Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = no-tillage technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2097 KiB  
Review
Impact of Agriculture on Greenhouse Gas Emissions—A Review
by Karolina Sokal and Magdalena Kachel
Energies 2025, 18(9), 2272; https://doi.org/10.3390/en18092272 - 29 Apr 2025
Cited by 1 | Viewed by 1139
Abstract
The restrictions imposed by the European Green Deal on Europe are expected to make Europe climate-neutral by 2050. In this context, this article examines the current efforts to reduce emission levels, focusing on available international scientific papers concerning European territory, particularly Poland. The [...] Read more.
The restrictions imposed by the European Green Deal on Europe are expected to make Europe climate-neutral by 2050. In this context, this article examines the current efforts to reduce emission levels, focusing on available international scientific papers concerning European territory, particularly Poland. The study paid special attention to the sector of agriculture, which is considered a key contributor to greenhouse gas generation. It also analysed the impact of various tillage techniques and the application of organic and inorganic fertilisers, e.g., nitrogen fertilisers, digestate, or compost, on the emissions of greenhouse gases and other environmentally harmful substances. Although there are few scientific articles available that comprehensively describe the problem of greenhouse gas emissions from agriculture, it is still possible to observe the growing awareness of farmers and their daily impact on the environment. The current study demonstrated that agricultural activities significantly contribute to the emissions of three main greenhouse gases: carbon dioxide, nitrous oxide, and methane. The tillage and soil fertilisation methods used play a crucial role in their emissions into the atmosphere. The use of no-tillage (or reduced-tillage) techniques contributes to the sustainable development of agriculture while reducing greenhouse gas emissions. The machinery and fuels used, along with innovative systems and sensors for precise fertilisation, play a significant role in lowering emission levels in agriculture. The authors intend to identify potential opportunities to improve crop productivity and contribute to sustainable reductions in gas emissions. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

23 pages, 2583 KiB  
Article
Pearl Millet Cover Crop Extract Inhibits the Development of the Weed Ipomoea grandifolia by Inducing Oxidative Stress in Primary Roots and Affecting Photosynthesis Efficiency
by Gislaine Cristiane Mantovanelli, Adriano Antônio Silva, Letycia Lopes Ricardo, Fernanda Lima Kagami, Jéssica Dario de Almeida, Mauro Cezar Barbosa, Márcio Shigueaki Mito, Isabela de Carvalho Contesoto, Paulo Vinicius Moreira da Costa Menezes, Gabriel Felipe Stulp, Beatriz Pereira Moreno, Francielli Alana Pereira Valeze, Rubem Silvério de Oliveira Junior, Debora Cristina Baldoqui and Emy Luiza Ishii Iwamoto
Plants 2025, 14(2), 222; https://doi.org/10.3390/plants14020222 - 15 Jan 2025
Cited by 1 | Viewed by 1078
Abstract
The cover crop Pennisetum glaucum (L.) R.Br. (pearl millet) reduces the emergence of weed species in the field through a mechanism that is not fully known. The identification of the allelopathic activity of pearl millet can contribute to the development of no-tillage techniques [...] Read more.
The cover crop Pennisetum glaucum (L.) R.Br. (pearl millet) reduces the emergence of weed species in the field through a mechanism that is not fully known. The identification of the allelopathic activity of pearl millet can contribute to the development of no-tillage techniques to produce crops without or with low doses of herbicides. This issue was investigated by testing the effects of extracts from the aerial parts of pearl millet on the germination and growth of the weeds Bidens pilosa L., Euphorbia heterophylla L., and Ipomoea grandifolia (Dammer) O’Donell under laboratory conditions. The ethyl acetate fraction (EAF) at a concentration of 2000 µg mL−1 was inactive on Bidens pilosa; it inhibited root length (−72%) and seedling fresh weight (−41%) of E. heterophylla, and in I. grandifolia the length of primary root and aerial parts and the fresh and dry weight of seedlings were reduced by 63%, 32%, 25%, and 12%, respectively. In roots of I. grandifolia seedlings, at the initial development stage, EAF induced oxidative stress and increased electrolyte leakage. At the juvenile vegetative stage, a lower concentration of EAF (250 µg mL−1) induced a stimulus in seedling growth (+60% in root length and +23% in aerial parts length) that was associated with increased photosynthetic efficiency. However, at higher concentrations (1000 µg mL−1), it induced the opposite effects, inhibiting the growth of root (−41%) and aerial parts (−25%), with reduced superoxide dismutase activity and photosynthetic efficiency. The stilbenoid pallidol was identified as the main compound in EAF. The allelopathic activity of pearl millet may be attributed, at least in part, to the impairment of energy metabolism and the induction of oxidative stress in weed seedlings, with pallidol possibly involved in this action. Such findings demonstrated that the application of the EAF extract from pearl millet can be a natural and renewable alternative tool for weed control. Full article
(This article belongs to the Special Issue Allelopathy in Agroecosystems)
Show Figures

