Application of Smart Agricultural Practices in Wheat Crop to Increase Yield and Mitigate Emission of Greenhouse Gases for Sustainable Ecofriendly Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Crop Varieties Used
2.2. Determination of Conc. of Different Soil Gases
2.3. Study Area Description
2.4. Experimental Design for Analysis of Agriculture Techniques in Soil
2.5. Trial Crop Cultivation
2.6. Sampling and Measurement of COx and N2O
2.7. Measurement of Global Warming Potential of COx and N2O
2.8. Measurement of Soil Factor
3. Results
3.1. Measurement of CH4 and N2O Gases Concentration
3.2. Measurement of Global Warming Potential of COx and N2O
3.3. Correlation Analysis between COx and N2O and Soil Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Climate-Smart Agriculture Sourcebook; Technical Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Michler, J.D.; Baylis, K.; Arends-Kuenning, M.; Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econ. Manag. 2019, 93, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2013, 333, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, A.; Sasmal, S.; Jain, N.; Pathak, H.; Kumar, R.; Singh, A. Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric. Ecosyst. Environ. 2010, 136, 247–253. [Google Scholar] [CrossRef]
- Tian, S.; Ning, T.; Zhao, H.; Wang, B.; Li, N.; Han, H. Response of CH4 and N2O Emissions and Wheat Yields to Tillage Method Changes in the North China Plain. PLoS ONE 2012, 7, e51206. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security; Technical Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Smith, P.; Powlson, D.S.; Glendining, M.J.; Smith, J.U. Preliminary estimates of the potential for carbon mitigation in european soils through no-till farming. Glob. Change Biol. 1998, 4, 679–685. [Google Scholar] [CrossRef]
- Brouder, S.M.; Gomez-Macpherson, H. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agric. Ecosyst. Environ. 2014, 187, 11–32. [Google Scholar] [CrossRef]
- Lal, R.; Stewart, B. Food Security and Soil Quality; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- IPCC. Climate Change: The Physical Science Basis; Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Giannini, A.; Biasutti, M.; Held, I.M.; Sobel, A.H. A global perspective on African climate. Clim. Chang. 2008, 90, 359–383. [Google Scholar] [CrossRef]
- Statistical Year Book (PDF). Statistics Azad Jammu and Kashmir. Archived (PDF) from the original on 30 June 2020. Retrieved 20 April 2020. Available online: https://www.pndajk.gov.pk/uploadfiles/downloads/Statistical%20Year%20Book%202020.pdf (accessed on 16 June 2022).
- Ishtiaq, M.; Maqbool, M.; Ajaib, M.; Ahmed, M.; Hussain, I.; Khanam, H.; Mushtaq, W.; Hussain, T.; Azam, S.; Hayat Bhatti, K.; et al. Ethnomedicinal and folklore inventory of wild plants used by rural communities of valley Samahni, District Bhimber Azad Jammu and Kashmir, Pakistan. PLoS ONE 2021, 16, e0243151. [Google Scholar] [CrossRef]
- Nikitin, B.A. A method for soil humus determination. Agric. Chem. 1999, 3, 156–158. [Google Scholar]
