Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = nitronyl nitroxide radical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5464 KiB  
Article
Oxidation-Triggered Formation of Diradical Cations from Paramagnetic Molecules and Their Spin Density Evolution
by Di Wang, Dan Yao, Xinyu Li, Lingli Shi, Chunyuan Wang, Jie Li, Weili Kong, Yongliang Qin and Martin Baumgarten
Molecules 2025, 30(9), 1931; https://doi.org/10.3390/molecules30091931 - 26 Apr 2025
Viewed by 472
Abstract
Controllable intramolecular spin-polarized flow refers to the manipulation of spin-polarized electron transport within molecules through externally applied stimuli, thereby modulating their intramolecular spin characteristics and magnetic properties. In this work, we designed and synthesized four paramagnetic molecules, PDTN-NN, PDTN-IN, PO-NN, and PO-IN, by [...] Read more.
Controllable intramolecular spin-polarized flow refers to the manipulation of spin-polarized electron transport within molecules through externally applied stimuli, thereby modulating their intramolecular spin characteristics and magnetic properties. In this work, we designed and synthesized four paramagnetic molecules, PDTN-NN, PDTN-IN, PO-NN, and PO-IN, by introducing nitronyl nitroxide (NN) and iminonitroxide (IN) radicals into phenothiazine and phenoxazine frameworks. Remarkably, we successfully generated the corresponding radical-substituted radical cations (diradical cations) and controlled their spin density distributions (SDDs) through redox stimuli. UV-Vis absorption spectroscopy, cyclic voltammetry (CV), electron paramagnetic resonance (EPR), and density functional theory (DFT) were employed to confirm the formation of diradical cations during the redox processes. Furthermore, EPR spectroscopy and DFT calculations were also employed to provide clear evidence of intramolecular magnetic coupling in the diradical cations. Full article
Show Figures

Graphical abstract

12 pages, 2875 KiB  
Article
Two New 2p–3d Metal Complexes with a Nitronyl-Nitroxide Ligand Derived from o-Vanillin: Synthesis, Crystals Structures and Magnetic Properties
by Cristian Andrei Spinu, Daniel O. T. A. Martins, Teodora Mocanu, Mihaela Hillebrand, Jean-Pascal Sutter, Floriana Tuna and Marius Andruh
Magnetochemistry 2024, 10(11), 86; https://doi.org/10.3390/magnetochemistry10110086 - 1 Nov 2024
Cited by 1 | Viewed by 1950
Abstract
Two new 2p–3d complexes, (Et3NH)[ML(hfac)2], have been obtained using the nitronyl-nitroxide radical (HL) derived from 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (M = Mn 1; Co 2). The two compounds are isomorphous and their structures consist of anionic mononuclear species, [M(hfac)2 [...] Read more.
Two new 2p–3d complexes, (Et3NH)[ML(hfac)2], have been obtained using the nitronyl-nitroxide radical (HL) derived from 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (M = Mn 1; Co 2). The two compounds are isomorphous and their structures consist of anionic mononuclear species, [M(hfac)2L], M = Mn 1; Co 2, and triethylammonium cations, Et3NH+. The metal ions adopt an octahedral geometry, being coordinated by phenoxido and aminoxyl oxygen atoms from the ligand and four oxygen atoms from the hexafluoroacetylacetonato (hfac) ligand. The cryomagnetic behaviors of the two compounds reveal relatively strong antiferromagnetic M(II)-Rad interactions (JMnRad = −191 cm−1, JCoRad = −166 cm−1 with H = −JSMSRad). The EPR spectra (X- and Q-band) of compound 1 below 70 K show the characteristical features of a S = 2 spin system with zero field splitting terms of D = 0.26 cm−1 and E = 0.031 cm−1. Full article
Show Figures

