Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = nitrogen and sulphur

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8407 KiB  
Article
Assessing the Combined Influence of Indoor Air Quality and Visitor Flow Toward Preventive Conservation at the Peggy Guggenheim Collection
by Maria Catrambone, Emiliano Cristiani, Cristiano Riminesi, Elia Onofri and Luciano Pensabene Buemi
Atmosphere 2025, 16(7), 860; https://doi.org/10.3390/atmos16070860 - 15 Jul 2025
Viewed by 368
Abstract
The study at the Peggy Guggenheim Collection in Venice highlights critical interactions between indoor air quality, visitor dynamics, and microclimatic conditions, offering insights into preventive conservation of modern artworks. By analyzing pollutants such as ammonia, formaldehyde, and organic acids, alongside visitor density and [...] Read more.
The study at the Peggy Guggenheim Collection in Venice highlights critical interactions between indoor air quality, visitor dynamics, and microclimatic conditions, offering insights into preventive conservation of modern artworks. By analyzing pollutants such as ammonia, formaldehyde, and organic acids, alongside visitor density and environmental data, the research identified key patterns and risks. Through three seasonal monitoring campaigns, the concentrations of SO2 (sulphur dioxide), NO (nitric oxide), NO2 (nitrogen dioxide), NOx (nitrogen oxides), HONO (nitrous acid), HNO3 (nitric acid), O3 (ozone), NH3 (ammonia), CH3COOH (acetic acid), HCOOH (formic acid), and HCHO (formaldehyde) were determined using passive samplers, as well as temperature and relative humidity data loggers. In addition, two specific short-term monitoring campaigns focused on NH3 were performed to evaluate the influence of visitor presence on indoor concentrations of the above compounds and environmental parameters. NH3 and HCHO concentrations spiked during high visitor occupancy, with NH3 levels doubling in crowded periods. Short-term NH3 campaigns confirmed a direct correlation between visitor numbers and the above indoor concentrations, likely due to human emissions (e.g., sweat, breath) and off-gassing from materials. The indoor/outdoor ratios indicated that several pollutants originated from indoor sources, with ammonia and acetic acid showing the highest indoor concentrations. By measuring the number of visitors and microclimate parameters (temperature and humidity) every 3 s, we were able to precisely estimate the causality and the temporal shift between these quantities, both at small time scale (a few minute delay between peaks) and at medium time scale (daily average conditions due to the continuous inflow and outflow of visitors). Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 2498 KiB  
Article
Supplementary Light and Retardant Application During the Rooting Stage Improve the Final Performances of Petunia and Calibrachoa Plants
by Bożena Szewczyk-Taranek, Iwona Domagała-Świątkiewicz, Anna Kapczyńska, Paweł Marcinkowski and Bożena Pawłowska
Agronomy 2025, 15(7), 1644; https://doi.org/10.3390/agronomy15071644 - 6 Jul 2025
Viewed by 307
Abstract
The efficient production of high-quality bedding plants is essential for greenhouse growers aiming to meet market demands while minimising costs. This study investigated the effects of supplemental lighting (prolonged photoperiod) and retardant treatments on the growth, development, mineral composition, and flowering of vegetatively [...] Read more.
The efficient production of high-quality bedding plants is essential for greenhouse growers aiming to meet market demands while minimising costs. This study investigated the effects of supplemental lighting (prolonged photoperiod) and retardant treatments on the growth, development, mineral composition, and flowering of vegetatively propagated Petunia × atkinsiana (Surfinia® ‘Lime’ and ‘Purple’) and Calibrachoa × hybrida (Superbells® ‘Unique Red’ and ‘Unique Golden Yellow’) cultivars. The plants were subjected to extended lighting for up to 16 h during the rooting phase and treated with or without a growth retardant. The supplemental light significantly accelerated the flowering, improved the shoot branching, and enhanced the mineral nutrient accumulation, particularly of calcium, sulphur, and magnesium. The illuminated plants also exhibited higher chlorophyll content and more favourable dry-mass accumulation. The growth retardants reduced the plant height and concentrations of nitrogen, phosphorus, and potassium but increased the calcium and magnesium contents. The combination of lighting and growth regulation optimised the plant morphology and nutritional status, producing compact, well-branched plants with enhanced visual appeal. Earlier flowering of illuminated plants is valuable from a commercial perspective, allowing earlier selling and improved product marketability. These findings confirm the synergistic benefits of early photoperiod control and chemical growth regulation in enhancing the commercial quality and sustainability of bedding plant production. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

