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Abstract: 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•), a persistent nitronyl ni-
troxide radical, has been used for the detection and trapping of nitric oxide, as a redox mediator for
batteries, for the activity estimation of antioxidants, and so on. However, there is no report on the re-
activity of PTIO• in the presence of redox-inactive metal ions. In this study, it is demonstrated that the
addition of scandium triflate, Sc(OTf)3 (OTf = OSO2CF3), to an acetonitrile (MeCN) solution of PTIO•

resulted in an electron-transfer disproportionation to generate the corresponding cation (PTIO+)
and anion (PTIO−), the latter of which is suggested to be stabilized by Sc3+ to form [(PTIO)Sc]2+.
The decay of the absorption band at 361 nm due to PTIO•, monitored using a stopped-flow tech-
nique, obeyed second-order kinetics. The second-order rate constant for the disproportionation,
thus determined, increased with increasing the Sc(OTf)3 concentration to reach a constant value.
A drastic change in the cyclic voltammogram recorded for PTIO• in deaerated MeCN containing
0.10 M Bu4NClO4 was also observed upon addition of Sc(OTf)3, suggesting that the large positive shift
of the one-electron reduction potential of PTIO• (equivalent to the one-electron oxidation potential of
PTIO−) in the presence of Sc(OTf)3 may result in the disproportionation. When H2O was added to the
PTIO•–Sc(OTf)3 system in deaerated MeCN, PTIO• was completely regenerated. It is suggested that
the complex formation of Sc3+ with H2O may weaken the interaction between PTIO− and Sc3+, lead-
ing to electron-transfer comproportionation to regenerate PTIO•. The reversible disproportionation
of PTIO• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy.

Keywords: radical; electron transfer; disproportionation; scandium ion; Lewis acid; comproportionation;
kinetics; reaction mechanism; cyclic voltammetry; electron paramagnetic resonance

1. Introduction

Redox-inactive metal ions have attracted much attention because they are known to
affect the redox behavior of redox active compounds acting as a Lewis acid [1–9]. Among
such metal ions, scandium ion (Sc3+) shows the strongest Lewis acidity because of the
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small ionic radius with trivalent positive charge, leading to a significant positive shift of
the reduction potentials of compounds [10–23], including metal–oxygen complexes [19–21]
and radical species [22,23]. Of special interest is the fact that Sc3+ enables the electron-
transfer reactions, which would otherwise never take place in the absence of Sc3+, to occur
thermodynamically as well as kinetically [10–15,20,21]. We have reported that an electron-
transfer disproportionation of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) occurs upon
the addition of scandium triflate, Sc(OTf)3 (OTf = OSO2CF3), to an acetonitrile (MeCN)
solution of DPPH• to produce one-electron-oxidized and -reduced species of DPPH•,
DPPH+, and DPPH−, respectively [23]. The spectral titration showed that four molecules
of DPPH• react with Sc3+ to produce two molecules of DPPH+ and a complex between
two molecules of DPPH− and Sc3+, [(DPPH)2Sc]+ [24]. Further, it is also reported that
the addition of H2O to the DPPH•–Sc(OTf)3 system in MeCN resulted in the regeneration
of DPPH• [24]. Very recently, a similar reversible disproportionation reaction has been
reported for 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO) in the presence of Al(OTf)3 to
develop an aqueous aluminum radical batteries [25]. Dedzo et al. have also reported drastic
changes in the redox reactivity of DPPH• in the presence of metal cations, such as Cu2+

and Zn2+, as well as Brønsted acid, such as HClO4 and HNO3 [8].
On the other hand, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•)

(Scheme 1), a persistent nitronyl nitroxide radical, has been used for the detection and
trapping of nitric oxide (•NO) for about 30 years [26–34]. Furthermore, PTIO• has also
attracted much attention as a redox mediator for batteries [35–37]. Recently, it has been
reported that PTIO• can be used to estimate the activity of antioxidants as a reactivity model
of reactive oxygen species [38–57]. However, there is no report on the reactivity of PTIO•

in the presence of redox-inactive metal ions. PTIO• shows a similar reversible one-electron
redox behavior (Scheme 1) to DPPH•, although the separation between the one-electron
oxidation and reduction potentials of PTIO• (1.73 V) [35] is much larger than that of DPPH•