Figure 1

13 pages, 18231 KiB  
Article
Synthesis of Nitronyl Nitroxide Radical-Modified Multi-Walled Carbon Nanotubes and Oxidative Desulfurization in Fuel
by Min Tian, Haokang Huang, Gai Zhang and Haibo Wang
Molecules 2024, 29(16), 3896; https://doi.org/10.3390/molecules29163896 - 17 Aug 2024
Cited by 2 | Viewed by 1707
Abstract
Novel and highly stable nitronyl nitroxide radical (NIT) derivatives were synthesized and coated on the surface of multi-walled carbon nanotubes (MWCNTs) to improve their desulfurization performance. They were characterized by FTIR, UV-vis, SEM, XRD, Raman spectroscopy and ESR. Thiophene in fuel was desulfurized [...] Read more.
Novel and highly stable nitronyl nitroxide radical (NIT) derivatives were synthesized and coated on the surface of multi-walled carbon nanotubes (MWCNTs) to improve their desulfurization performance. They were characterized by FTIR, UV-vis, SEM, XRD, Raman spectroscopy and ESR. Thiophene in fuel was desulfurized by molecular O2, and the oxidation activity of these compounds was evaluated. At a normal temperature and pressure, the degradation rates of thiophene by four compounds in 4 h can reach 92.66%, 96.38%, 93.25% and 89.49%, respectively. The MWCNTs/NIT-F have a high special activity for the degradation of thiophene, and their desulfurization activity can be recycled for five times without a significant reduction. The mechanistic studies of MWCNTs/NIT composites show that the ammonium oxide ion is the key active intermediate in catalytic oxidative desulfurization, which provides a new choice for fuel oxidative desulfurization. The results show that NIT significantly improves the photocatalytic performance of MWCNTs. Full article
Show Figures

Figure 1

12 pages, 19578 KiB  
Article
Study of Molecular Dimer Morphology Based on Organic Spin Centers: Nitronyl Nitroxide Radicals
by Dongdong Wei, Yongliang Qin, Zhipeng Xu, Hui Liu, Ranran Chen, Yang Yu and Di Wang
Molecules 2024, 29(9), 2042; https://doi.org/10.3390/molecules29092042 - 28 Apr 2024
Cited by 1 | Viewed by 1975
Abstract
In this work, in order to investigate the short-range interactions between molecules, the spin-magnetic unit nitronyl nitroxide (NN) was introduced to synthesize self-assembly single radical molecules with hydrogen bond donors and acceptors. The structures and magnetic properties were extensively investigated and characterized by [...] Read more.
In this work, in order to investigate the short-range interactions between molecules, the spin-magnetic unit nitronyl nitroxide (NN) was introduced to synthesize self-assembly single radical molecules with hydrogen bond donors and acceptors. The structures and magnetic properties were extensively investigated and characterized by UV-Vis absorption spectroscopy, electron paramagnetic resonance (EPR), and superconducting quantum interference devices (SQUIDs). Interestingly, it was observed that the single molecules can form two different dimers (ring-closed dimer and “L”-type dimer) in different solvents, due to hydrogen bonding, when using EPR to track the molecular spin interactions. Both dimers exhibit ferromagnetic properties (for ring-closed dimer, J/kB = 0.18 K and ΔES−T = 0.0071 kcal/mol; for “L”-type dimer, the values were J/kB = 9.26 K and ΔES−T = 0.037 kcal/mol). In addition, the morphologies of the fibers formed by the two dimers were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Full article
(This article belongs to the Special Issue Hydrogen Bond and Intramolecular Force)
Show Figures