28 pages, 3496 KiB  
Article
Production of 5-Hydroxymethylfurfural (HMF) from Sucrose in Aqueous Phase Using S, N-Doped Hydrochars
by Katarzyna Morawa Eblagon, Rafael G. Morais, Anna Malaika, Manuel Alejandro Castro Bravo, Natalia Rey-Raap, M. Fernando R. Pereira and Mieczysław Kozłowski
Catalysts 2025, 15(7), 656; https://doi.org/10.3390/catal15070656 - 5 Jul 2025
Viewed by 440
Abstract
5-Hydroxymethylfurfural (HMF) is a versatile platform molecule with the potential to replace many fossil fuel derivatives. It can be obtained through the dehydration of carbohydrates. In this study, we present a simple and cost-effective microwave-assisted method for producing HMF. This method involves the [...] Read more.
5-Hydroxymethylfurfural (HMF) is a versatile platform molecule with the potential to replace many fossil fuel derivatives. It can be obtained through the dehydration of carbohydrates. In this study, we present a simple and cost-effective microwave-assisted method for producing HMF. This method involves the use of readily available sucrose as a substrate and glucose-derived bifunctional hydrochars as carbocatalysts. These catalysts were produced via hydrothermal carbonisation using thiourea and urea as nitrogen and sulphur sources, respectively, to introduce Brønsted acidic and basic sites into the materials. Using a microwave reactor, we found that the S, N-doped hydrochars were active in sucrose dehydration in water. Catalytic results showed that HMF yield depended on the balance between acidic and basic sites as well as the types of S and N species present on the surfaces of these hydrochars. The best-performing catalyst achieved an encouraging HMF yield of 37%. The potential of N, S-co-doped biochar as a green solid catalyst for various biorefinery processes was demonstrated. A simple kinetic model was developed to elucidate the kinetics of the main reaction pathways of this cascade process, showing a very good fit with the experimental results. The calculated rate constants revealed that reactions with a 5% sucrose loading exhibited significantly higher fructose dehydration rates and produced fewer side products than reactions using a more diluted substrate. No isomerisation of glucose into fructose was observed in an air atmosphere. On the contrary, a limited rate of isomerisation of glucose into fructose was recorded in an oxygen atmosphere. Therefore, efforts should focus on achieving a high glucose-to-fructose isomerisation rate (an intermediate reaction step) to improve HMF selectivity by reducing humin formation. Full article
(This article belongs to the Special Issue Carbon-Based Catalysts to Address Environmental Challenges)
Show Figures

Graphical abstract

37 pages, 998 KiB  
Systematic Review
Evaluating the Cost-Effectiveness of Air Pollution Mitigation Strategies: A Systematic Review
by Bo Vandenbulcke, Nick Verhaeghe, Lisa Cruycke, Max Lelie, Steven Simoens and Koen Putman
Int. J. Environ. Res. Public Health 2025, 22(6), 926; https://doi.org/10.3390/ijerph22060926 - 11 Jun 2025
Viewed by 853
Abstract
Air pollution is the world’s greatest environmental health risk. Pollutants that pose large health concerns are particulate matter (PM2.5 and PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). These [...] Read more.
Air pollution is the world’s greatest environmental health risk. Pollutants that pose large health concerns are particulate matter (PM2.5 and PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). These compounds (especially PM2.5 and PM10) contribute to the onset of diseases, such as respiratory diseases (e.g., asthma, chronic obstructive pulmonary disease (COPD), or lung cancer) and cardiovascular diseases. Abatement interventions are implemented to reduce air pollution and thereby the risk of these diseases. This systematic review examined the published scientific evidence on the cost-effectiveness of strategies aimed at reducing or controlling air pollution and assessed the reporting quality of included studies. It employed rigorous data extraction and quality scoring procedures to ensure the reliability and validity of our findings. Overall, there is substantial evidence supporting the cost-effectiveness of interventions aimed at reducing air pollution. Seventy-four studies and four policy reports were included in this review. Predominantly, cost–benefit analyses have been reported (n = 40), reflecting the multisectoral impacts and associated costs of air pollution. Only four cost–utility analyses were found, indicating the need for more research within this domain. Additionally, eight articles reported one or more non-economic results. Thirty-nine studies focused on particulate matter (PM), and eleven focused on nitrogen oxides (NOx). The quality assessment yielded moderate results. The heterogeneity of studies and moderate quality of reporting make it difficult to compare results and draw definitive conclusions. Full article
Show Figures