(0.52 V) [23]. We report herein that an electron-transfer disproportionation of PTIO• also
occurs upon the addition of Sc(OTf)3 to a deaerated MeCN solution of PTIO•. Also studied
was the regeneration of PTIO• upon the addition of H2O to the PTIO•–Sc(OTf)3 system
in deaerated MeCN. The drastic change in the redox behavior of compounds due to the
strong Lewis acidity of Sc3+ observed in this study provides valuable and fundamental
information about the fine tuning of the redox reactions by the redox-inactive metal ions.
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2. Results and Discussion

When Sc(OTf)3 was added to a deaerated MeCN solution of PTIO•, the absorption
bands at 238, 264, and 361 nm and a broad band at around 600 nm due to PTIO• decreased
immediately with clear isosbestic points at 277, 334, 381, and 525 nm, as shown in Figure 1
(Video S1 of the Supplementary Materials). The broad absorption band at 450 nm is
diagnostic of the one-electron-oxidized PTIO• (PTIO+) [33]. Thus, an electron-transfer
disproportionation of PTIO• is suggested to take place upon addition of Sc(OTf)3 to produce
PTIO+ and the one-electron-reduced PTIO• (PTIO−), as in the case of DPPH• [23]. The
spectral titration (inset of Figure 1) shows the Sc(OTf)3/PTIO• molar ratio being 1:2. This
suggests that one molecule of PTIO− may be stabilized by one Sc3+ (Scheme 2). When
MeCN was replaced by methanol (MeOH) or ethanol (EtOH) as the solvent, such a spectral
change was not observed. This suggests that the stronger solvation of Sc3+ in MeOH or
EtOH compared to that in MeCN may preclude the disproportionation from occurring.
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Figure 1. Spectral change observed upon addition of Sc(OTf)3 (4.4 × 10−6 M each) to
PTIO• (7.2 × 10−5 M) in deaerated MeCN. Blue and orange lines are the initial and final spec-
tra, respectively. Arrows denote the direction of absorption changes. Inset: plot of the absorbance at
361 nm vs. [Sc(OTf)3]/[PTIO•].

The spectral change after the addition of Sc(OTf)3 (7.9 × 10−3 M) to a deaerated
MeCN solution of PTIO• (5.5 × 10−5 M) monitored by a stopped-flow technique is shown
in Figure 2a. The time course change in the absorbance at 361 nm obeyed second-order
kinetics (inset of Figure 2a). The observed second-order rate constant (kdisp, disp: dispropor-
tionation) was determined by a decrease in absorbance at 361 nm due to PTIO•. The kdisp
value increases with increasing concentration of Sc(OTf)3 ([Sc(OTf)3]) to reach a constant
value (Figure 2b). The limiting kdisp value (k∞) and the binding constant (K) between PTIO•

and Sc3+ were determined from curve fitting based on Scheme 3 and Equation (1) to be
9.3 × 104 M−1 s−1 and 1.0 × 103 M−1, respectively.
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(5.5 × 10−5 M) in the presence of Sc(OTf)3 in deaerated MeCN at 298 K.
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According to Equation (1), when [Sc(OTf)3] is low (1 >> K[Sc(OTf)3]), the kdisp value
increases with increasing [Sc(OTf)3]. On the other hand, when [Sc(OTf)3] is high enough
to produce [(PTIO•)Sc]3+, the reaction between PTIO• and [(PTIO•)Sc]3+ becomes the
rate-determining step and the kdisp value reaches k∞.

kdisp = k∞K[Sc(OTf)3]/(1 + K[Sc(OTf)3]) (1)

