas for the preparation of metal oxide-based low-temperature methane oxidation catalysts proposed in this work are expected to provide new solutions for low-temperature methane oxidation reactions and promote technological progress in related fields. Full article
(This article belongs to the Special Issue Feature Papers in "Industrial Catalysis" Section)
Show Figures

Figure 1

11 pages, 8711 KiB  
Article
Spectromicroscopy Study of Induced Defects in Ion-Bombarded Highly Aligned Carbon Nanotubes
by Sammar Tayyab, Alice Apponi, Maria Grazia Betti, Elena Blundo, Gianluca Cavoto, Riccardo Frisenda, Nuria Jiménez-Arévalo, Carlo Mariani, Francesco Pandolfi, Antonio Polimeni, Ilaria Rago, Alessandro Ruocco, Marco Sbroscia and Ravi Prakash Yadav
Nanomaterials 2024, 14(1), 77; https://doi.org/10.3390/nano14010077 - 27 Dec 2023
Cited by 3 | Viewed by 1550
Abstract
Highly aligned multi-wall carbon nanotubes were investigated with scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after bombardment performed using noble gas ions of different masses (argon, neon and helium), in an ultra-high-vacuum (UHV) environment. Ion irradiation leads [...] Read more.
Highly aligned multi-wall carbon nanotubes were investigated with scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after bombardment performed using noble gas ions of different masses (argon, neon and helium), in an ultra-high-vacuum (UHV) environment. Ion irradiation leads to change in morphology, deformation of the carbon (C) honeycomb lattice and different structural defects in multi-wall carbon nanotubes. One of the major effects is the production of bond distortions, as determined by micro-Raman and micro-X-ray photoelectron spectroscopy. We observe an increase in sp3 distorted bonds at higher binding energy with respect to the expected sp2 associated signal of the carbon 1s core level, and increase in dangling bonds. Furthermore, the surface damage as determined by the X-ray photoelectron spectroscopy carbon 1s core level is equivalent upon bombarding with ions of different masses, while the impact and density of defects in the lattice of the MWCNTs as determined by micro-Raman are dependent on the bombarding ion mass; heavier for helium ions, lighter for argon ions. These results on the controlled increase in sp3 distorted bonds, as created on the multi-wall carbon nanotubes, open new functionalization prospects to improve and increase atomic hydrogen uptake on ion-bombarded multi-wall carbon nanotubes. Full article
(This article belongs to the Special Issue Carbon Nanotubes and Nanosheets for Sustainable Solutions)
Show Figures

Figure 1

22 pages, 9468 KiB  
Article
Bader’s Topological Bond Path Does Not Necessarily Indicate Stabilizing Interaction—Proof Studies Based on the Ng@[3n]cyclophane Endohedral Complexes
by Mirosław Jabłoński
Molecules 2023, 28(17), 6353; https://doi.org/10.3390/molecules28176353 - 30 Aug 2023
Cited by 7 | Viewed by 1601
Abstract
According to Bader’s quantum theory of atoms in molecules (QTAIM), the simultaneous presence of a bond path and the corresponding bond critical point between any two atoms is both a necessary and sufficient condition for the atoms to be bonded to one another. [...] Read more.
According to Bader’s quantum theory of atoms in molecules (QTAIM), the simultaneous presence of a bond path and the corresponding bond critical point between any two atoms is both a necessary and sufficient condition for the atoms to be bonded to one another. In principle, this means that this pair of atoms should make a stabilizing contribution to the molecular system. However, the multitude of so-called counterintuitive bond paths strongly suggests that this statement is not necessarily true. Particularly ‘troublesome’ are endohedral complexes, in which encapsulation-enforced proximity between the trapped guest (e.g., an atom) and the host’s cage system usually ‘produces’ many counterintuitive bond paths. In the author’s opinion, the best evidence to demonstrate the repulsive nature of the intra-cage guest⋯host interaction is the use of some trapping systems containing small escape channels and then showing that the initially trapped entity spontaneously escapes outside the host’s cage during geometry optimization of the initially built guest@host endohedral complex. For this purpose, a group of 24 Ng@[3n]cyclophane (3n6) endohedral complexes is used. As a result, arguments are presented showing that Bader’s topological bond path does not necessarily indicate a stabilizing interaction. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding)
Show Figures