Figure 1

17 pages, 2012 KiB  
Article
Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal
by Andrey Zhuikov, Tatyana Pyanykh, Mikhail Kolosov, Irina Grishina, Yana Zhuikova, Petr Kuznetsov and Stanislav Chicherin
Energies 2025, 18(11), 2906; https://doi.org/10.3390/en18112906 - 1 Jun 2025
Viewed by 445
Abstract
The accelerated urbanisation that is occurring in many regions of the world is resulting in a corresponding increase in the volume of sewage sludge. This sludge is then stored in specialised landfills, the area of which is increasing annually. One of the methods [...] Read more.
The accelerated urbanisation that is occurring in many regions of the world is resulting in a corresponding increase in the volume of sewage sludge. This sludge is then stored in specialised landfills, the area of which is increasing annually. One of the methods of utilising this sludge is through its combustion in power plants, where it serves to generate heat. However, due to the low calorific value of sewage sludge, it is recommended to combust it in conjunction with high-calorific fuel. To improve energy efficiency of sewage residue biomass utilisation by co-combustion with coal, it is necessary to determine the main combustion parameters and mass fraction in the mixture. The objective of this study is to estimate the primary parameters of combustion of sewage sludge and coal by employing the synchronous thermal analysis method, in addition to determining the concentrations of gaseous substances formed during the combustion process. A comprehensive technical and elemental analysis of the fuels was conducted, and their thermal properties were thoroughly determined. The inorganic residue from sewage sludge combustion was analysed by scanning electron microscopy for the content of trace elements and basic oxides. Thermogravimetric analysis (TGA) of fuels was conducted in an oxidising medium, utilising a 6 mg suspension with a heating rate of 20 °C/min. The profiles of TG, DTG, and DSC curves were then utilised to determine the ignition and burnout temperatures, maximum mass loss rate, combustion index, and synergistic effects. The mixture of coal with 25% sewage sludge was found to have the most energy-efficient performance compared to other mixtures, with a 3% reduction in ignition temperature compared to coal. Concentrations of carbon dioxide, carbon monoxide, nitrogen oxides, and sulphur oxides were also determined. Full article
Show Figures

Figure 1

16 pages, 2171 KiB  
Article
Functional Roles of the Seagrass (Zostera marina) Holobiont Change with Plant Development
by Sam Gorvel, Bettina Walter, Joe D. Taylor and Richard K. F. Unsworth
Plants 2025, 14(11), 1584; https://doi.org/10.3390/plants14111584 - 23 May 2025
Viewed by 683
Abstract
Seagrass meadows play a critical role in biogeochemical cycling, especially in nitrogen and sulphur processes, driven by their associated microbiome. This study provides a novel functional analysis of microbial communities in seagrass (Zostera marina) rhizosphere and endosphere, comparing seedlings and mature [...] Read more.
Seagrass meadows play a critical role in biogeochemical cycling, especially in nitrogen and sulphur processes, driven by their associated microbiome. This study provides a novel functional analysis of microbial communities in seagrass (Zostera marina) rhizosphere and endosphere, comparing seedlings and mature plants. While nitrogen-fixing bacteria are more abundant in seedlings, mature plants exhibit greater microbial diversity and stability. Sediment samples show higher microbial diversity than roots, suggesting distinct niche environments in seagrass roots. Key microbial taxa (sulphur-oxidizing and nitrogen-cycling bacteria) were observed across developmental stages, with rapid establishment in seedlings aiding survival in sulphide-rich, anoxic sediments. Chromatiales, which oxidize sulphur, are hypothesized to support juvenile plant growth by mitigating sulphide toxicity, a key stressor in early development. Additionally, sulfate-reducing bacteria (SRB), though potentially harmful due to H2S production, may also aid in nitrogen fixation by producing ammonium. The study underscores the dynamic relationship between seagrass and its microbiome, especially the differences in microbial community structure and function between juvenile and mature plants. The study emphasizes the need for a deeper understanding of microbial roles within the seagrass holobiont to aid with Blue Carbon stores and to improve restoration success, particularly for juvenile plants struggling to establish effective microbiomes. Full article
(This article belongs to the Special Issue Marine Macrophytes Responses to Global Change)
Show Figures