Graphical abstract

11 pages, 5352 KiB  
Article
Scandium Ion-Promoted Electron-Transfer Disproportionation of 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO) in Acetonitrile and Its Regeneration Induced by Water
by Yoshimi Shoji, Yuri Terashima, Kei Ohkubo, Hiromu Ito, Kouichi Maruyama, Shunichi Fukuzumi and Ikuo Nakanishi
Int. J. Mol. Sci. 2024, 25(8), 4417; https://doi.org/10.3390/ijms25084417 - 17 Apr 2024
Cited by 1 | Viewed by 1944
Abstract
2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a persistent nitronyl nitroxide radical, has been used for the detection and trapping of nitric oxide, as a redox mediator for batteries, for the activity estimation of antioxidants, and so on. However, there is no report on the [...] Read more.
2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a persistent nitronyl nitroxide radical, has been used for the detection and trapping of nitric oxide, as a redox mediator for batteries, for the activity estimation of antioxidants, and so on. However, there is no report on the reactivity of PTIO in the presence of redox-inactive metal ions. In this study, it is demonstrated that the addition of scandium triflate, Sc(OTf)3 (OTf = OSO2CF3), to an acetonitrile (MeCN) solution of PTIO resulted in an electron-transfer disproportionation to generate the corresponding cation (PTIO+) and anion (PTIO), the latter of which is suggested to be stabilized by Sc3+ to form [(PTIO)Sc]2+. The decay of the absorption band at 361 nm due to PTIO, monitored using a stopped-flow technique, obeyed second-order kinetics. The second-order rate constant for the disproportionation, thus determined, increased with increasing the Sc(OTf)3 concentration to reach a constant value. A drastic change in the cyclic voltammogram recorded for PTIO in deaerated MeCN containing 0.10 M Bu4NClO4 was also observed upon addition of Sc(OTf)3, suggesting that the large positive shift of the one-electron reduction potential of PTIO (equivalent to the one-electron oxidation potential of PTIO) in the presence of Sc(OTf)3 may result in the disproportionation. When H2O was added to the PTIO–Sc(OTf)3 system in deaerated MeCN, PTIO was completely regenerated. It is suggested that the complex formation of Sc3+ with H2O may weaken the interaction between PTIO and Sc3+, leading to electron-transfer comproportionation to regenerate PTIO. The reversible disproportionation of PTIO was also confirmed by electron paramagnetic resonance (EPR) spectroscopy. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

13 pages, 5577 KiB  
Article
Room-Temperature Entanglement of the Nickel-Radical Molecular Complex (Et3NH)[Ni(hfac)2L] Reinforced by the Magnetic Field
by Jozef Strečka and Elham Shahhosseini Shahrabadi
Inorganics 2024, 12(4), 102; https://doi.org/10.3390/inorganics12040102 - 31 Mar 2024
Cited by 4 | Viewed by 1574
Abstract
Bipartite entanglement is comprehensively investigated in the mononuclear molecular complex (Et3NH)[Ni(hfac)2L], where HL denotes 2-(2-hydroxy-3-methoxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl and hfacH stands for hexafluoroacetylacetone. From the magnetic point of view, the molecular compound (Et3NH)[Ni(hfac)2L] consists of an exchange-coupled spin-1 [...] Read more.
Bipartite entanglement is comprehensively investigated in the mononuclear molecular complex (Et3NH)[Ni(hfac)2L], where HL denotes 2-(2-hydroxy-3-methoxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl and hfacH stands for hexafluoroacetylacetone. From the magnetic point of view, the molecular compound (Et3NH)[Ni(hfac)2L] consists of an exchange-coupled spin-1 Ni2+ magnetic ion and a spin-12 nitronyl-nitroxide radical substituted nitrophenol. The nickel-radical molecular complex affords an experimental realization of a mixed spin-(12, 1) Heisenberg dimer with a strong antiferromagnetic exchange coupling, J/kB = 505 K, and two distinct g-factors, gRad = 2.005 and gNi = 2.275. By adopting this set of magnetic parameters, we demonstrate that the Zeeman splitting of a quantum ferrimagnetic ground-state doublet due to a weak magnetic field may substantially reinforce the strength of bipartite entanglement at low temperatures. The molecular compound (Et3NH)[Ni(hfac)2L] maintains sufficiently strong thermal entanglement, even at room temperature, vanishing only above 546 K. Specifically, the thermal entanglement in the nickel-radical molecular complex retains approximately 40% of the maximum value, corresponding to perfectly entangled Bell states at room temperature, which implies that this magnetic compound provides a suitable platform of a molecular qubit with potential implications for room-temperature quantum computation and quantum information processing. Full article
(This article belongs to the Special Issue Magnetic Materials and Their Applications)
Show Figures