Graphical abstract

32 pages, 15127 KiB  
Review
Recent Advances in Co3O4-Based Composites: Synthesis and Application in Combustion of Methane
by Xinfang Wei, Jiawei Kang, Lin Gan, Wei Wang, Lin Yang, Dijia Wang, Ruixia Zhong and Jian Qi
Nanomaterials 2023, 13(13), 1917; https://doi.org/10.3390/nano13131917 - 23 Jun 2023
Cited by 13 | Viewed by 3193
Abstract
In recent years, it has been found that adjusting the organizational structure of Co3O4 through solid solution and other methods can effectively improve its catalytic performance for the oxidation of low concentration methane. Its catalytic activity is close to that [...] Read more.
In recent years, it has been found that adjusting the organizational structure of Co3O4 through solid solution and other methods can effectively improve its catalytic performance for the oxidation of low concentration methane. Its catalytic activity is close to that of metal Pd, which is expected to replace costly noble metal catalysts. Therefore, the in-depth research on the mechanism and methods of Co3O4 microstructure regulation has very important academic value and economic benefits. In this paper, we reviewed the catalytic oxidation mechanism, microstructure regulation mechanism, and methods of nano-Co3O4 on methane gas, which provides reference for the development of high-activity Co3O4-based methane combustion catalysts. Through literature investigation, it is found that the surface energy state of nano-Co3O4 can be adjusted by loading of noble metals, resulting in the reduction of Co–O bond strength, thus accelerating the formation of reactive oxygen species chemical bonds, and improving its catalytic effect. Secondly, the use of metal oxides and non-metallic oxide carriers helps to disperse and stabilize cobalt ions, improve the structural elasticity of Co3O4, and ultimately improve its catalytic performance. In addition, the performance of the catalyst can be improved by adjusting the microstructure of the composite catalyst and optimizing the preparation process. In this review, we summarize the catalytic mechanism and microstructure regulation of nano-Co3O4 and its composite catalysts (embedded with noble metals or combined with metallic and nonmetallic oxides) for methane combustion. Notably, this review delves into the substance of measures that can be used to improve the catalytic performance of Co3O4, highlighting the constructive role of components in composite catalysts that can improve the catalytic capacity of Co3O4. Firstly, the research status of Co3O4 composite catalyst is reviewed in this paper. It is hoped that relevant researchers can get inspiration from this paper and develop high-activity Co3O4-based methane combustion catalyst. Full article
Show Figures

Figure 1

17 pages, 1648 KiB  
Review
On the Nature of the Partial Covalent Bond between Noble Gas Elements and Noble Metal Atoms
by Ranita Pal and Pratim Kumar Chattaraj
Molecules 2023, 28(7), 3253; https://doi.org/10.3390/molecules28073253 - 5 Apr 2023
Cited by 3 | Viewed by 3668
Abstract
This article provides a discussion on the nature of bonding between noble gases (Ng) and noble metals (M) from a quantum chemical perspective by investigating compounds such as NgMY (Y=CN, O, NO3, SO4, CO3), [NgM−(bipy)]+, NgMCCH, and [...] Read more.
This article provides a discussion on the nature of bonding between noble gases (Ng) and noble metals (M) from a quantum chemical perspective by investigating compounds such as NgMY (Y=CN, O, NO3, SO4, CO3), [NgM−(bipy)]+, NgMCCH, and MCCNgH complexes, where M=Cu, Ag, Au and Ng=Kr−Rn, with some complexes containing the lighter noble gas atoms as well. Despite having very low chemical reactivity, noble gases have been observed to form weak bonds with noble metals such as copper, gold, and silver. In this study, we explore the factors that contribute to this unusual bonding behavior, including the electronic structure of the atoms involved and the geometric configuration of the concerned fragments. We also investigate the metastable nature of the resulting complexes by studying the energetics of their possible dissociation and internal isomerization channels. The noble gas-binding ability of the bare metal cyanides are higher than most of their bromide counterparts, with CuCN and AgCN showing higher affinity than their chloride analogues as well. In contrast, the oxides seem to have lower binding power than their corresponding halides. In the oxide and the bipyridyl complexes, the Ng-binding ability follows the order Au > Cu > Ag. The dissociation energies calculated, considering the zero-point energy correction for possible dissociation channels, increase as we move down the noble gas group. The bond between the noble gases and the noble metals in the complexes are found to have comparable weightage of orbital and electrostatic interactions, suggestive of a partial covalent nature. The same is validated from the topological analysis of electron density. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding)
Show Figures