Figure 1

23 pages, 1613 KiB  
Article
Enhancing Soil Conditions and Maize Yield Efficiency through Rational Conservation Tillage in Aeolian Semi-Arid Regions: A TOPSIS Analysis
by Zijian Cong, Jian Gu, Chunqian Li, Fei Li and Fengming Li
Water 2024, 16(16), 2228; https://doi.org/10.3390/w16162228 - 7 Aug 2024
Cited by 1 | Viewed by 1552
Abstract
Conservation tillage technology possesses substantial potential to enhance agricultural production efficiency and tackle issues such as wind erosion and land degradation in semi-arid regions. The integration of no-tillage and straw mulching technologies in the conventional aeolian semi-arid agricultural zones of western Liaoning, China, [...] Read more.
Conservation tillage technology possesses substantial potential to enhance agricultural production efficiency and tackle issues such as wind erosion and land degradation in semi-arid regions. The integration of no-tillage and straw mulching technologies in the conventional aeolian semi-arid agricultural zones of western Liaoning, China, has led to notable improvements in crop yield and soil quality. However, a comprehensive assessment of the mechanisms and kinetics involved in soil nutrient variations is yet to be conducted. During a two-year study period, we assessed four tillage systems in the aeolian semi-arid regions of Northern China: no-tillage with full straw mulching (NTFS), no-tillage with half straw mulching (NTHS), no-tillage without straw mulching (NT), and conventional tillage (CT). The investigation focused on examining nutrient conditions, enhancing photosynthetic activity, and increasing maize yield while improving water use efficiency (WUE). Our findings emphasize the beneficial impact of combining no-tillage and straw mulching on enhancing soil water retention, resulting in a notable rise in soil moisture levels during the crucial growth phases of maize. This approach also positively influenced soil nutrient levels, particularly in the 0–20 cm layer, fostering an environment conducive to maize cultivation. In terms of ecological benefits, no-tillage with straw mulching curtailed soil sediment transport and wind erosion, notably at 30–40 cm heights, aiding in the ecological protection of the region. The yield and WUE were substantially higher under NTFS and NTHS than under CT, with NTHS demonstrating the most significant gains in yield (14.5% to 16.6%) and WUE (18.3% to 21.7%) throughout the study period. A TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) analysis confirmed NTHS as the optimal treatment, achieving the highest scores for soil water, nutrient availability, wind erosion control, maize photosynthesis, yield, and WUE, thus emerging as the most effective conservation tillage strategy for sustainable agriculture in aeolian semi-arid regions. Full article
(This article belongs to the Special Issue Agricultural Water-Land-Plant System Engineering)
Show Figures

Figure 1

13 pages, 1825 KiB  
Article
Controlled Traffic Farm: Fuel Demand and Carbon Emissions in Soybean Sowing
by Murilo Battistuzzi Martins, Aldir Carpes Marques Filho, Cássio de Castro Seron, Wellingthon da Silva Guimarães Júnnyor, Eduardo Pradi Vendruscolo, Fernanda Pacheco de Almeida Prado Bortolheiro, Diego Miguel Blanco Bertolo, Arthur Gabriel Caldas Lopes and Lucas Santos Santana
AgriEngineering 2024, 6(2), 1794-1806; https://doi.org/10.3390/agriengineering6020104 - 18 Jun 2024
Cited by 2 | Viewed by 1529
Abstract
Soil compaction between crop rows can increase a machine’s performance by reducing rolling resistance and fuel demand. Controlled Traffic Farm (CTF) stands out among modern techniques for increasing agricultural sustainability because the machines continuously travel along the same path in the field, reducing [...] Read more.
Soil compaction between crop rows can increase a machine’s performance by reducing rolling resistance and fuel demand. Controlled Traffic Farm (CTF) stands out among modern techniques for increasing agricultural sustainability because the machines continuously travel along the same path in the field, reducing plant crush and compacting the soil in the traffic line. This study evaluated fuel consumption and CO2 emissions at different CTF intensities in different soil management strategies for soybean crop. The experimental design involved randomized blocks in a split-plot scheme with four replications. The plots constituted the three types of soil management: conventional tillage, no-tillage with straw millet cover, and no-tillage with brachiária straw cover. The subplots constituted for agricultural tractors were passed over in traffic lines (2, 4, and 8 times). We evaluated agricultural tractor fuel consumption, CO2 emissions, and soybean productivity. The straw cover and tractor-pass significantly affected the fuel consumption and greenhouse gas emissions of the soybean cultivation. Fuel consumption and CO2 emissions were reduced due to the machine-pass increase, regardless of soil management. Thus, a CTF reduces rolling resistance and increases crop environmental efficiency. Bare-soil areas increased by 20.8% and 27.9% with respect to fuel consumption, compared to straw-cover systems. Brachiária straw and millet reduce CO2 emissions per hectare by 20% and 28% compared to bare soil. Lower traffic intensities (two passes) showed (13.72%) higher soybean yields (of 4.04 Mg ha−1). Investigating these effects in other types of soil and mechanized operations then becomes essential. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