Graphical abstract

16 pages, 14982 KiB  
Article
Mitochondria-Targeted Nitronyl Nitroxide Radical Nanoparticles for Protection against Radiation-Induced Damage with Antioxidant Effects
by Shigao Huang, Min Xu, Qingyue Da, Linlin Jing and Haibo Wang
Cancers 2024, 16(2), 351; https://doi.org/10.3390/cancers16020351 - 13 Jan 2024
Cited by 7 | Viewed by 2271
Abstract
Radiotherapy is a non-invasive method that is widely applied to treat and alleviate cancers. However, radiation-induced effects in the immune system are associated with several side effects via an increase in oxidative stress and the inflammatory response. Therefore, it is imperative to develop [...] Read more.
Radiotherapy is a non-invasive method that is widely applied to treat and alleviate cancers. However, radiation-induced effects in the immune system are associated with several side effects via an increase in oxidative stress and the inflammatory response. Therefore, it is imperative to develop effective clinical radiological protection strategies for the radiological protection of the normal organs and immune system in these patients. To explore more effective radioprotective agents with minimal toxicity, a mitochondria-targeted nitronyl nitroxide radical with a triphenylphosphine ion (TPP-NIT) was synthesized and its nanoparticles (NPs-TPP-NIT) were prepared and characterized. The TPP-NIT nanoparticles (NPs-TPP-NIT) were narrow in their size distribution and uniformly distributed; they showed good drug encapsulation efficiency and a low hemolysis rate (<3%). The protective effect of NPs-TPP-NIT against X-ray irradiation-induced oxidative damage was measured in vitro and in vivo. The results show that NPs-TPP-NIT were associated with no obvious cytotoxicity to L-02 cells when the concentration was below 1.5 × 10−2 mmol. NPs-TPP-NIT enhanced the survival rate of L-02 cells significantly under 2, 4, 6, and 8 Gy X-ray radiation exposure; the survival rate of mice was highest after 6 Gy X-ray irradiation. The results also show that NPs-TPP-NIT could increase superoxide dismutase (SOD) activity and decrease malondialdehyde (MDA) levels after the L-02 cells were exposed to 6.0 Gy of X-ray radiation. Moreover, NPs-TPP-NIT could significantly inhibit cell apoptosis. NPs-TPP-NIT significantly increased the mouse survival rate after irradiation. NPs-TPP-NIT displayed a marked ability to reduce the irradiation-induced depletion of red blood cells (RBCs), white blood cells (WBCs), and platelets (PLTs). These results demonstrate the feasibility of using NPs-TPP-NIT to provide protection from radiation-induced damage. In conclusion, this study revealed that NPs-TPP-NIT may be promising radioprotectors and could therefore be applied to protect healthy tissues and organs from radiation during the treatment of cancer with radiotherapy. Full article
(This article belongs to the Special Issue Cancer Smart Nanomedicine (2nd Edition))
Show Figures