Figure 1

20 pages, 5491 KiB  
Article
Synergistic Effect of Pt and Dual Ni/Co Cations in Hydrotalcite-Derived Pt/Ni1.5Co0.5AlO Catalysts for Promoting Soot Combustion
by Yilin Zhang, Peng Zhang, Jing Xiong, Yuanfeng Li, Yaxiao Ma, Sicheng Zhang, Zhen Zhao, Jian Liu and Yuechang Wei
Nanomaterials 2023, 13(4), 623; https://doi.org/10.3390/nano13040623 - 4 Feb 2023
Cited by 4 | Viewed by 2009
Abstract
In this article, the catalysts of hydrotalcite-derived Ni1.5Co0.5AlO nanosheet-supported highly dispersed Pt nanoparticles (Ptn/Ni1.5Co0.5AlO, where n% is the weigh percentage of the Pt element in the catalysts) were elaborately fabricated by the gas-bubble-assisted [...] Read more.
In this article, the catalysts of hydrotalcite-derived Ni1.5Co0.5AlO nanosheet-supported highly dispersed Pt nanoparticles (Ptn/Ni1.5Co0.5AlO, where n% is the weigh percentage of the Pt element in the catalysts) were elaborately fabricated by the gas-bubble-assisted membrane--reduction method. The specific porous structure formed by the stack of hydrotalcite-derived Ni1.5Co0.5AlO nanosheets can increase the transfer mass efficiency of the reactants (O2, NO, and soot) and the strong Pt–Ni1.5Co0.5AlO interaction can weaken the Ni/Co-O bond for promoting the mobility of lattice oxygen and the formation of surface-oxygen vacancies. The Ptn/Ni1.5Co0.5AlO catalysts exhibited excellent catalytic activity and stability during diesel soot combustion under the loose contact mode between soot particles and catalysts. Among all the catalysts, the Pt2/Ni1.5Co0.5AlO catalyst showed the highest catalytic activities for soot combustion (T50 = 350 °C, TOF = 6.63 × 10−3 s−1). Based on the characterization results, the catalytic mechanism for soot combustion is proposed: the synergistic effect of Pt and dual Ni/Co cations in the Pt/Ni1.5Co0.5AlO catalysts can promote the vital step of catalyzing NO oxidation to NO2 in the NO-assisted soot oxidation mechanism. This insight into the synergistic effect of Pt and dual Ni/Co cations for soot combustion provides new strategies for reducing the amounts of noble metals in high-efficient catalysts. Full article
Show Figures

Figure 1

12 pages, 2366 KiB  
Article
Can the Fluxionality in Borospherene Influence the Confinement-Induced Bonding between Two Noble Gas Atoms?
by Ranita Pal and Pratim Kumar Chattaraj
Molecules 2022, 27(24), 8683; https://doi.org/10.3390/molecules27248683 - 8 Dec 2022
Cited by 2 | Viewed by 1619
Abstract
A density functional theory study is performed to determine the stability and bonding in the neon dimer inside the B30N30 fullerene cage, the fluxional B40 cage, and within non-fluxional cages such as B12N12 and C60 [...] Read more.
A density functional theory study is performed to determine the stability and bonding in the neon dimer inside the B30N30 fullerene cage, the fluxional B40 cage, and within non-fluxional cages such as B12N12 and C60. The nature of bonding in the Ne2 encapsulated B40 is compared with the that in other cages in an attempt to determine whether any possible alterations are brought about by the dynamical nature of the host cage apart from the associated confinement effects. The bonding analysis includes the natural bond order (NBO), Bader’s Atoms-in-Molecules electron density analysis (AIM), and energy decomposition analysis (EDA), revealing the non-covalent nature of the interactions between the Ne atoms and that between the Ne and the cage atoms. The formation of all the Ne2@cage systems is thermochemically unfavourable, the least being that for the B30N30 cage, which can easily be made favourable at lower temperatures. The Ne-Ne distance is lowest in the smallest cage and increases as the cage size increase due to steric relaxation experienced by the dimer. The dynamical picture of the systems is investigated by performing ab initio molecular dynamics simulations using the atom-centred density matrix propagation (ADMP) technique, which shows the nature of the movement of the dimer inside the cages, and by the fact that since it moves as a single entity, a weak bonding force holds them together, apart from their proven kinetic stability. Full article
(This article belongs to the Special Issue New Boron Chemistry: Current Advances and Future Prospects)
Show Figures