15 pages, 1562 KiB  
Article
Long-Term Effects of Different Tillage Systems and Their Impact on Soil Properties and Crop Yields
by Vaida Steponavičienė, Giedrius Žiūraitis, Aušra Rudinskienė, Karolina Jackevičienė and Vaclovas Bogužas
Agronomy 2024, 14(4), 870; https://doi.org/10.3390/agronomy14040870 - 22 Apr 2024
Cited by 8 | Viewed by 5931
Abstract
The scientific aim of this article is to elucidate the effects of various tillage practices on soil properties and crop yields; additionally, it seeks to highlight the significant potential of specific farming systems in enhancing soil organic carbon, thereby positively influencing CO2 [...] Read more.
The scientific aim of this article is to elucidate the effects of various tillage practices on soil properties and crop yields; additionally, it seeks to highlight the significant potential of specific farming systems in enhancing soil organic carbon, thereby positively influencing CO2 emissions from soil. In the experimental station of Vytautas Magnus University, Kaunas District, Lithuania (54°52′50″ N and 23°49′41″ E), a long-term field experiment has been established since 1999, and studies have been conducted since 2003. The soil of the experimental site is classified as Epieutric Endocalcaric Planosol (Endoclayic, Episiltic, Aric, Drainic, Endoraptic, Uterquic), according to the World Reference Base (WRB, 2022). Two primary factors were assessed. Factor A incorporated practices of straw removal versus straw chopping and spreading, while Factor B evaluated a spectrum of tillage techniques: conventional deep plowing and two no-tillage practices, one of which involved cover crops. The findings from this long-term study highlight a significant increase in SOC stocks across all treatments over the 20-year period. Notably, the no-tillage practices, coupled with the spreading of chopped straw, demonstrated the most substantial growth in SOC levels, particularly in the top 0–10 cm soil layer. This trend underscores the effectiveness of minimizing soil disturbance and incorporating organic matter in boosting SOC stocks. The different tillage systems influence CO2 emissions from soil. Initially, direct sowing into uncultivated land, both with and without cover crops, led to a notable reduction in CO2 emissions compared to conventional plowing. However, this effect was found to vary over the growth cycle of the plant, highlighting the dynamic interaction between tillage practices, soil properties, and environmental conditions. Collaborative research efforts that involve farmers, scientists, policymakers, and other stakeholders are crucial for the development of holistic, practical, scalable solutions that enhance the sustainability and productivity of agricultural systems. This study contributes to the growing body of knowledge on sustainable agriculture, providing insights for farmers, agronomists, and policymakers in their quest to promote environmentally sound and productive agricultural systems. Full article
Show Figures

Figure 1

15 pages, 4489 KiB  
Article
Influence of the Long-Term Application of Management Practices (Tillage, Cover Crop and Glyphosate) on Greenhouse Gas Emissions and Soil Physical Properties
by Modupe Olufemi Doyeni, Skaidre Suproniene, Agne Versuliene, Loreta Meskauskiene and Grazina Kadziene
Sustainability 2024, 16(7), 2859; https://doi.org/10.3390/su16072859 - 29 Mar 2024
Cited by 6 | Viewed by 2030
Abstract
Soil treatments have a significant influence on the agricultural and environmental productivity of agricultural practices. Arable lands are one of the sources of greenhouse gas emissions (GHG) that are influenced by the chemical and physical properties of the soil and are an essential [...] Read more.
Soil treatments have a significant influence on the agricultural and environmental productivity of agricultural practices. Arable lands are one of the sources of greenhouse gas emissions (GHG) that are influenced by the chemical and physical properties of the soil and are an essential contributor to climate change. We aim to evaluate the long-term management of agricultural practices, such as different tillage systems, cover crops, and glyphosate, on GHG emissions and soil physical properties. The field trial involved three tillage systems (conventional tillage (CT), reduced tillage (RT), and no-tillage (NT)), along with variations in cover cropping (with and without cover crops) and glyphosate application (with and without glyphosate). These treatments were implemented during the cultivation of oilseed rape in 2022 as part of a cropping sequence consisting of five crops: winter wheat; winter oilseed rape; spring wheat; spring barley; and field pea. Greenhouse gas emissions (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) were directly measured using a closed static chamber system. Through the examination of these management techniques, the soil’s physical properties over the studied period were assessed for their impact on GHG fluxes. The findings of the study reveal that N2O emissions were relatively low during the first month of measurement, with significant differences (p < 0.05) observed in the interaction between cover crop and glyphosate treatments. Additionally, N2O emissions were notably elevated in the reduced (0.079 µg m−2 h−1) and conventional tillage (0.097 µg m−2 h−1) treatments at the second month of measurement. Regarding CH4, increased emissions were observed in the reduced tillage and cover crop treatments. CO2 emissions exhibited variability across all of the investigated treatments. Notably, GHG fluxes spiked at the second measurement, signifying the maximum uptake of nutrients by the main plants during the growth phase. Greenhouse gas emissions leveled off across all of the treatments following the harvest, marking the end of the cultivation period. The influence of the deployed techniques varied across the determined physical parameters of the soil. The incorporation of cover crops contributed to improved water content and, further, to electrical conductivity. Glyphosate use showed no direct impact on physical properties of the soil while the different tillage treatments had varying effects on the distribution of the physical properties of the soil with respect to the degree of disturbance or tillage-induced changes. Additionally, GHG emissions were strongly correlated with precipitation at one week and two weeks before sampling, except for CO2, which showed a weaker correlation at two weeks before GHG sampling. The findings indicate that reduced and conventional tillage methods might adversely affect greenhouse gas emissions and plant functionality, particularly concerning nutrient release and uptake, especially in temperate climate conditions. Full article
Show Figures

