Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,061)

Search Parameters:
Keywords = nitrogen consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1526 KiB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 (registering DOI) - 2 Aug 2025
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

19 pages, 2806 KiB  
Article
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
by Antoine Marsigny, Olivier Mirgaux and Fabrice Patisson
Metals 2025, 15(8), 862; https://doi.org/10.3390/met15080862 (registering DOI) - 1 Aug 2025
Viewed by 134
Abstract
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based [...] Read more.
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization, detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR, a detailed finite-volume model of the shaft furnace, which can simulate the gas and solid flows, heat transfers and reaction kinetics throughout the reactor, with an extension that describes the whole gas circuit of the direct reduction plant, including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet, the use of high nitrogen content in the gas, and the introduction of a hot solid burden) were investigated, and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
Show Figures

Graphical abstract

18 pages, 5970 KiB  
Article
Isotonic Protein Solution Supplementation Enhances Growth Performance, Intestinal Immunity, and Beneficial Microbiota in Suckling Piglets
by Changliang Gong, Zhuohang Hao, Xinyi Liao, Robert J. Collier, Yao Xiao, Yongju Zhao and Xiaochuan Chen
Vet. Sci. 2025, 12(8), 715; https://doi.org/10.3390/vetsci12080715 - 30 Jul 2025
Viewed by 225
Abstract
Suckling is crucial for piglet intestinal development and gut health, as it improves resilience during the challenging weaning phase and promotes subsequent growth. IPS, comprising Na+/K+ ions, whey protein, and glucose, has been shown to have positive effects on animal [...] Read more.
Suckling is crucial for piglet intestinal development and gut health, as it improves resilience during the challenging weaning phase and promotes subsequent growth. IPS, comprising Na+/K+ ions, whey protein, and glucose, has been shown to have positive effects on animal growth and intestinal health. The objectives of this study were to assess the impact of IPS consumption on the growth performance, immunity, intestinal growth and development, and microbiota structure of suckling piglets. A total of 160 newborn piglets were randomly divided into control and IPS groups, with IPS supplementation starting from 2 to 8 days after birth and continuing until 3 days before weaning. The findings revealed that IPS boosted the body weight at 24 days by 3.6% (p < 0.05) and improved the body weight gain from 16 to 24 days by 15.7% (p < 0.05). Additionally, the jejunal villus height and villus height to crypt depth ratio in the IPS group were notably increased to 1.08 and 1.31 times (p < 0.05), respectively, compared to the control group. Furthermore, IPS elevated the plasma levels of IgA and IgM, reduced the plasma levels of blood urea nitrogen (BUN), and enhanced the content of secretory immunoglobulin A (SIgA) in the jejunal mucosa of suckling piglets. Furthermore, IPS upregulated the mRNA expression of tight junction proteins GLP-2, ZO-1, and Claudin-1 in jejunal tissue, while downregulating the regulatory genes in the Toll-like pathway, including MyD88 and TLR-4 (p < 0.05). The analysis of gut microbiota indicated that IPS altered the relative abundance of gut microbes, with an increase in beneficial bacteria like Alloprevotella and Bacteroides. In conclusion, this study demonstrates that IPS supplementation enhances weaning weight, growth performance, immune function, and intestinal development in piglets, supporting the integration of IPS supplementation in the management of pre-weaning piglets. Full article
Show Figures

Figure 1

18 pages, 5232 KiB  
Article
Analysis of the Characteristics of a Multi-Generation System Based on Geothermal, Solar Energy, and LNG Cold Energy
by Xinfeng Guo, Hao Li, Tianren Wang, Zizhang Wang, Tianchao Ai, Zireng Qi, Huarong Hou, Hongwei Chen and Yangfan Song
Processes 2025, 13(8), 2377; https://doi.org/10.3390/pr13082377 - 26 Jul 2025
Viewed by 255
Abstract
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is [...] Read more.
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is used to heat LNG; low-temperature flue gas, mainly nitrogen, can be used for cold storage cooling, enabling the staged utilization of the energy. Solar shortwave is used for power generation, and longwave is used to heat the working medium, which realizes the full spectrum utilization of solar energy. The influence of different equipment and operating parameters on the performance of a steam generation system is studied, and the multi-objective model of the multi-generation system is established and optimized. The results show that for every 100 W/m2 increase in solar radiation, the renewable energy ratio of the system increases by 1.5%. For every 10% increase in partial load rate of gas boiler, the proportion of renewable energy decreases by 1.27%. The system’s energy efficiency, cooling output, and the LNG vaporization flow rate are negatively correlated with the scale of solar energy utilization equipment. The decision variables determined by the TOPSIS (technique for order of preference by similarity to ideal solution) method have better economic performance. Its investment cost is 18.14 × 10 CNY, which is 7.83% lower than that of the LINMAP (linear programming technique for multidimensional analysis of preference). Meanwhile, the proportion of renewable energy is only 0.29% lower than that of LINMAP. Full article
(This article belongs to the Special Issue Innovations in Waste Heat Recovery in Industrial Processes)
Show Figures