- Jankauskas, B.; Jankauskiene, G.; Slepetiene, A.; Booth, C. International Comparison of Analytical Methods of Determining the Soil Organic Matter Content of Lithuanian Eutric Albeluvisols. Commun. Soil Sci. Plant Anal. 2006, 37, 707–720. [Google Scholar] [CrossRef]
- Aleksandrova, L.N.; Naidenova, O. Laboratory Praxis in Soil Sciences; Kolos: Leningrad, Russia, 1976. [Google Scholar]
- Slepetiene, A.; Slepetys, J.; Liaudanskiene, I. Standard and modified methods for soil organic carbon determination in agricultural soils. Agron. Res. 2008, 6, 543–554. [Google Scholar]
- Bird, E. Public Health and Wellbeing Research Group, Healthy People Healthy Places Evidence Tool: Evidence and Practical Linkage for Design, Planning and Health; Technical Report; University of the West of England: Bristol, UK, 2017. [Google Scholar]
- Robertson, G. Fluxes of nitrous oxide and other nitrogen trace gases from intensively managed landscapes: A global perspective. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change; ASA Special; Harpwr, L.A., Mosier, A.R., Duxbury, J.M., Rolston, D.E., Eds.; ASA, CSSA, SSSA: Madison, WI, USA, 1993; pp. 95–108. [Google Scholar]
- Johnston, M.N.; Eble, C.F.; O’Keefe, J.M.; Freeman, R.L.; Hower, J.C. Petrology and palynology of the Middle Pennsylvanian Leatherwood coal bed, eastern Kentucky: Indications for depositional environments. Int. J. Coal Geol. 2017, 181, 23–38. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, A. Comparison of three models for simulating N2O emissions from paddy fields under water-saving irrigation. Atmos. Environ. 2014, 98, 500–509. [Google Scholar] [CrossRef]
- Hesse, P.R.A. Textbook of Soil Chemical Analysis; John Murray: London, UK, 1971. [Google Scholar]
- Ukpong, E.C.; Antigha, R.E.; Moses, E.O. Assessment of heavy metals content in soil and plants around waste dumpsites in Uyo Metropolis, Akwa Ibom State. Int. J. Eng. Sci. 2013, 2, 75–86. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density by Core Method. In Methods of Soil Analysis; Part I; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; Volume 9, pp. 364–367. [Google Scholar]
- Arshi, I.; Khan, T. Analysis of Soil Quality Using Physico-Chemical Parameters with Special Emphasis on Fluoride from Selected Sites of Sawai Madhopur Tehsil, Rajasthan. Int. J. Environ. Sci. Nat. Res. 2018, 12, 555847. [Google Scholar]
- Sangita, C.D. Analysis of soil samples for its physicochemical parameters from Sangamner city. Biol. Pharm. Sci. 2020, 12, 123–128. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis; Part I; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; Volume 9, pp. 403–427. [Google Scholar]
- Marshal, S. Analysis of soil samples for its physico-chemical parameters from Abohar city. Pharma. Innov. J. 2016, 5, 37–39. [Google Scholar]
- Chen, J.; Chen, D.; Xu, Q.; Fuhrmann, J.J.; Li, L.; Pan, G.; Li, Y.; Qin, H.; Liang, C.; Sun, X. Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biol. Fertil. Soils 2019, 55, 185–197. [Google Scholar] [CrossRef]
- Rhoades, J.D. Soluble Salts (Electrical Conductivity). In Methods of Soil Analysis, 2nd ed.; Page, A.L., Miller, R.H., Keey, D.R., Eds.; America Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 172–173. [Google Scholar]