Cyclic voltammetry measurements were carried out to examine the effect of Sc3+

on the redox behavior of PTIO• in deaerated MeCN containing 0.10 M Bu4NClO4. Two
well-defined reversible redox waves were observed at −0.98 and +0.70 V vs. the saturated
calomel electrode (SCE) for the one-electron reduction and oxidation of PTIO• to produce
PTIO− and PTIO+, respectively, in the absence of Sc3+ (Figure 3). Thus, the separation
between the one-electron oxidation and reduction potentials obtained in this study (1.68 V)
is slightly smaller than the literature value (1.73 V) [35]. Upon the addition of 10 equiv. of
Sc(OTf)3, however, a drastic change was observed in the cyclic voltammogram (Figure 3).
The reversible wave for the one-electron reduction of PTIO• and the oxidation wave of
PTIO• disappeared, while a new oxidation peak appeared at +1.66 V vs. SCE. This new
peak was assigned to the oxidation of [(PTIO)Sc]2+, which was generated by the dispro-
portionation of PTIO• upon the addition of Sc3+, to produce PTIO• and Sc3+ (Scheme 4).
Then, PTIO• was further oxidized to PTIO+ (Scheme 4). Although the reduction peak of
PTIO• in the presence of Sc(OTf)3 could not be observed due to the disproportionation
reaction, such a large (ca. 2.6 V) positive shift of the one-electron reduction potential of
PTIO• (equivalent to the oxidation peak for PTIO−) upon the addition of Sc(OTf)3 enables
the disproportionation to occur.
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The reversibility of the disproportionation of PTIO• by the addition of Sc(OTf)3
has also been examined as in the case of DPPH• [24]. The addition of H2O to the
PTIO•–Sc(OTf)3 system in deaerated MeCN resulted in the increase in the absorption
band at 361 nm due to PTIO• (Figure 4) (Video S2 of the Supplementary Materials). This
indicates that an electron-transfer comproportionation occurred to regenerate PTIO•. When
H2O was replaced by EtOH or MeOH, the regeneration of PTIO• was also observed.
However, the amount of the recovery was significantly lower compared to the case of H2O.
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The spectral change after the addition of H2O (1.9 M) to a deaerated MeCN solution
containing PTIO• (6.9 × 10−5 M) and Sc(OTf)3 (3.5 × 10−5 M) monitored by a stopped-flow
technique is shown in Figure 5a. The time course change in the absorbance at 361 nm
obeyed second-order kinetics (inset of Figure 5a), from which the observed second-order
rate constant for the comproportionation (kcomp, comp: comproportionation) was deter-
mined to be 1.4 × 104 M−1 s−1. The comproportionation reactions between reduced
and oxidized forms of nitroxyl radicals, hydroxyl amines, and oxoammonium cations,
respectively, have been extensively studied [58–66]. Goldstein et al. determined the kcomp
value between the hydroxylamine and oxoammonium cation derived from TEMPO to be
5.2 × 10 M−1 s−1 in a phosphate-buffered solution, while the deprotonation of the hydrox-
ylamine resulted in a significant increase in the kcomp value (3.3 × 104 M−1 s−1) [59]. This
suggests that the electron donor to PTIO+ in this study is PTIO−, rather than its protonated
form (PTIOH). The kcomp value linearly increased with the increasing concentration of H2O,
as shown in Figure 5b. Thus, the H2O-induced comproportionation reaction is shown in
Scheme 5. It is suggested that the complex formation of Sc3+ with H2O may weaken the
interaction between PTIO− and Sc3+, leading to the electron-transfer comproportionation
regenerating PTIO•.
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Figure 4. Spectral change upon the addition of H2O to a deaerated MeCN solution of
PTIO• (7.3 × 10−5 M) and Sc(OTf)3 (3.7 × 10−5 M) at 298 K. Orange and blue lines are the ini-
tial and final spectra, respectively. Arrows denote the direction of absorption changes.
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Figure 5. (a) Spectral change (interval: 0.1 s) observed after the addition of H2O (1.9 M) to a deaerated
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The reversible disproportionation of PTIO• was also confirmed by the electron param-
agnetic resonance (EPR) spectroscopy. The well-resolved five lines with a g value of 2.0067
and a hyperfine coupling constant (aN) of 0.75 mT were observed in the EPR spectrum
of PTIO• in deaerated MeCN (Figure 6a). After 0.5 equiv. of Sc(OTf)3 was added to the
MeCN solution of PTIO•, the signal intensity was significantly decreased, as shown in
Figure 6b, although a trace amount of PTIO• was observed. The addition of H2O to this
PTIO•–Sc(OTf)3 system in deaerated MeCN resulted in the regeneration of PTIO•, which
was confirmed by the increase in the EPR signal intensity due to PTIO• (Figure 6c).
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Figure 6. EPR spectra of (a) PTIO• (7.0 × 10−5 M), (b) PTIO• (7.0 × 10−5 M) after the addition of
Sc(OTf)3 (3.5 × 10−5 M), and (c) PTIO• (7.0 × 10−5 M) after the addition of Sc(OTf)3 (3.5 × 10−5 M)
and H2O (5.6 M) in deaerated MeCN at room temperature.