Figure 1

26 pages, 4820 KiB  
Article
Olive Oil Wastewater Revalorization into a High-Added Value Product: A Biofertilizer Assessment Combining LCA and MCI
by Roberto Petrucci, Gabriele Menegaldo, Lucia Rocchi, Luisa Paolotti, Antonio Boggia and Debora Puglia
Sustainability 2025, 17(15), 6779; https://doi.org/10.3390/su17156779 - 25 Jul 2025
Viewed by 295
Abstract
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs [...] Read more.
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs for various applications. This study introduces a novel value chain for olive wastes, focused on extracting lignin from olive pomace by ionic liquids and polyphenols from olive mill wastewater, which are then incorporated as hybrid nanoparticles in the formulation of an innovative starch-based biofertilizer. This biofertilizer, obtained by using residual wastewater as a source of soluble nitrogen, acting at the same time as a plasticizer for the biopolymer, was demonstrated to surpass traditional NPK biofertilizers’ efficiency, allowing for root growth and foliage in drought conditions. In order to recognize the environmental impact due to its production and align it with the technical output, the circularity and environmental performance of the proposed system were innovatively evaluated through a combination of Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI). LCA results indicated that the initial upcycling process was potentially characterized by significant hot spots, primarily related to energy consumption (>0.70 kWh/kg of water) during the early processing stages. As a result, the LCA score of this preliminary version of the biofertilizer may be higher than that of conventional commercial products, due to reliance on thermal processes for water removal and the substantial contribution (56%) of lignin/polyphenol precursors to the total LCA score. Replacing energy-intensive thermal treatments with more efficient alternatives represents a critical area for improvement. The MCI value of 0.84 indicates limited potential for further enhancement. Full article
Show Figures

Figure 1

11 pages, 956 KiB  
Communication
The Growth-Promoting Ability of Serratia liquefaciens UNJFSC 002, a Rhizobacterium Involved in Potato Production
by Cristina Andrade Alvarado, Zoila Honorio Durand, Pedro M. Rodriguez-Grados, Dennis Lloclla Tineo, Diego Hiroshi Takei, Carlos I. Arbizu and Sergio Contreras-Liza
Int. J. Plant Biol. 2025, 16(3), 82; https://doi.org/10.3390/ijpb16030082 - 23 Jul 2025
Viewed by 194
Abstract
Several strains of the genus Serratia isolated from the rhizosphere of crops are plant growth-promoting bacteria (PGPB) that may possess various traits associated with nitrogen metabolism, auxin production, and other characteristics. The objective of the present study was to investigate the in vitro [...] Read more.
Several strains of the genus Serratia isolated from the rhizosphere of crops are plant growth-promoting bacteria (PGPB) that may possess various traits associated with nitrogen metabolism, auxin production, and other characteristics. The objective of the present study was to investigate the in vitro and in vivo characteristics of the growth-promoting activity of S. liquefaciens UNJFSC 002 in potato plants. This strain was inoculated into potato varieties (Solanum tuberosum) under laboratory and greenhouse conditions to determine the bacterial strain’s ability to promote growth under controlled conditions. It was found that the S. liquefaciens strain UNJFSC 002 had a significantly greater effect on the fresh and dry weight of the foliage and induced a higher tuber weight per plant and larger tuber diameter compared to the uninoculated potato plants (p < 0.05). Additionally, in vitro, the strain demonstrated the ability to fix atmospheric nitrogen and produce indole-3-acetic acid (IAA), as well as the capacity to solubilise tricalcium phosphate in the laboratory. This research reveals the potential of S. liquefaciens UNJFSC 002 as an inoculant to improve potato production, demonstrating its ability to promote the growth and productivity of potato varieties suitable for direct consumption and processing under controlled conditions. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