Figure 1

13 pages, 2803 KiB  
Article
Nitrogen Use Efficiency Using the 15N Dilution Technique for Wheat Yield under Conservation Agriculture and Nitrogen Fertilizer
by Hassnae Maher, Rachid Moussadek, Abdelmjid Zouahri, Ahmed Douaik, Nour Eddine Amenzou, Moncef Benmansour, Hamza Iaaich, Houria Dakak, Zineb El Mouridi, Abdelkbir Bellaouchou and Ahmed Ghanimi
Nitrogen 2023, 4(4), 369-381; https://doi.org/10.3390/nitrogen4040026 - 12 Dec 2023
Cited by 5 | Viewed by 3162
Abstract
Conservation agriculture (CA), which could contribute to sustainable agriculture, maintains or improves soil nitrogen fertility by eliminating tillage (no-tillage). Quantitative assessment of soil constituents is enhanced by stable isotope techniques such as 15N, which are used to better understand nitrogen dynamics. This [...] Read more.
Conservation agriculture (CA), which could contribute to sustainable agriculture, maintains or improves soil nitrogen fertility by eliminating tillage (no-tillage). Quantitative assessment of soil constituents is enhanced by stable isotope techniques such as 15N, which are used to better understand nitrogen dynamics. This study was therefore carried out to assess the impact of tillage type and fertilizer application on soil and plant nitrogen fractionation. The trial consisted of two tillage types: no-tillage (NT) and conventional tillage (CT). Three nitrogen doses (82, 115, and 149 kg ha−1) were applied. The experimental design was a randomized complete block with three replications. The Louiza variety of durum wheat was used in this study. Soil nitrogen sequestration was assessed using the stable nitrogen isotope (15N) method. The statistical analysis (ANOVA) showed that, overall, there was no significant difference between tillage types and nitrogen doses for grain and straw yields and grain total nitrogen. In contrast, the effect of both factors and their interaction were significant for straw total nitrogen. There was no difference between tillage types for grain nitrogen use efficiency (NUE), even though NT was superior to CT by 3.5%, but nitrogen doses had a significant effect and a significant interaction with tillage type. When comparing nitrogen doses for each tillage type separately, results showed that the average NUE for grain was 20.5, 8.4, and 16.5%, respectively, for the three nitrogen doses for CT compared with 26.8, 19.0, and 30.6% for NT, indicating clearly the better performance of NT compared to CT. Regarding straw, the NUE is 3.2, 3.5, and 5.4% for CT compared with 3.4, 4.9, and 9.2% for NT. NUE in grain and straw under no-tillage was higher than under conventional tillage in all three nitrogen doses. These results show that soil conservation techniques such as no-tillage and the integrated application of nitrogen fertilizer can be good strategies for reducing soil nitrogen losses. Full article
(This article belongs to the Special Issue Optimizing Fertilizer Nitrogen Use on Crops)
Show Figures