- Han, J.; Li, H.W.; Gao, H.W. Subsoiling effect and economic benefit under conservation tillage mode in Northern China. Trans. CSAE 2007, 22, 62–67. [Google Scholar]
- Qi, Y.C.; Dong, Y.S.; Zhang, S. Methane fluxes of typical agricultural soil in the north china plain. Rural. Eco-Environ. 2002, 18, 56–60. [Google Scholar]
- Wu, F.L.; Zhang, H.L.; Li, L.; Chen, F.; Huang, F.Q. Characteristics of CH4 Emission and Greenhouse Effects in Double Paddy Soil with Conservation Tillage. Sci. Agric. Sin. 2008, 419, 2703–2709. [Google Scholar]
- Dijkstra, F.A.; Morgan, J.A.; von Fischer, J.C.; Follett, R.F. Elevated CO2 and warming effects on CH4 uptake in a semiarid grassland below optimum soil moisture. J. Geophys. Res. 2011, 116, 1–9. [Google Scholar]
- Bayer, C.L.; Gomes, J.; Vieira, F.C.B.; Zanatta, J.A.; Piccolo, M.C.; Dieckow, J. Methane emission from soil under long-term no-till cropping systems. Soil Tillage Res. 2012, 124, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.P.; Han, X.G.; Li, L.H. Methane emission from small wetlands and implications for semiarid region budgets. J. Geophys. Res. 2005, 110, D13304. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.J.; Qian, C.R.; Yu, Y.; Zhao, Y.; Jiang, Y.B. Effects of subsoiling and no-tillage on soil physical characters and corn yield. J. Maize Sci. 2009, 17, 134–137. [Google Scholar]
- Huang, M.; Wu, J.Z.; Li, Y.J.; Yao, Y.Q.; Zhang, C.J.; Cai, D.; Jin, K. Effects of different tillage management on production and yield of winter wheat in dryland. Trans. CSAE 2009, 25, 50–54. [Google Scholar]
Site 1 (Koel) | ||||||
---|---|---|---|---|---|---|
Edaphalogical Features | ||||||
Years | Soil Type | Soil pH | Total Organic Carbon (%) | p-Content of Soil (mg/L) | Total Saturation Point (%) | Organic Matter Content (%) |
2019–2020 | Loamy | 7.56 | 10 | 11 | 28 | 0.45 |
2020–2021 | Loamy | 7.89 | 06 | 08 | 33 | 0.31 |
Climatic Parameters | ||||||
Years | Max. Temp (°C) | Min. Temp (°C) | Rainfall (mm) | Humidity (%) | Soil Moisture Content | Solar Radiations (kWh/m2) |
2019–2020 | 33 | 21 | 0.6 mm | 33.5 | 25 | 5–7 kWh/m2 |
2020–2021 | 31 | 17 | 0.5 mm | 16.5 | 22 | 5–7 kWh/m2 |
Site-2 (Moel) | ||||||
Edaphalogical Features | ||||||
Years | Soil Type | Soil pH | Total Organic Carbon (%) | p-Content of Soil (mg/L) | Total Saturation Point (%) | Organic Matter Content (%) |
2019–2020 | Loamy | 7.90 | 11 | 12 | 27 | 0.42 |
2020–2021 | Loamy | 8.00 | 5 | 09 | 30 | 0.29 |
Climatic Parameters | ||||||
Years | Max. Temp (°C) | Min. Temp (°C) | Rainfall (mm) | Humidity (%) | Soil Moisture Content | Solar Radiations (kWh/m2) |
2019–2020 | 32.5 | 18 | 0.8 mm | 31.5 | 23 | 5–6 kWh/m2 |
2020–2021 | 32.0 | 19 | 0.6 mm | 14.5 | 20 | 4–6 kWh/m2 |
Agricultural Practice | Ploughing Tillage (µg·m−2·h−1) | Harrow Tillage (µg·m−2·h−1) | No-Tillage (µg·m−2·h−1) | Plowing Tillage Subsoiling (µg·m−2·h−1) | Harrow Stillage Subsoiling (µg·m−2·h−1) | No-Tillage Subsoiling (µg·m−2·h−1) |
---|---|---|---|---|---|---|
CH4 | 12.89 | 14.67 | 8.01 | 15.67 | 17.99 | 10.55 |