Figure 1

18 pages, 3392 KiB  
Article
5-Fluoro-1-Methyl-Pyrazol-4-yl-Substituted Nitronyl Nitroxide Radical and Its 3d Metal Complexes: Synthesis, Structure, and Magnetic Properties
by Ekaterina Kudryavtseva, Andrey Serykh, Bogdan Ugrak, Tatyana Dutova, Darina Nasyrova, Dmitrii Aleshin, Nikolay Efimov, Pavel Dorovatovskii, Artem Bogomyakov, Sergey Fokin, Galina Romanenko, Anna Sergeeva and Evgeny Tretyakov
Crystals 2023, 13(12), 1655; https://doi.org/10.3390/cryst13121655 - 30 Nov 2023
Cited by 4 | Viewed by 1772
Abstract
The metal–radical approach is a well-established synthetic way toward multi-spin systems that relies on the coordination of stable radical ligands with transition metal ions. The advantage offered by the use of paramagnetic ligands is that metal–radical magnetic exchange coupling is direct between the [...] Read more.
The metal–radical approach is a well-established synthetic way toward multi-spin systems that relies on the coordination of stable radical ligands with transition metal ions. The advantage offered by the use of paramagnetic ligands is that metal–radical magnetic exchange coupling is direct between the magnetic orbitals of the radical and metal ion. With the aim of further exploring this approach, crystals of four heterspin complexes, [M(hfac)2LF]2 {M = Mn, Co, or Ni and hfac = hexafluoroacetylacetonate} and [Cu(hfac)2LF]n, were obtained using a new fluorinated pyrazolyl-substituted nitronyl nitroxide radical, 4,4,5,5-tetramethyl-2-(5-fluoro-1-methyl-1H-pyrazol-4-yl)-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (LF) as a ligand. The newly synthesized complexes were fully characterized, including X-ray crystallography and magnetometry. XRD analysis revealed that complexes [M(hfac)2LF]2 have similar dimer structures in which a metal ion is in a six-coordinated environment with four O atoms from the two hfac ligands, one radical O atom, and one pyrazole N atom from ligand LF. Nonetheless, the packing patterns of the complexes were found to be considerably different. In [Mn(hfac)2LF]2, there are no magnetically important short contacts between manganese dimers. By contrast, in [Co(hfac)2LF]2 and [Ni(hfac)2LF]2, there are short contacts between non-coordinate O atoms of nitronyl nitroxide moieties. Magnetic behaviors of [M(hfac)2LF]2 showed that the M ions and the directly coordinated radicals are strongly antiferromagnetically coupled (JMn-ON = −84.1 ± 1.5 cm−1, JCo-ON = −134.3 ± 2.6 cm−1, and JNi-ON = −276.2 ± 2.1 cm−1; H^=2JS^MS^NO). Notably, the magnetization of [Mn(hfac)2LF]2 having molecular structure proved to be accompanied by hysteresis. The [Cu(hfac)2LF]n complex has a chain-polymer structure with alternating magnetic fragments: three spin exchange clusters {ONO–Cu(II)–ONO} and {Cu(II)} ions. Despite the direct coordination of radicals, its magnetic properties are weakly ferromagnetic (JCu-ON = 14.8 ± 0.3 cm−1). Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

13 pages, 7003 KiB  
Article
Catalytic System for Cross-Coupling of Heteroaryl Iodides with a Nitronyl Nitroxide Gold Derivative at Room Temperature
by Igor Zayakin, Galina Romanenko, Irina Bagryanskaya, Bogdan Ugrak, Matvey Fedin and Evgeny Tretyakov
Molecules 2023, 28(22), 7661; https://doi.org/10.3390/molecules28227661 - 19 Nov 2023
Cited by 9 | Viewed by 1716
Abstract
A simple and highly effective methodology for the cross-coupling of heteroaryl iodides with NN–AuPPh3 at room temperature is reported. The protocol is based on a novel catalytic system consisting of Pd2(dba)3·CHCl3 and the phosphine ligand MeCgPPh [...] Read more.
A simple and highly effective methodology for the cross-coupling of heteroaryl iodides with NN–AuPPh3 at room temperature is reported. The protocol is based on a novel catalytic system consisting of Pd2(dba)3·CHCl3 and the phosphine ligand MeCgPPh having an adamantane-like framework. The present protocol was found to be well compatible with various heteroaryl iodides, thus opening new horizons in directed synthesis of functionalized nitronyl nitroxides and high-spin molecules. Full article
(This article belongs to the Special Issue Stable Radicals: Synthesis and Applications)
Show Figures