13 pages, 474 KiB  
Article
Testing a Depletion Nutrient Supply Strategy to Improve the Fertilization Management of “Cipollotto Nocerino” Spring Onion: Effect on Produce Yield and Quality Attributes
by Alessandro Natalini, Maria Concili, Sonia Cacini, Enrica De Falco and Daniele Massa
Horticulturae 2025, 11(8), 867; https://doi.org/10.3390/horticulturae11080867 - 22 Jul 2025
Viewed by 510
Abstract
Background: Conventional practices for the cultivation of “Cipollotto Nocerino” spring onion are mainly based on growers’ experience, and up to 250 kg/ha for N is commonly furnished among growing cycles. Facing the issue of reduced availability of natural resources for crop production (for [...] Read more.
Background: Conventional practices for the cultivation of “Cipollotto Nocerino” spring onion are mainly based on growers’ experience, and up to 250 kg/ha for N is commonly furnished among growing cycles. Facing the issue of reduced availability of natural resources for crop production (for example mineral resources), we investigated the optimization of the productivity. Methods: In our research, we tested the use of depletion nutrient supply strategy (CAL-FERT®) to enhance fertilization in accordance with the principle of sustainable agriculture included in the Farm to Fork strategy. In our study, besides the common initial fertilization, three different strategies for cover fertilizations have been elaborated with the support of CAL-FERT® software. The treatments were as follows: (i) commercial standard fertilization as control (named CF); (ii) fertilization equivalent to 50% of the N applied in the control (named F-50); (iii) fertilization corresponding to 25% of the N applied in the control (named F-25); and (iv) strongly reduced fertilization compared to the control (named F-0). The parameters investigated included the following: plant height, yield, SPAD index, nitrogen use efficiency, dry matter, soluble solid content, and pyruvate contents in bulbs and leaves. Nitrogen content was also analyzed for both hypogeous and epigeous apparatuses. Results: Among the most interesting vegetative results, plant height and SPAD readings were reduced only by the extreme treatment F-0 compared with the other treatments at 104 days after planting. Regarding qualitative and productive parameters, the treatments F-50 and F-25 showed the highest yield without prejudging Soluble Solid Content and reducing pungency. Conclusion: In nutritional experiments, onion could be considered as a crop model to investigate quality in vegetables due to its consumption as fresh product and for its particular response, in terms of yield and quality, to fertilization. The use of simulation software can support the identification of strategies to reduce the nutrient supply without any detrimental effect on yield and other vegetative and qualitative parameters in onion crops. Full article
(This article belongs to the Special Issue Productivity and Quality of Vegetable Crops under Climate Change)
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 247
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

12 pages, 1874 KiB  
Article
Influence of 50 Hz and 20 kHz Plasma Generator Frequency on Ammonia Decomposition for Hydrogen Recovery
by Michalina Perron, Mateusz Wiosna, Wojciech Gajewski, Krzysztof Krawczyk and Michał Młotek
Energies 2025, 18(14), 3841; https://doi.org/10.3390/en18143841 - 19 Jul 2025
Viewed by 258
Abstract
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient [...] Read more.
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient NH3 decomposition methods are needed to recover stored hydrogen. Plasma-assisted decomposition offers a potential solution, but high energy consumption, mainly due to inefficient power supply systems, remains a challenge. This study examines the impact of varying the driving frequency of a gliding discharge plasma system on ammonia decomposition, comparing low-frequency 50 Hz and high-frequency 20 kHz power supplies. Results show that high-frequency plasma enhances electron density and energy distribution, increasing the amount of vibrationally excited nitrogen molecules. This improves catalyst activation, leading to higher ammonia conversion and hydrogen production. Compared to the thyristor-powered system, the high-frequency system increased ammonia decomposition productivity by 30% and reduced energy consumption by 36% using a coprecipitated catalyst. These findings emphasize the importance of a plasma generator optimizing plasma-assisted ammonia decomposition and improving efficiency in hydrogen production. Full article
(This article belongs to the Special Issue Searching for Ways of Optimizing the Attainment and Use of Energy)
Show Figures