NOx | 47.10 | 44.60 | 27.15 | 52.45 | 51.77 | 51.27 |
Agricultural Practice | Ploughing Tillage (µg·m−2·h−1) | Harrow Tillage (µg·m−2·h−1) | No-Tillage (µg·m−2·h−1) | Plowing Tillage Subsoiling (µg·m−2·h−1) | Harrow Stillage Subsoiling (µg·m−2·h−1) | No-Tillage Subsoiling (µg·m−2·h−1) |
---|---|---|---|---|---|---|
CH4 | −0.73 | −0.81 | −0.62 | −0.70 | −0.34 | −0.55 |
GWP for CH4 | −0.13 | −0.18 | −0.15 | −0.14 | −0.09 | −0.12 |
NOx | 2.10 | 2.40 | 2.15 | 2.45 | 1.37 | 2.27 |
GWP for NOx | 0.45 | 0.54 | 0.51 | 0.55 | 0.33 | 0.60 |
Total emission of both gases | 1.31 | 1.53 | 1.59 | 1.64 | 1.05 | 1.91 |
GWP of both gases | 0.29 | 0.35 | 0.34 | 0.36 | 0.25 | 0.42 |
Increase in emission after subsoiling | -- | 0.15 | -- | 0.05 | -- | 1.05 |
Increase in GWP after subsoiling | -- | 0.04 | -- | 0.01 | -- | 0.21 |
Soil Factors | Soil Temperature (ST) | Soil Moisture Content (SMC) | ||
---|---|---|---|---|
Gaseous Emission | COx | NOx | COx | NOx |
Statistical Tool | R2 | p-Test | R2 | p-Test |
21.10.19 | 0.89 | 0.03 | 0.50 | 0.04 |
21.11.19 | 0.67 | 0.03 | 0.64 | 0.03 |
21.12.19 | 0.78 | 0.02 | 0.54 | 0.04 |
21.01.20 | 0.67 | 0.01 | 0.54 | 0.04 |
21.01.20 | 0.66 | 0.02 | 0.09 | 0.03 |
21.02.20 | 0.58 | 0.05 | 0.52 | 0.02 |
21.03.20 | 0.78 | 0.06 | 0.41 | 0.02 |
21.04.20 | 0.89 | 0.05 | 0.51 | 0.01 |
Agricultural Practice | Ploughing Tillage (µg·m−2·h−1) | Harrow Tillage (µg·m−2·h−1) | No-Tillage (µg·m−2·h−1) | Plowing Tillage Subsoiling (µg·m−2·h−1) | Harrow Stillage Subsoiling (µg·m−2·h−1) | No-Tillage Subsoiling (µg·m−2·h−1) |
---|---|---|---|---|---|---|
2020 | ||||||
Spikelets per stalk (cm) | 245.8 | 266.7 | 179.4 | 249.8 | 257.5 | 290.8 |
Grains per ear | 29.8 | 30.08 | 24.54 | 31.87 | 32.09 | 35.12 |
Total yield (kg/ha) | 4662.10 | 4442.40 | 4441.87 | 4962.45 | 4852.37 | 4562.27 |
2021 | ||||||
Spikelets per stalk (cm) | 256.4 | 265.4 | 178.1 | 268.5 | 279.3 | 299.60 |
Grains per ear | 22.31 | 24.53 | 20.59 | 27.64 | 28.05 | 31.91 |
Total yield (kg/ha) | 4612.29 | 4333.78 | 4451.34 | 5113.89 | 5014.15 | 4915.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishtiaq, M.; Waqas Mazhar, M.; Maqbool, M.; Alataway, A.; Dewidar, A.Z.; Elansary, H.O.; Yessoufou, K. Application of Smart Agricultural Practices in Wheat Crop to Increase Yield and Mitigate Emission of Greenhouse Gases for Sustainable Ecofriendly Environment. Sustainability 2022, 14, 10453. https://doi.org/10.3390/su141610453
Ishtiaq M, Waqas Mazhar M, Maqbool M, Alataway A, Dewidar AZ, Elansary HO, Yessoufou K. Application of Smart Agricultural Practices in Wheat Crop to Increase Yield and Mitigate Emission of Greenhouse Gases for Sustainable Ecofriendly Environment. Sustainability. 2022; 14(16):10453. https://doi.org/10.3390/su141610453
Chicago/Turabian StyleIshtiaq, Muhammad, Muhammad Waqas Mazhar, Mehwish Maqbool, Abed Alataway, Ahmed Z. Dewidar, Hosam O. Elansary, and Kowiyou Yessoufou. 2022. "Application of Smart Agricultural Practices in Wheat Crop to Increase Yield and Mitigate Emission of Greenhouse Gases for Sustainable Ecofriendly Environment" Sustainability 14, no. 16: 10453. https://doi.org/10.3390/su141610453