Figure 1

18 pages, 4812 KiB  
Article
An Assessment of Soil Loss by Water Erosion in No-Tillage and Mulching, China
by Zhen Cao, Guohui Chen, Song Zhang, Shangshu Huang, Yan Wu, Fangjin Dong, Yuming Guo, Jianhao Wang and Fahui Jiang
Water 2023, 15(15), 2821; https://doi.org/10.3390/w15152821 - 4 Aug 2023
Cited by 3 | Viewed by 2163
Abstract
Soil erosion poses a global threat to arable land and its sustainability, particularly in China, where the most severe soil erosion exists worldwide. No-tillage (NT) and mulching (NTS) are considered the most effective soil management techniques for reducing erosion, but only 10% of [...] Read more.
Soil erosion poses a global threat to arable land and its sustainability, particularly in China, where the most severe soil erosion exists worldwide. No-tillage (NT) and mulching (NTS) are considered the most effective soil management techniques for reducing erosion, but only 10% of the global area utilizes them. Therefore, in comparison to conventional tillage (CT), we conducted a comprehensive national assessment of NT and NTS to evaluate their impact on water erosion across China’s croplands for the period spanning 2000 to 2018, through using Revised Universal Soil Loss Equation (RUSLE); subsequently, we projected the temporal and spatial erosion distribution, and examined their effects of various underlying driving factors by using a random-forest model. Nationally, the average soil loss rates were 1085, 564, and 396 t km−2 a−1 for the CT, NT, and NTS, respectively, across the entire arable land over a span of 18 years. This represents a reduction of 48% and 64% in the NT and NTS, respectively, compared to CT. From 2000 to 2018, water erosion-induced soil loss exhibited a slightly increasing trend with a wavelike pattern in CT, NT, and NTS. The spatial distribution of water erosion in China’s arable land was primarily influenced by local precipitation, accounting for 45% to 52% of the total impact on CT, NT, and NTS. Additionally, the soil slope degree played a role, contributing 29% to 36% of the erosion patterns. Overall, NT and NTS demonstrated superior performance in mitigating the soil erosion in the southern regions of China, including the Central South, Southwest, and East China, owing to the substantial local rainfall and steep terrain. In contrast, NT and NTS exhibited a lower but still significant reduction in soil loss in the northern regions of China due to the flat topography and limited rainfall. However, considering the trade-off between economic losses (yield) and ecosystem benefits (erosion control), we recommend implementing NT and NTS primarily in the northern parts of China, such as the Northeast, North China, and Northwest. Full article
(This article belongs to the Special Issue Evolution of Soil and Water Erosion)
Show Figures

Figure 1

20 pages, 4328 KiB  
Article
Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis
by José V. Gaspareto, Jocenei A. T. de Oliveira, Everton Andrade and Luiz F. Pires
Agriculture 2023, 13(3), 736; https://doi.org/10.3390/agriculture13030736 - 22 Mar 2023
Cited by 2 | Viewed by 2836
Abstract
Representative elementary volume (REV) is required for representative measurements of soil physical properties. However, questions may arise whether REV depends on how the soil structure is modified or whether processes in the soil affect REV. Here, we explore REV dependence for contrasting land [...] Read more.
Representative elementary volume (REV) is required for representative measurements of soil physical properties. However, questions may arise whether REV depends on how the soil structure is modified or whether processes in the soil affect REV. Here, we explore REV dependence for contrasting land uses (conventional tillage, no-tillage, and minimum tillage) and applying wetting and drying (W-D) cycles. The effect of different subvolume selection schemes (cube and core) on REV was also investigated. For this study, high-resolution three-dimensional images obtained using the X-ray Computed Tomography (XCT) technique were analyzed. The micromorphological properties measured were porosity (P), fractal dimension (FD), degree of anisotropy (DA), and pore connectivity (C). The results show that REV depends mainly on the land uses for P and C (both selection schemes). The core method showed lower REV due to the larger volume analyzed than that in the cube method. It was not possible to define a REV for DA. The REV obtained using the cube method was more sensitive to changes in the scale of analysis, showing an increasing trend with applied W-D cycles for P and FD. Our results indicate that REV cannot be considered static since land uses and processes influence it. Full article
(This article belongs to the Special Issue X-ray Computed Tomography in Agricultural Systems)
Show Figures