Figure 1

28 pages, 4098 KiB  
Review
Advances in the Study of Flame-Retardant Cellulose and Its Application in Polymers: A Review
by Quan Yuan, Shaodong Wang, Liping He and Shiwei Xu
Polymers 2025, 17(9), 1249; https://doi.org/10.3390/polym17091249 - 3 May 2025
Cited by 1 | Viewed by 1280
Abstract
Cellulose, as a green and renewable polymer material, has attracted the attention of a wide range of scholars for its excellent mechanical strength, easy chemical modification and degradability. However, its flammability limits its application in automotive, aerospace, construction, textile and electronic fields. This [...] Read more.
Cellulose, as a green and renewable polymer material, has attracted the attention of a wide range of scholars for its excellent mechanical strength, easy chemical modification and degradability. However, its flammability limits its application in automotive, aerospace, construction, textile and electronic fields. This review recapitulates the modification methods of flame-retardant cellulose and their applications in polymers in recent years. This paper discusses the fabrication of flame-retardant cellulose from various aspects such as boron, nitrogen, phosphorus, sulphur, inorganic and heterogeneous synergistic modification, respectively, and evaluates the flame retardancy of flame-retardant cellulose by means of thermogravimetry, cone calorimetry, limiting oxygen index, the vertical combustion of UL94, etc. Finally, it discusses the application of flame-retardant cellulose in actual composites, which fully reflects the extraordinary potential of flame-retardant cellulose for applications in polymers. Currently, flame-retardant cellulose has significantly improved its flame-retardant properties through multi-faceted modification strategies and has shown a broad application prospect in composite materials. However, interfacial compatibility, environmental protection and process optimisation are still the key directions for future research, and efficient, low-toxic and industrialised flame-retardant cellulose materials need to be realised through innovative design. Full article
Show Figures

Figure 1

28 pages, 4380 KiB  
Article
Preliminary Assessment of Air Pollution in the Archaeological Museum of Naples (Italy): Long Term Monitoring of Nitrogen Dioxide and Nitrous Acid
by Federica Valentini, Ivo Allegrini, Irene Colasanti, Camilla Zaratti, Andrea Macchia, Cristiana Barandoni and Anna Neri
Air 2025, 3(2), 12; https://doi.org/10.3390/air3020012 - 29 Apr 2025
Viewed by 555
Abstract
A project to assess air pollution at the National Archeological Museum in Naples was carried out. The main goal of the project was to develop and test a reliable yet simple monitoring system to be adopted at the same time in several exposition [...] Read more.
A project to assess air pollution at the National Archeological Museum in Naples was carried out. The main goal of the project was to develop and test a reliable yet simple monitoring system to be adopted at the same time in several exposition rooms. Nitrogen dioxide, hydrogen chloride, nitrous acid, and sulphur dioxide were the chemical species addressed by the technique. Monitoring was simultaneously performed in five rooms, and pollutant concentrations were determined using two passive samplers. The sampling time was approximately one month per period. In addition to passive samplers, environmental data loggers were used to obtain temperature and relative humidity data. Results show high concentrations of nitrogen dioxide inside rooms, which were consistent with those found in outdoor environments and are close to the values calculated considering the air exchange rates, estimated through time gradients of ambient temperature. The minimum values were recorded in a basement room that had a low ventilation rate. The conversion of nitrogen dioxide to real surfaces produces nitric acid and nitrous acid. Large amounts of nitrous acid, up to 15 µg/m3, were found in exposition rooms, with maximum values in the basement room, where the air exchange rate is limited, and the surface-to-volume ratio is the highest among the monitored rooms. Data analysis demonstrated that the system could discriminate between nitrous acid and nitrogen dioxide. The results show that, for the first time, passive samplers can overcome the problem of mutual interference between nitrogen-containing species. Nitrates and nitrites found in the alkaline passive sampler were generally found not to be interfered by nitrogen dioxide. Nitric acid was also found in the gas phase, likely generated by dissociation of ammonium nitrate in particulate matter. Hydrogen chloride and sulphur dioxide were present at few µg/m3. Nitrous acid is the most relevant acidic species found indoors. The presence of pollutants was discussed in terms of the reliability of the analytical procedure and its significance for indoor air pollution. Full article
Show Figures