Figure 1

20 pages, 2342 KiB  
Article
Metabolomic Profiling of Desiccation Response in Recalcitrant Quercus acutissima Seeds
by Haiyan Chen, Fenghou Shi, Boqiang Tong, Yizeng Lu and Yongbao Shen
Agronomy 2025, 15(7), 1738; https://doi.org/10.3390/agronomy15071738 - 18 Jul 2025
Viewed by 322
Abstract
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and [...] Read more.
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and 14.8%, corresponding to approximately 99%, 52%, and 0% germination, respectively. We measured germination ability, soluble protein content, and proline accumulation, and we performed untargeted metabolomic profiling using LC-MS. Soluble protein levels increased early but declined later during desiccation, while proline levels continuously increased for sustained osmotic adjustment. Metabolomics analysis identified a total of 2802 metabolites, with phenylpropanoids and polyketides (31.12%) and lipids and lipid-like molecules (29.05%) being the most abundant. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that differentially expressed metabolites were mainly enriched in key pathways such as amino acid metabolism, energy metabolism, and nitrogen metabolism. Notably, most amino acids decreased in content, except for proline, which showed an increasing trend. Tricarboxylic acid cycle intermediates, especially citric acid and isocitric acid, showed significantly decreased levels, indicating energy metabolism imbalance due to uncoordinated consumption without effective replenishment. The reductions in key amino acids such as glutamic acid and aspartic acid further reflected metabolic network disruption. In summary, Q. acutissima seeds fail to establish an effective desiccation tolerance mechanism. The loss of soluble protein-based protection, limited capacity for proline-mediated osmotic regulation, and widespread metabolic disruption collectively lead to irreversible cellular damage. These findings highlight the inherent metabolic vulnerabilities of recalcitrant seeds and suggest potential preservation strategies, such as supplementing critical metabolites (e.g., TCA intermediates) during storage to delay metabolic collapse and mitigate desiccation-induced damage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 5627 KiB  
Article
The Influence of Bud Positions on the Changes in Carbohydrates and Nitrogen in Response to Hydrogen Cyanamide During Budbreak in Low-Chill Kiwifruit
by Wanichaya Chaiwimol, Wisuwat Songnuan, Hitoshi Ohara, Yotin Juprasong and Aussanee Pichakum
Horticulturae 2025, 11(7), 847; https://doi.org/10.3390/horticulturae11070847 - 17 Jul 2025
Viewed by 848
Abstract
Climate change has contributed to a decline in winter chilling accumulation, a critical requirement for budbreak in temperate fruit crops. Its consequence has been a reduction in fruit production. To compensate for insufficient chilling, hydrogen cyanamide (HC) is widely applied, though its effectiveness [...] Read more.
Climate change has contributed to a decline in winter chilling accumulation, a critical requirement for budbreak in temperate fruit crops. Its consequence has been a reduction in fruit production. To compensate for insufficient chilling, hydrogen cyanamide (HC) is widely applied, though its effectiveness remains limited. This study investigated the effect of HC application on budbreak in low-chill kiwifruit under warm conditions by correlating phenological responses with changes in carbohydrate and nitrogen concentrations in bark tissues across bud positions. Phenological observations revealed the highest budbreak percentage and total flower buds at the apical position. HC significantly increased budbreak by 58.82% at the apical position and by 375% at the middle position, with corresponding increases in total flower buds by 148.78% and 1066.67%, respectively. Additionally, shoot lengths were uniform among bud positions in HC-treated canes, whereas non-treated canes showed shoot length heterogeneity. Moreover, HC treatment triggered an earlier and more pronounced reduction in soluble sugars (sucrose and hexoses) concentrations along the gradient from apical to basal bud positions, where the response was strongest at the apical position, which was strongly associated with enhanced budbreak percentages and total flower bud formation. While total nitrogen content was highest in the apical position, it was unaffected by HC application. These findings indicate that HC may promote budbreak by enhancing the mobilization and consumption of soluble sugars for bud growth, thereby improving budbreak performance, flower bud production, and uniform shoot development in low-chill kiwifruit under warm conditions. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

10 pages, 2486 KiB  
Article
Performance of Miniature Carbon Nanotube Field Emission Pressure Sensor for X-Ray Source Applications
by Huizi Zhou, Wenguang Peng, Weijun Huang, Nini Ye and Changkun Dong
Micromachines 2025, 16(7), 817; https://doi.org/10.3390/mi16070817 - 17 Jul 2025
Viewed by 330
Abstract
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon [...] Read more.
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon nanotube (MWCNT) field emitters was investigated, and the in situ vacuum performance of X-ray tubes was studied for the advantages of miniature dimension and having low power consumption, extremely low outgassing, and low thermal disturbance compared to conventional ionization gauges. The MWCNT emitters with high crystallinity presented good pressure sensing performance for nitrogen, hydrogen, and an air mixture in the range of 10−7 to 10−3 Pa. The miniature MWCNT sensor is able to work and remain stable with high-temperature baking, important for VED applications. The sensor monitored the in situ pressures of the sealed X-ray tubes successfully with high-power operations and a long-term storage of over two years. The investigation showed that the vacuum of the sealed X-ray tube is typical at a low 10−4 Pa level, and pre-sealing degassing treatments are able to make the X-ray tube work under high vacuum levels with less outgassing and keep a stable high vacuum for a long period of time. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