3. Materials and Methods
3.1. Materials

PTIO• was commercially obtained from Tokyo Chemical Industry Co., Ltd., Tokyo,
Japan. Sc(OTf)3 was purchased from Sigma-Aldrich, St. Louis, MO, USA. MeCN, MeOH,
and EtOH (spectral grade) used as solvents were commercially obtained from Nacalai
Tesque, Inc., Kyoto, Japan, and used as received. Tetra-n-butylammonium perchlorate
(Bu4NClO4), used as a supporting electrolyte for electrochemical measurements, was
purchased from Tokyo Chemical Industry Co., Ltd., Tokyo, Japan, recrystallized from EtOH
(spectral grade, Nacalai Tesque, Inc., Kyoto, Japan), and dried under vacuum at 313 K. The
water used in this study was freshly prepared with a Milli-Q system (Millipore Direct-Q
UV3) (Merch Millipore, Burlington, MA, USA).

3.2. Spectral and Kinetic Measurements

To avoid the effect of molecular oxygen (O2), the reactions were carried out under
strictly deaerated conditions, where a continuous flow of argon (Ar) gas was bubbled
through each MeCN solution. Typically, a 10 µL of aliquot of Sc(OTf)3 (1.3 × 10−3 M)
in deaerated MeCN was added to a quartz cuvette (10 mm i.d.), which contained PTIO•

(7.2 × 10−3 M) in deaerated MeCN. UV-vis spectral changes associated with the reaction
were monitored using an Agilent 8453 photodiode array spectrophotometer thermostated
with a Peltier temperature control at 298 K (Agilent Technologies, Santa Clara, CA, USA).
The reaction rates were followed by monitoring the absorbance at 361 nm due to PTIO•

after mixing of PTIO• in deaerated MeCN with a deaerated MeCN solution containing
Sc(OTf)3 at a volumetric ratio of 1:1 using a stopped-flow technique on a UNISOKU
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RSP-1000-02NM stopped-flow spectrophotometer (UNISOK Co., Ltd., Osaka, Japan), which
was thermostated with a Thermo Scientific NESLAB RTE-7 Circulating Bath (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) at 298 K. For the regeneration reaction of PTIO•, a
deaerated MeCN solution containing H2O were mixed with a deaerated MeCN solution
of PTIO• (1.4 × 10−4 M) and Sc(OTf)3 (7.0 × 10−5 M) at a volumetric ratio of 1:1 using
a stopped-flow technique. The observed second-order rate constants (kdisp and kcomp)
were obtained by a least-square curve fit using an Apple MacBook Pro personal computer
(Apple Inc., Cupertino, CA, USA) or an HP EliteDesk 800 G4 SFF (HP Inc., Palo Alto, CA,
USA). The plots of 1/(A − A∞) vs. time (A and A∞ are the absorbance at the reaction
time and the final absorbance, respectively) were linear until three or more half-lives,
with a correlation coefficient ρ > 0.999. The kdisp and kcomp values were calculated by
Slope(A0 − A∞)/[PTIO•]0, where Slope is the slope of the linear plot of 1/(A − A∞) vs.
time, and A0 and [PTIO•]0 are the initial absorbance at 361 nm and initial concentration of
PTIO•, respectively. In each case, it was confirmed that the kdisp and kcomp values derived
from at least three independent measurements agreed within experimental error of ±5%.