Figure 1

17 pages, 1198 KiB  
Article
The Effect of Tillage on Faba Bean (Vicia faba L.) Nitrogen Fixation in Durum Wheat ((Triticum turgidum L. subsp. Durum (Desf))-Based Rotation under a Mediterranean Climate
by Luigi Tedone, Salem Alhajj Ali and Giuseppe De Mastro
Agronomy 2023, 13(1), 105; https://doi.org/10.3390/agronomy13010105 - 29 Dec 2022
Cited by 5 | Viewed by 2403
Abstract
Biological nitrogen fixation (BNF) is a sustainable approach to improving soil fertility that not only provides nitrogen to subsequent crops but also reduces the impacts of synthetic fertilizers. Here, a field experiment was established within the faba bean (Vicia faba L.), cv [...] Read more.
Biological nitrogen fixation (BNF) is a sustainable approach to improving soil fertility that not only provides nitrogen to subsequent crops but also reduces the impacts of synthetic fertilizers. Here, a field experiment was established within the faba bean (Vicia faba L.), cv Prothabat 69-durum wheat (Triticum turgidum L. subsp. Durum (Desf)), cv Iride rotation framework of a long-term experiment in southern Italy to quantify BNF over two consecutive years (2012/13–2013/14). The effect of tillage systems (reduced, conventional, and no tillage) on faba bean N2 fixation was estimated at the flowering and maturity stages via the natural abundance technique, using wheat as a reference crop. The effect of tillage on the percentage of nitrogen fixation from the atmosphere (Ndfa) and the amount of N2 fixed (kg ha−1) were higher under a no-tillage system in both years and at both growth stages, with values of 66.5% at flowering and 81.7% at maturity. The same trend was reported for the amount of N2 fixed (kg N ha−1) at both faba bean growth stages. The N balance was positive in both years, with a mean value of 40.4 kg N ha−1, across all tillage systems; this value was greater in the no-tillage systems (45.7 kg N ha−1) with respect to the others. The values for the organic matter content and stability index were higher under the no-tillage system, which provided favourable conditions that improved N2 fixation by faba beans. The overall results indicate that no-tillage soil management represents a sustainable strategy for improving soil quality and fertility, therefore reducing the dependency of agriculture on synthetic fertilizers. Full article
(This article belongs to the Special Issue Effects of Tillage, Cover Crop and Crop Rotation on Soil)
Show Figures

Figure 1

34 pages, 39094 KiB  
Review
Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture
by Ejovi Akpojevwe Abafe, Yonas T. Bahta and Henry Jordaan
Sustainability 2022, 14(17), 10651; https://doi.org/10.3390/su141710651 - 26 Aug 2022
Cited by 45 | Viewed by 5827
Abstract
There are quite a lot of studies from global and regional perspectives that touch on sustainable water use in agriculture. As a result, we explored Biblioshiny to review the scholarly research on the sustainable use of water in agriculture. Using data analysis and [...] Read more.
There are quite a lot of studies from global and regional perspectives that touch on sustainable water use in agriculture. As a result, we explored Biblioshiny to review the scholarly research on the sustainable use of water in agriculture. Using data analysis and visualization technique of 4106 documents authored by 12,686 scholars in 724 journals published between 1990 and 2022, we find that research on this topic gained momentum in 2007 and has followed a steady increase with an annual growth rate of ~16.12%. The results of the co-occurrence network mappings highlight five trendy topics in research on sustainable water use in agriculture, which were categorized based on five (5) Word Minimum Frequency and Number of Words per Year. These topics include the AquaCrop model, Agroforestry, Biochar, No-tillage, and Diet. While renowned journals such as Agricultural Water Management, followed by Sustainability and Water, have taken leading roles in pushing research on sustainable water use in agriculture. Regarding the impact of perspective, in terms of institutional affiliation and countries, we found that the top three most prominent affiliated institutions producing publications allied to research on the sustainable use of water in agriculture are Northwest A&F University in Xianyang, China, China Agricultural University, and Hohai University in Nanjing, China, while the top three countries are China, the USA, and Australia, accounting for 45,039 (43.4%) of the total 103,900 global citations. The study’s findings can be helpful to scholars in presenting an overview of the literature on the sustainable use of water in agriculture. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