Graphical abstract

13 pages, 3612 KiB  
Article
New Ruthenium Nitrosyl Complexes Combining Potentially Photoactive Nitrosyl Group with the Magnetic Nitroxide Radicals as Ligands
by Gennadiy A. Kostin, Ruslan Kozlov, Artem Bogomyakov, Svyatoslav Tolstikov, Dmitriy Sheven and Sergey Korenev
Int. J. Mol. Sci. 2023, 24(17), 13371; https://doi.org/10.3390/ijms241713371 - 29 Aug 2023
Cited by 2 | Viewed by 1572
Abstract
Two ruthenium nitrosyl complexes of Na[RuNOCl4L] with nitronyl nitroxide radicals coordinated to ruthenium with N-donor pyridine rings were prepared and described. The crystal structure of both complexes is 1D or 2D polymeric, due to the additional coordination of sodium cation by [...] Read more.
Two ruthenium nitrosyl complexes of Na[RuNOCl4L] with nitronyl nitroxide radicals coordinated to ruthenium with N-donor pyridine rings were prepared and described. The crystal structure of both complexes is 1D or 2D polymeric, due to the additional coordination of sodium cation by bridging the chloride ligands or oxygen atoms of nitroxides. Partially, the oligomeric forms remain in the solutions of the complexes in acetonitrile. The magnetic measurements in the solid state demonstrate the presence of antiferromagnetic interactions through the exchange channels, with the distance between paramagnetic centers equal to 3.1–3.9 Å. The electrochemical behavior of the prepared complexes was investigated in acetonitrile solutions. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Russia—2nd Edition)
Show Figures

Figure 1

13 pages, 3891 KiB  
Article
Cyclic [Cu-biRadical]2 Secondary Building Unit in 2p-3d and 2p-3d-4f Complexes: Crystal Structure and Magnetic Properties
by Xiao-Tong Wang, Xiao-Hui Huang, Hong-Wei Song, Yue Ma, Li-Cun Li and Jean-Pascal Sutter
Molecules 2023, 28(6), 2514; https://doi.org/10.3390/molecules28062514 - 9 Mar 2023
Viewed by 2037
Abstract
Employing the new nitronyl nitroxide biradical ligand biNIT-3Py-5-Ph (2-(5-phenyl-3-pyridyl)-bis(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)), a 16-spin Cu-radical complex, [Cu8(biNIT-3Py-5-Ph)4(hfac)16] 1, and three 2p-3d-4f chain complexes, {[Ln(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (Ln= Gd 2, [...] Read more.
Employing the new nitronyl nitroxide biradical ligand biNIT-3Py-5-Ph (2-(5-phenyl-3-pyridyl)-bis(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)), a 16-spin Cu-radical complex, [Cu8(biNIT-3Py-5-Ph)4(hfac)16] 1, and three 2p-3d-4f chain complexes, {[Ln(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (Ln= Gd 2, Tb 3, Dy 4; hfac = hexafluoroacetylacetonate), have been prepared and characterized. X-ray crystallographic analysis revealed in all derivatives a common cyclic [Cu-biNIT]2 secondary building unit in which two bi-NIT-3Py-5-Ph biradical ligands and two CuII ions are associated via the pyridine N atoms and NO units. For complex 1, two such units assemble with four additional CuII ions to form a discrete complex involving 16 S = 1/2 spin centers. For complexes 24, the [Cu-biNIT]2 units are linked by LnIII ions via NO groups in a 1D coordination polymer. Magnetic studies show that the coordination of the aminoxyl groups with Cu or Ln ions results in behaviors combining ferromagnetic and antiferromagnetic interactions. No slow magnetic relaxation behavior was observed for Tb and Dy derivatives. Full article
(This article belongs to the Special Issue Molecular Bistability in Metal Complexes)
Show Figures