Figure 1

12 pages, 6817 KiB  
Article
A Detailed Study of Electronic and Dynamic Properties of Noble Gas–Oxygen Molecule Adducts
by Caio Vinícius Sousa Costa, Guilherme Carlos Carvalho de Jesus, Luiz Guilherme Machado de Macedo, Fernando Pirani and Ricardo Gargano
Molecules 2022, 27(21), 7409; https://doi.org/10.3390/molecules27217409 - 1 Nov 2022
Cited by 1 | Viewed by 2109
Abstract
In this work, the binding features of adducts formed by a noble gas (Ng = He, Ne, Ar, Kr, Xe, and Rn) atom and the oxygen molecule (O2) in its ground Σg3, in the past target of [...] Read more.
In this work, the binding features of adducts formed by a noble gas (Ng = He, Ne, Ar, Kr, Xe, and Rn) atom and the oxygen molecule (O2) in its ground Σg3, in the past target of several experimental studies, have been characterized under different theoretical points of view to clarify fundamental aspects of the intermolecular bond. For the most stable configuration of all Ng–O2 systems, binding energy has been calculated at the theory’s CCSD(T)/aug-cc-pVTZ level and compared with the experimental findings. Rovibrational energies, spectroscopic constants, and lifetime as a function of temperature were also evaluated by adopting properly formulated potential energy curves. The nature of the interaction involved was deeply investigated using charge displacement analysis, symmetry-adapted perturbation theory (SAPT), and natural bond orbital (NBO) methods. In all adducts, it was found that the charge transfer plays a minor role, although O2 is an open shell species exhibiting a positive electron affinity. Obtained results also indicate that the dispersion attraction contribution is the main responsible for the complex stability. Full article
(This article belongs to the Special Issue Noble Gas Compounds and Chemistry II)
Show Figures

Figure 1

18 pages, 4741 KiB  
Article
A DFT Study on the Excited Electronic States of Cyanopolyynes: Benchmarks and Applications
by Marcin Gronowski and Robert Kołos
Molecules 2022, 27(18), 5829; https://doi.org/10.3390/molecules27185829 - 8 Sep 2022
Cited by 5 | Viewed by 2549
Abstract
Highly unsaturated chain molecules are interesting due to their potential application as nanowires and occurrence in interstellar space. Here, we focus on predicting the electronic spectra of polyynic nitriles HC2m+1N (m = 0–13) and dinitriles NC2n [...] Read more.
Highly unsaturated chain molecules are interesting due to their potential application as nanowires and occurrence in interstellar space. Here, we focus on predicting the electronic spectra of polyynic nitriles HC2m+1N (m = 0–13) and dinitriles NC2n+2N (n = 0–14). The results of time-dependent density functional theory (TD-DFT) calculations are compared with the available gas-phase and noble gas matrix experimental data. We assessed the performance of fifteen functionals and five basis sets for reproducing (i) vibrationless electronic excitation energies and (ii) vibrational frequencies in the singlet excited states. We found that the basis sets of at least triple-ζ quality were necessary to describe the long molecules with alternate single and triple bonds. Vibrational frequency scaling factors are similar for the ground and excited states. The benchmarked spectroscopic parameters were shown to be acceptably reproduced with adequately chosen functionals, in particular ωB97X, CAM-B3LYP, B3LYP, B971, and B972. Select functionals were applied to study the electronic excitation of molecules up to HC27N and C30N2. It is demonstrated that optical excitation leads to a shift from the polyyne- to a cumulene-like electronic structure. Full article
(This article belongs to the Special Issue Advances in Computational Spectroscopy)
Show Figures