13 pages, 953 KiB  
Article
Application of Smart Agricultural Practices in Wheat Crop to Increase Yield and Mitigate Emission of Greenhouse Gases for Sustainable Ecofriendly Environment
by Muhammad Ishtiaq, Muhammad Waqas Mazhar, Mehwish Maqbool, Abed Alataway, Ahmed Z. Dewidar, Hosam O. Elansary and Kowiyou Yessoufou
Sustainability 2022, 14(16), 10453; https://doi.org/10.3390/su141610453 - 22 Aug 2022
Cited by 3 | Viewed by 2571
Abstract
The present study was based on the hypothesis that “the use of classical farming techniques is the cause of emission of greenhouse gases (GHGs) in the study area, which can be mitigated by employing smart agricultural practices (SAPs)”. The study comprises experimental trials, [...] Read more.
The present study was based on the hypothesis that “the use of classical farming techniques is the cause of emission of greenhouse gases (GHGs) in the study area, which can be mitigated by employing smart agricultural practices (SAPs)”. The study comprises experimental trials, which were carried out over two consecutive years (2020–2021) on two experimental areas (site 1: Koel, site 2: Moel) in District Bhimber of Azad Jammu and Kashmir, Pakistan. Wheat cv. Punjab-2018 was used in the experiment. The experiment was performed in a split-plot factorial arrangement with the main experimental plot bisected into two subplots. Within the two halves of the experimental plot, one side experienced the original tillage practice (PT––by ploughing at a depth of 4–6 cm; HT––by harrowing at 12–15 cm; NT––no tillage, of subsoil or soil ploughing). The subsoiling technique applied included subsoiling ploughing tillage (SPT), subsoiling harrow tillage (SHT), and subsoiling of no-tillage (SNT). Subsoiling was performed by means of ploughing land utilizing a vibrating subsoil trowel to a depth of 14 to 14.5 inches. As a result, each subplot was divided into three replicates. So, a total of six replicates, each 35 m in length and 4 m in width were chosen for the experiment. The results depicted that the influx of COx uptake increased in all subsoiling treatments: that is, SPT, SHT, and SNT. The uptake of COx was comparatively lower in HT, RT, and NT. In the same manner, GWP for NOx was recorded to increase when the soil was subjected to subsoiling, that is, HTS, RTS, and NTS. Along with this, the trend of soil temperature and soil content also fluctuated with R2 = 0.78 at p < 0.01 from February to April and R2 = 0.66 from December to January, which shows that SAP causes higher emission of NOx and more uptake of COx. Subsoiling maintains soil moisture content (SMC) and soil organic carbon (SOC), which allows limited release of NOx from soil, maintaining the soil nitrogen content. In the case of SOC and pH, it was found that higher pH causes reduced absorption of COx into soil and NOx emission from soil while higher SOC causes more absorption of COx into soil and more emission of NOx. The application of smart agriculture in the form of subsoiling leads to an increase in the yield of wheat crops and is recommended in agriculture in the context of climate change. Full article
Show Figures

Figure 1

15 pages, 1929 KiB  
Article
No-Till Soil Organic Carbon Sequestration Patterns as Affected by Climate and Soil Erosion in the Arable Land of Mediterranean Europe
by Giorgio Baiamonte, Luciano Gristina, Santo Orlando, Salvatore Samuel Palermo and Mario Minacapilli
Remote Sens. 2022, 14(16), 4064; https://doi.org/10.3390/rs14164064 - 19 Aug 2022
Cited by 8 | Viewed by 2742
Abstract
No-tillage (NT) has been considered an agronomic tool to sequester soil organic carbon (SOC) and match the 4p1000 initiative requirements of conservative soil management. Recently, some doubts have emerged about the NT effect on SOC sequestration, often because observations and experimental data vary [...] Read more.
No-tillage (NT) has been considered an agronomic tool to sequester soil organic carbon (SOC) and match the 4p1000 initiative requirements of conservative soil management. Recently, some doubts have emerged about the NT effect on SOC sequestration, often because observations and experimental data vary widely depending on climate and geographic characteristics. Therefore, a suitable SOC accounting method is needed that considers climate and morphology interactions. In this study, the yearly ratio between SOC in NT and conventional tillage (CT) (RRNT/CT) collected in a previous study for flat (96 samples) and sloping (44 samples) paired sites was used to map the overestimation of SOC sequestration. It was assumed that there would be an overestimation of NT capacity in sloping fields due to lower erosion processes with respect to CT. Towards this aim, Geographical Information System (GIS) techniques and an extensive input database of high spatial resolution maps were used in a simplified procedure to assess the overestimation of SOC stocks due to the sloping conditions and spatial variability of the Aridity Index (AI). Moreover, this also made it possible to quantify the effects of adopting NT practices on soil carbon sequestration compared to CT practices. The method was applied to the arable lands of five Mediterranean countries (France, Greece, Italy, Portugal and Spain) ranging between the 35° and 46° latitude. The results showed an overestimation of SOC sequestration, when the AI and soil erosion were considered. The average overestimation rate in the studied Mediterranean areas was 0.11 Mg ha−1 yr−1. Carbon stock overestimation ranged from 34 to 1417 Gg for Portugal and Italy, respectively. Even if overestimation is considered, 4p1000 goals are often reached, especially in the more arid areas. The findings of this research allowed us to map the areas suitable to meet the 4p1000 that could be achieved by adopting conservative practices such as NT. Full article
(This article belongs to the Special Issue Remote Sensing for Soil Organic Carbon Mapping and Monitoring)
Show Figures