Figure 1

15 pages, 3240 KiB  
Article
Synthesis, Crystal Structure and Magnetic Properties of a Trinuclear Copper(II) Complex Based on P-Cresol-Substituted Bis(α-Nitronyl Nitroxide) Biradical
by Sabrina Grenda, Maxime Beau and Dominique Luneau
Molecules 2022, 27(10), 3218; https://doi.org/10.3390/molecules27103218 - 18 May 2022
Cited by 4 | Viewed by 3242
Abstract
Trinuclear copper(II) complex [CuII3(NIT2PhO)2Cl4] was synthesized with p-cresol-substituted bis(α-nitronyl nitroxide) biradical: 4-methyl-2,6-bis(1-oxyl-3-oxido-4,4,5,5-tetramethyl-2-imidazolin-2-yl)phenol (NIT2PhOH). The crystal structure of this heterospin complex was determined using single-crystal X-ray diffraction analysis and exhibits four unusual seven-membered [...] Read more.
Trinuclear copper(II) complex [CuII3(NIT2PhO)2Cl4] was synthesized with p-cresol-substituted bis(α-nitronyl nitroxide) biradical: 4-methyl-2,6-bis(1-oxyl-3-oxido-4,4,5,5-tetramethyl-2-imidazolin-2-yl)phenol (NIT2PhOH). The crystal structure of this heterospin complex was determined using single-crystal X-ray diffraction analysis and exhibits four unusual seven-membered metallocycles formed from the coordination of oxygen atoms of the N-O groups and of bridging phenoxo (µ-PhO) moieties with copper(II) ions. The crystal structure analysis reveals an incipient agostic interaction between a square planar copper center and a hydrogen-carbon bond from one methyl group carried on the coordinated nitronyl-nitroxide radical. The intramolecular Cu∙∙∙H-C interaction involves a six-membered metallocycle and may stabilize the copper center in square planar coordination mode. From the magnetic susceptibility measurements, the complex, which totals seven S = 1/2 spin carriers, has almost a ground state spin S = 1/2 at room temperature ascribed to strong antiferromagnetic interaction between the nitronyl nitroxide moieties and the copper(II) centers and in between the copper(II) centers through the bridging phenoxo oxygen atom. Full article
(This article belongs to the Special Issue Crystal Structures of Metal Complexes)
Show Figures

Graphical abstract

11 pages, 3431 KiB  
Article
Two-Dimensional Nitronyl Nitroxide–Cu Networks Based on Multi-Dentate Nitronyl Nitroxides: Structures and Magnetic Properties
by Hongdao Li, Jiao Lu, Jing Xie, Pei Jing and Licun Li
Magnetochemistry 2021, 7(5), 73; https://doi.org/10.3390/magnetochemistry7050073 - 20 May 2021
Cited by 1 | Viewed by 2606
Abstract
Two multi-dentate nitronyl nitroxide radicals, namely, bisNITPhPy ([5-(4-pyridyl)-1,3-bis(1′-oxyl-3′-oxido-4′,4′,5′,5′-tetramethyl-4,5-hydro-1H-imidazol-2-yl)]benzene) and NIT-3Py-5-4Py (2-{3-[5-(4-pyridyl)]pyridyl}-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), were assembled with CuII ions to obtain two-dimensional heterospin 2p–3d coordination polymers [Cu7(hfac)14(bisNITPhPy)2]n (1) and [Cu2(hfac)4(NIT-3Py-5-4Py)] [...] Read more.
Two multi-dentate nitronyl nitroxide radicals, namely, bisNITPhPy ([5-(4-pyridyl)-1,3-bis(1′-oxyl-3′-oxido-4′,4′,5′,5′-tetramethyl-4,5-hydro-1H-imidazol-2-yl)]benzene) and NIT-3Py-5-4Py (2-{3-[5-(4-pyridyl)]pyridyl}-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), were assembled with CuII ions to obtain two-dimensional heterospin 2p–3d coordination polymers [Cu7(hfac)14(bisNITPhPy)2]n (1) and [Cu2(hfac)4(NIT-3Py-5-4Py)]n (2) (hfac: hexafluoroacetylacetonate). In both compounds, the bisNITPhPy and NIT-3Py-5-3Py radicals acted as pentadentate and tetradentate ligands, respectively, to connect with CuII ions, generating a 2D layer structure. The analysis of the magnetic behavior indicated that strong antiferromagnetic coupling and ferromagnetic interaction (J = 17.1 cm−1) coexisted in 1. For 2, there were ferromagnetic couplings between the CuII ion and NO group, as well as the CuII ion and radical via the pyridine ring with J1 = 32.8 and J2 = 2.2 cm−1, respectively. Full article
(This article belongs to the Special Issue Magnetic Coordination Polymers)
Show Figures