3.3. Electrochemical Measurements

The cyclic voltammetry measurements were performed on an ALS-630A electrochemi-
cal analyzer (BAS Co., Ltd., Tokyo, Japan) in deaerated MeCN containing 0.10 M Bu4NClO4
as a supporting electrolyte. The continuous flow of Ar gas was bubbled through each
MeCN solution to avoid the effect of O2. The glassy carbon working electrode (3 mm
diameter) (BAS Co., Ltd., Tokyo, Japan) was polished with polishing alumina suspension
(BAS Co., Ltd., Tokyo, Japan) and an alumina polishing pad (BAS Co., Ltd., Tokyo, Japan)
and rinsed with methanol (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan)
prior to each measurement. The counter electrode was a platinum wire (BAS Co., Ltd.,
Tokyo, Japan). The concentration of PTIO• and Sc(OTf)3 were 1.0 × 10−3 and 1.0 × 10−2 M,
respectively. The measured potentials were recorded with respect to an Ag/AgNO3 (0.01 M)
reference electrode (BAS Co., Ltd., Tokyo, Japan) with a sweep rate of 100 mV s−1 at 298 K.
The potentials were converted to those vs. the saturated calomel electrode (SCE) by adding
0.29 V [67].

3.4. EPR Measurements

The EPR spectra of PTIO• (7.0 × 10−5 M) in the presence or absence of
Sc(OTf)3 (3.5 × 10−5 M) and/or H2O (5.6 M) in deaerated MeCN were taken using a
disposable RDC-60-S flat cell (inner size, 60 mm × 6 mm × 0.3 mm) (Flashpoint Ltd., Tokyo,
Japan) on a JEOL X-band spectrometer (JES-RE1X) (JEOL Ltd., Tokyo, Japan) at room
temperature under the following conditions: microwave frequency, 9.40 GHz; microwave
power, 8 mW; center field, 333 mT; sweep width, 15 mT; sweep rate, 3 mT min−1; modula-
tion frequency, 100 kHz; modulation amplitude, 0.2 mT; and time constant, 0.1 s. EPR data
acquisition was controlled by the WIN-RAD ESR Sata Analyzer System (Radical Research,
Inc., Tokyo, Japan). The g values were calibrated with an Mn2+ marker. The experimental
EPR spectra were analyzed and simulated using the WinSim 2002 software [68].

4. Conclusions

The Sc3+ with a strong Lewis acidity induced the electron-transfer disproportionation
of PTIO• in deaerated MeCN. The electrochemical measurements suggested that the signif-
icantly large positive shift of the one-electron reduction potential of PTIO• in the presence
of Sc3+ enables the disproportionation to occur. The addition of H2O to the PTIO•–Sc(OTf)3
system in deaerated MeCN resulted in the regeneration of PTIO• because the complex
formation of Sc3+ with H2O weakened the interaction between PTIO− and Sc3+. The drastic
change in the redox reactivity of PTIO• in the presence of Sc3+ as a strong Lewis acid
provides not only valuable and fundamental information about the effects of the reaction
environments on the reactivity of radical species but an excellent opportunity to develop
radical-based redox flow batteries.
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Abbreviations
Al(OTf)3 Aluminum triflate (OTf = OSO2CF3)
Bu4NClO4 Tetra-n-butylammonium perchlorate
DPPH• 2,2-Diphenyl-1-picrylhydrazyl
DPPH− One-electron-reduced species of DPPH•

DPPH+ One-electron-oxidized species of DPPH•

EPR Electron paramagnetic resonance
EtOH Ethanol
MeCN Acetonitrile
MeOH Methanol
•NO Nitric oxide
PTIO• 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide
PTIO− One-electron-reduced species of PTIO•

PTIO+ One-electron-oxidized species of PTIO•

PTIOH Protonated form of PTIO−

SCE Saturated calomel electrode
Sc(OTf)3 Scandium triflate (OTf = OSO2CF3)
TEMPO 2,2,6,6-Tetramethylpiperidyl-1-oxyl
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