Graphical abstract

24 pages, 29835 KiB  
Article
Zero-Tillage Effects on Durum Wheat Productivity and Soil-Related Variables in Future Climate Scenarios: A Modeling Analysis
by Àngela Puig-Sirera, Marco Acutis, Marialaura Bancheri, Antonello Bonfante, Marco Botta, Roberto De Mascellis, Nadia Orefice, Alessia Perego, Mario Russo, Anna Tedeschi, Antonio Troccoli and Angelo Basile
Agronomy 2022, 12(2), 331; https://doi.org/10.3390/agronomy12020331 - 27 Jan 2022
Cited by 11 | Viewed by 3191
Abstract
Adoption of zero-tillage practices with residue retention in field crops has been introduced as an alternative soil-management technique to counteract the resource degradation and high production costs derived from intensive tillage. In this sense, the biophysical models are valuable tools to evaluate and [...] Read more.
Adoption of zero-tillage practices with residue retention in field crops has been introduced as an alternative soil-management technique to counteract the resource degradation and high production costs derived from intensive tillage. In this sense, the biophysical models are valuable tools to evaluate and design the most suitable soil-management technique in view of future climate variability. The aim of this study was to use the ARMOSA process-based crop model to perform an assessment of tillage (T) and no-tillage (No-T) practices of durum-wheat-cropping systems in the Campania region (South of Italy) under current and future climate scenarios. First, the model was calibrated using measurements of soil water content at different depths, leaf area index, and aboveground biomass in the T and No-T treatments during the 2013–2014 season. Then, the model was further applied in the T and No-T treatments to future climate data for 2020–2100 that was generated by the COSMO-CLM model using the RCP4.5 and 8.5 paths. Results of the calibration depicted that the model can accurately simulate the soil-crop-related variables of both soil-management treatments, and thus can be applied to identify the most appropriate conservation agricultural practices in the durum-wheat system. The simulation of soil water content at different depths resulted in small relative root mean square errors (RRMSE < 15%) and an acceptable Pearson’s correlation coefficient (r > 0.51); and the goodness-of-fit indicators for simulated LAI and AGB resulted in acceptable RRMSE (RRMSE < 28%), and high r (r > 0.84) in both soil-management treatments. Future climate simulations showed that No-T management will deliver 10% more wheat yield than the T, with an annual average 0.31% year−1 increase of soil organic carbon, and an increase of 3.80% year−1 for N uptake, which can diminish the N leaching. These results suggest that No-T could be implemented as a more resilient management for farming system in view of climate uncertainty and scarcity of resources. Therefore, these findings support the potential of the ARMOSA model to evaluate the soil-crop response of the durum-wheat system under different management conditions and to design appropriate soil-management practices for current and future climate predictions. Full article
(This article belongs to the Special Issue Adaptations to Climate Change in Agricultural Systems)
Show Figures

Figure 1

20 pages, 3475 KiB  
Article
Tillage Strategy and Nitrogen Fertilization Methods Influences on Selected Soil Quality Indicators and Spring Wheat Yield under Semi-Arid Environmental Conditions of the Loess Plateau, China
by Jianyu Yuan, Mahran Sadiq, Nasir Rahim, Guang Li, Lijuan Yan, Jiangqi Wu and Guorong Xu
Appl. Sci. 2022, 12(3), 1101; https://doi.org/10.3390/app12031101 - 21 Jan 2022
Cited by 10 | Viewed by 2870
Abstract
The influence of tillage and nitrogen fertilization methods on soil quality attributes and crop agronomic characteristics has been studied broadly under different agroclimatic conditions. Nevertheless, the interactive effect of tillage and fertilization approaches on soil properties on different soil depths and yield is [...] Read more.
The influence of tillage and nitrogen fertilization methods on soil quality attributes and crop agronomic characteristics has been studied broadly under different agroclimatic conditions. Nevertheless, the interactive effect of tillage and fertilization approaches on soil properties on different soil depths and yield is rarely addressed, particularly on the Loess Plateau belt, and requires more exploration. Thus, this research was conducted in order to evaluate the interactive impact of tillage and nitrogen fertilization methods on soil properties and wheat productivity. The treatments included conventional tillage (CT) and no-till (NT) with different fertilization approaches (no fertilization: CK, chemical nitrogen fertilizer: N, organic fertilizer: M, combined application of nitrogen fertilizer and organic fertilizer: NM) and were explored in a split plot arrangement under a randomized complete block design replicated thrice on soil properties (SWC, SOC, TN, TP, NO3-N, NH4+-N, and stoichiometric ratio) and wheat yield. The results showed that sole no-tillage and NT in association with nitrogen fertilization (inorganic and organic) significantly increased the soil water content, SOC, TN, NH4+-N, C/P, and N/P ratios and wheat productivity but did not significantly yield TP, whilst it reduced the NO3-N and C/N ratio compared with sole CT and CT together with nitrogen fertilization (organic and inorganic). Overall, NT in association with the joint application of inorganic and organic N fertilization are the best techniques to improve soil water status and nutrient status under the wheat mono-cropping system conditions and yield. Full article
Show Figures

Figure 1

Back to TopTop