Graphical abstract

10 pages, 638 KiB  
Article
The Internal Field in a Ferromagnetic Crystal with Chiral Molecular Packing of Achiral Organic Radicals
by Stephen J. Blundell, Tom Lancaster, Peter J. Baker, Francis L. Pratt, Daisuke Shiomi, Kazunobu Sato and Takeji Takui
Magnetochemistry 2021, 7(5), 71; https://doi.org/10.3390/magnetochemistry7050071 - 18 May 2021
Cited by 3 | Viewed by 2961
Abstract
The achiral organic radical dinitrophenyl nitronyl nitroxide crystallizes in two enantiomorphs, both being chiral tetragonal space groups that are mirror images of each other. Muon-spin rotation experiments have been performed to study the magnetic properties of these crystals and demonstrate that long-range magnetic [...] Read more.
The achiral organic radical dinitrophenyl nitronyl nitroxide crystallizes in two enantiomorphs, both being chiral tetragonal space groups that are mirror images of each other. Muon-spin rotation experiments have been performed to study the magnetic properties of these crystals and demonstrate that long-range magnetic order is established below a temperature of 1.10(1) K. Two oscillatory components are detected in the muon data, which show two different temperature dependences. Full article
Show Figures

Figure 1

10 pages, 2880 KiB  
Article
Magnetic and Structural Properties of Organic Radicals Based on Thienyl- and Furyl-Substituted Nitronyl Nitroxide
by Tadashi Sugano, Stephen J. Blundell, William Hayes and Hatsumi Mori
Magnetochemistry 2021, 7(5), 62; https://doi.org/10.3390/magnetochemistry7050062 - 6 May 2021
Cited by 1 | Viewed by 2344
Abstract
Magnetic properties of organic radicals based on thienyl- and furyl-substituted nitronyl nitroxide (NN) and iminonitroxide (IN) were investigated by measuring the temperature dependence of the magnetization. The magnetic behavior of 2-benzo[b]thienyl NN (2-BTHNN) is interpreted in terms of the two-magnetic-dimer model, [...] Read more.
Magnetic properties of organic radicals based on thienyl- and furyl-substituted nitronyl nitroxide (NN) and iminonitroxide (IN) were investigated by measuring the temperature dependence of the magnetization. The magnetic behavior of 2-benzo[b]thienyl NN (2-BTHNN) is interpreted in terms of the two-magnetic-dimer model, in which one dimer exhibits ferromagnetic (FM) intermolecular interaction and the other dimer shows antiferromagnetic (AFM) interaction. The existence of two dimers in 2-BTHNN is supported by crystal structure analysis. The magnetic behaviors of 2-bithienyl NN, 4-(2′-thienyl)phenyl NN (2-THPNN), 2- and 3-furyl NN, 2-benzo[b]furyl NN, and 3-benzo[b]thienyl IN are also reported. The one-dimensional alternating AFM nature observed in 2-THPNN is consistent with its crystal structure. Full article
Show Figures

Figure 1

Back to TopTop