Graphical abstract

17 pages, 10579 KiB  
Article
Noble Gas—Silicon Cations: Theoretical Insights into the Nature of the Bond
by Stefano Borocci, Felice Grandinetti and Nico Sanna
Molecules 2022, 27(14), 4592; https://doi.org/10.3390/molecules27144592 - 19 Jul 2022
Cited by 2 | Viewed by 1658
Abstract
The structure, stability, and bonding situation of some exemplary noble gas-silicon cations were investigated at the MP2/aVTZ level of theory. The explored species include the mono-coordinated NgSiX3+ (Ng = He-Rn; X = H, F, Cl) and NgSiF22+ (Ng = [...] Read more.
The structure, stability, and bonding situation of some exemplary noble gas-silicon cations were investigated at the MP2/aVTZ level of theory. The explored species include the mono-coordinated NgSiX3+ (Ng = He-Rn; X = H, F, Cl) and NgSiF22+ (Ng = He-Rn), the di-coordinated Ar2SiX3+ (X = H, F, Cl), and the “inserted” FNgSiF2+ (Ng = Kr, Xe, Rn). The bonding analysis was accomplished by the method that we recently proposed to assay the bonding situation of noblegas compounds. The Ng-Si bonds are generally tight and feature a partial contribution of covalency. In the NgSiX3+, the degree of the Ng-Si interaction mirrors the trends of two factors, namely the polarizability of Ng that increases when going from Ng = He to Ng = Rn, and the Lewis acidity of SiX3+ that decreases in the order SiF3+ > SiH3+ > SiCl3+. For the HeSiX3+, it was also possible to catch peculiar effects referable to the small size of He. When going from the NgSiF3+ to the NgSiF22+, the increased charge on Si promotes an appreciable increase inthe Ng-Si interaction, which becomes truly covalent for the heaviest Ng. The strength of the bond also increases when going from the NgSiF3+ to the “inserted” FNgSiF2+, likely due to the cooperative effect of the adjacent F atom. On the other hand, the ligation of a second Ar atom to ArSiX3+ (X = H, F, Cl), as to form Ar2(SiX3+), produces a weakening of the bond. Our obtained data were compared with previous findings already available in the literature. Full article
(This article belongs to the Special Issue Noble Gas Compounds and Chemistry II)
Show Figures

Figure 1

15 pages, 3592 KiB  
Article
Mechanistic Investigation of the Formation of Nickel Nanocrystallites Embedded in Amorphous Silicon Nitride Nanocomposites
by Norifumi Asakuma, Shotaro Tada, Erika Kawaguchi, Motoharu Terashima, Sawao Honda, Rafael Kenji Nishihora, Pierre Carles, Samuel Bernard and Yuji Iwamoto
Nanomaterials 2022, 12(10), 1644; https://doi.org/10.3390/nano12101644 - 11 May 2022
Cited by 12 | Viewed by 3068
Abstract
Herein, we report the mechanistic investigation of the formation of nickel (Ni) nanocrystallites during the formation of amorphous silicon nitride at a temperature as low as 400 °C, using perhydropolysilazane (PHPS) as a preformed precursor and further coordinated by nickel chloride (NiCl2 [...] Read more.
Herein, we report the mechanistic investigation of the formation of nickel (Ni) nanocrystallites during the formation of amorphous silicon nitride at a temperature as low as 400 °C, using perhydropolysilazane (PHPS) as a preformed precursor and further coordinated by nickel chloride (NiCl2); thus, forming the non-noble transition metal (TM) as a potential catalyst and the support in an one-step process. It was demonstrated that NiCl2 catalyzed dehydrocoupling reactions between Si-H and N-H bonds in PHPS to afford ternary silylamino groups, which resulted in the formation of a nanocomposite precursor via complex formation: Ni(II) cation of NiCl2 coordinated the ternary silylamino ligands formed in situ. By monitoring intrinsic chemical reactions during the precursor pyrolysis under inert gas atmosphere, it was revealed that the Ni-N bond formed by a nucleophilic attack of the N atom on the Ni(II) cation center, followed by Ni nucleation below 300 °C, which was promoted by the decomposition of Ni nitride species. The latter was facilitated under the hydrogen-containing atmosphere generated by the NiCl2-catalyzed dehydrocoupling reaction. The increase of the temperature to 400 °C led to the formation of a covalently-bonded amorphous Si3N4 matrix surrounding Ni nanocrystallites. Full article
Show Figures

Graphical abstract

29 pages, 50452 KiB  
Review
Single-Atom Catalysts for the Electro-Reduction of CO2 to Syngas with a Tunable CO/H2 Ratio: A Review
by Davide Scarpa and Maria Sarno
Catalysts 2022, 12(3), 275; https://doi.org/10.3390/catal12030275 - 28 Feb 2022
Cited by 19 | Viewed by 6019
Abstract
Nowadays, transition towards green chemistry is becoming imperative. In this scenario, an attractive perspective consists in the generation of CO through the electrochemical reduction of CO2 under ambient conditions. This approach allows storage of the electrical energy from intermittent renewable sources in [...] Read more.
Nowadays, transition towards green chemistry is becoming imperative. In this scenario, an attractive perspective consists in the generation of CO through the electrochemical reduction of CO2 under ambient conditions. This approach allows storage of the electrical energy from intermittent renewable sources in the form of chemical bonds, and simultaneously reduces greenhouse gas emissions, giving carbon a second chance of life. However, most catalysts adopted for this process, i.e., noble metal-based nanoparticles, still have several issues (high costs, low current densities, high overpotentials), and in the view of generating syngas through co-electrolysis of H2O and CO2, do not enable a widely tunable CO/H2 ratio. Single-atom catalysts with N-doped carbon supports have been recently introduced to face these challenges. The following review aims to answer the demand for an extended and exhaustive analysis of the metal single-atom catalysts thus far explored for the electro-reduction of CO2 in aqueous electrolyte solution. Moreover, focus will be placed on the objective of generating a syngas with a tunable CO/H2 ratio. Eventually, the advantages of single-atom catalysts over their noble metal-based nano-sized counterparts will be identified along with future perspectives, also in the view of a rapid and feasible scaling-up. Full article
Show Figures