17 pages, 2288 KiB  
Article
Environmental Factors Modulate Feeding Behavior of Penaeus vannamei: Insights from Passive Acoustic Monitoring
by Hanzun Zhang, Chao Yang, Yesen Li, Bin Ma and Boshan Zhu
Animals 2025, 15(14), 2113; https://doi.org/10.3390/ani15142113 - 17 Jul 2025
Viewed by 271
Abstract
In recent years, passive acoustic monitoring (PAM) technology has significantly contributed to advancements in aquaculture techniques, system iterations, and increased production yields within intelligent feeding systems for Penaeus vannamei. However, current PAM-based intelligent feeding systems do not incorporate environmental factors into the [...] Read more.
In recent years, passive acoustic monitoring (PAM) technology has significantly contributed to advancements in aquaculture techniques, system iterations, and increased production yields within intelligent feeding systems for Penaeus vannamei. However, current PAM-based intelligent feeding systems do not incorporate environmental factors into the decision process, limiting the improvement of monitoring accuracy in complex environments such as ponds. To establish a connection between environmental factors and the feeding acoustics of P. vannamei, this study utilized PAM technology combined with video analysis to investigate the effects of three key environmental factors—temperature, ammonia nitrogen, and nitrite nitrogen—on the feeding behavioral characteristics of shrimp, with a specific focus on acoustic signals “clicks”. The results demonstrated a significant correlation between the number of clicks and feed consumption in shrimp across different treatments, establishing this stable relationship as a reliable indicator for assessing shrimp feeding status. When water temperature increased from 20 °C to 32 °C, shrimp feed consumption showed an elevation from 0.46 g to 0.95 g per 30 min, with the average number of clicks increasing from 388 to 2947.58 and sound pressure levels rising accordingly. Conversely, ammonia nitrogen at 12 mg/L reduced feed consumption by 0.15 g and decreased click counts by 911.75 pulses compared to controls, while nitrite nitrogen at 40 mg/L similarly suppressed feed consumption by 0.15 g and the average number of clicks by 304.75. A rise in water temperature stimulated shrimp behaviors such as feeding, swimming, and foraging, while elevated concentrations of ammonia nitrogen and nitrite nitrogen significantly inhibited shrimp activity. Redundancy analysis revealed that temperature was the most prominent factor among the three environmental factors influencing shrimp feeding. This study is the first to quantify the specific effects of common environmental factors on the acoustic feeding signals and feeding behavior of P. vannamei using PAM technology. It confirms the feasibility of using PAM technology to assess shrimp feeding conditions under diverse environmental conditions and the necessity of integrating environmental monitoring modules into future feeding systems. This study provides behavioral evidence for the development of precise feeding technologies and the upgrade of intelligent feeding systems for P. vannamei. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

29 pages, 13314 KiB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 382
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

18 pages, 7268 KiB  
Article
Effects of Pyrolysis and Activation Conditions on SO2 and NO Adsorption by Biochar and Its Environmental Impact
by Kyungil Cho, Hyeonrok Choi and Yongwoon Lee
Sustainability 2025, 17(13), 6137; https://doi.org/10.3390/su17136137 - 4 Jul 2025
Viewed by 339
Abstract
This study investigates the adsorption performance of biochar synthesized under varying pyrolysis and CO2 activation conditions for the simultaneous removal of nitrogen monoxide (NO) and sulfur dioxide (SO2), with an additional focus on its environmental impacts via life cycle assessment [...] Read more.
This study investigates the adsorption performance of biochar synthesized under varying pyrolysis and CO2 activation conditions for the simultaneous removal of nitrogen monoxide (NO) and sulfur dioxide (SO2), with an additional focus on its environmental impacts via life cycle assessment (LCA). Biochar was produced from Hinoki cypress using a two-stage process comprising initial pyrolysis followed by CO2 activation, and its physicochemical properties were evaluated through pore structure analysis. Adsorption experiments were conducted under both single- and combined-gas conditions to assess the synergistic or competitive behaviors of NO and SO2 adsorption. The results indicated that activation conditions significantly influenced the surface area and pore volume of biochar, leading to enhanced gas adsorption capacities. A trade-off between biochar yield and pollutant removal efficiency was observed, suggesting an optimal activation temperature balancing these two factors. Furthermore, the LCA approach, employing IPCC 2021 GWP 100 metrics, quantified the environmental impacts of biochar production under different thermal conditions. The findings revealed that although higher activation temperatures improved adsorption efficiency, they also resulted in increased energy consumption and associated greenhouse gas emissions. These outcomes demonstrate the necessity of optimizing activation parameters not only for functional performance but also for environmental sustainability. This work provides insight into designing efficient biochar-based gas treatment systems and supports their potential application as eco-friendly alternatives in industrial emission control strategies. Full article
(This article belongs to the Special Issue Biomass Transformation and Sustainability)
Show Figures

Figure 1

Back to TopTop