Figure 1

16 pages, 3609 KiB  
Article
Does the Presence of a Bond Path Really Mean Interatomic Stabilization? The Case of the Ng@Superphane (Ng = He, Ne, Ar, and Kr) Endohedral Complexes
by Mirosław Jabłoński
Symmetry 2021, 13(12), 2241; https://doi.org/10.3390/sym13122241 - 24 Nov 2021
Cited by 14 | Viewed by 2552
Abstract
Using a fairly structurally flexible and, therefore, very suitable for this type of research, superphane molecule, we demonstrate that the inclusion of a noble gas atom (Ng = He, Ne, Ar, and Kr) inside it and, thus, the formation of the Ng@superphane endohedral [...] Read more.
Using a fairly structurally flexible and, therefore, very suitable for this type of research, superphane molecule, we demonstrate that the inclusion of a noble gas atom (Ng = He, Ne, Ar, and Kr) inside it and, thus, the formation of the Ng@superphane endohedral complex, leads to its ‘swelling’. Positive values of both the binding and strain energies prove that encapsulation and in turn ‘swelling’ of the superphane molecule is energetically unfavorable and that the Ng⋯C interactions in the interior of the cage are destabilizing, i.e., repulsive. Additionally, negative Mayer Bond Orders indicate the antibonding nature of Ng⋯C contacts. This result in combination with the observed Ng⋯C bond paths shows that the presence of a bond path in the molecular graph does not necessarily prove interatomic stabilization. It is shown that the obtained conclusions do not depend on the computational methodology, i.e., the method and the basis set used. However, on the contrary, the number of bond paths may depend on the methodology. This is yet another disadvantageous finding that does not favor the treatment of bond paths on molecular graphs as indicators of chemical bonds. The Kr@superphane endohedral complex features one of the longest C–C bonds ever reported (1.753 Å). Full article
Show Figures

Graphical abstract

22 pages, 3834 KiB  
Review
On the Importance of σ–Hole Interactions in Crystal Structures
by Antonio Frontera and Antonio Bauzá
Crystals 2021, 11(10), 1205; https://doi.org/10.3390/cryst11101205 - 7 Oct 2021
Cited by 71 | Viewed by 6887
Abstract
Elements from groups 14–18 and periods 3–6 commonly behave as Lewis acids, which are involved in directional noncovalent interactions (NCI) with electron-rich species (lone pair donors), π systems (aromatic rings, triple and double bonds) as well as nonnucleophilic anions (BF4, [...] Read more.
Elements from groups 14–18 and periods 3–6 commonly behave as Lewis acids, which are involved in directional noncovalent interactions (NCI) with electron-rich species (lone pair donors), π systems (aromatic rings, triple and double bonds) as well as nonnucleophilic anions (BF4, PF6, ClO4, etc.). Moreover, elements of groups 15 to 17 are also able to act as Lewis bases (from one to three available lone pairs, respectively), thus presenting a dual character. These emerging NCIs where the main group element behaves as Lewis base, belong to the σ–hole family of interactions. Particularly (i) tetrel bonding for elements belonging to group 14, (ii) pnictogen bonding for group 15, (iii) chalcogen bonding for group 16, (iv) halogen bonding for group 17, and (v) noble gas bondings for group 18. In general, σ–hole interactions exhibit different features when moving along the same group (offering larger and more positive σ–holes) or the same row (presenting a different number of available σ–holes and directionality) of the periodic table. This is illustrated in this review by using several examples retrieved from the Cambridge Structural Database (CSD), especially focused on σ–hole interactions, complemented with molecular electrostatic potential surfaces of model systems. Full article
(This article belongs to the Special Issue Advanced Research in Halogen Bonding)
Show Figures

Figure 1

Back to TopTop