Graphical abstract

20 pages, 1835 KiB  
Article
Any Way the Wind Blows Does Really Matter in Lichen Response to Air Pollution from an Oil Refinery
by Maja Maslać Mikulec, Saša Likić, Oleg Antonić and Mirta Tkalec
Toxics 2025, 13(3), 160; https://doi.org/10.3390/toxics13030160 - 25 Feb 2025
Cited by 1 | Viewed by 1216
Abstract
Lichens serve as effective bioindicators for air pollution studies, yet most biomonitoring research focuses primarily on the distance from pollution sources, often neglecting wind data that could elucidate the spread of airborne pollutants. In our previous study in Slavonski Brod, Croatia, we utilized [...] Read more.
Lichens serve as effective bioindicators for air pollution studies, yet most biomonitoring research focuses primarily on the distance from pollution sources, often neglecting wind data that could elucidate the spread of airborne pollutants. In our previous study in Slavonski Brod, Croatia, we utilized data from a monitoring station, emphasizing the impact of meteorological conditions, particularly wind, on the dispersal of pollutants from a neighbouring oil refinery. To gain a deeper understanding of air pollution dynamics, here, we studied lichen vitality—measured through photochemical efficiency and photosynthetic pigments—alongside the metal (Ni, Zn, Cd, Pb) and non-metal (sulphur and nitrogen) content in native lichen species Flavoparmelia caperata across 17 plots within a 20 km radius of the refinery. Our analysis employed generalized linear models (GLMs) to incorporate various environmental predictors, including distance from the refinery, direction-specific wind speed and frequency, vegetation density, and the orientation of lichen samples with respect to north and the refinery. Findings show that pollution levels are significantly influenced, not only by distance but also by direction-specific wind patterns, underscoring the necessity of including these variables in future biomonitoring studies and highlighting a critical need for air quality management interventions. Full article
(This article belongs to the Special Issue Emerging Pollutants in the Air and Health Risks)
Show Figures

Graphical abstract

12 pages, 1547 KiB  
Article
Modelling Cumulative Effects of Air Pollution on Respiratory Illnesses by Performing Spline Estimation of Constrained, Additive Single-Index Model
by Xingfa Zhang, Siyu Wang, Quanxi Shao, Sijia Wang and Yuezi Wei
Toxics 2025, 13(3), 149; https://doi.org/10.3390/toxics13030149 - 21 Feb 2025
Viewed by 499
Abstract
It is widely recognised that air pollutants including sulphur dioxide (SO2), respirable suspended particulates (PM10), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone (O3), as well as weather conditions such as temperature (Temp) and relative humidity (RH), [...] Read more.
It is widely recognised that air pollutants including sulphur dioxide (SO2), respirable suspended particulates (PM10), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone (O3), as well as weather conditions such as temperature (Temp) and relative humidity (RH), are major causes of respiratory illnesses. To quantify the unknown and highly nonlinear relationships between these factors and respiratory illness, and the cumulative effect from exposure to symptoms, in this paper, we propose a semiparametric index model with constraints to capture the cumulative effect additively and the nonlinearity nonparametrically. As a case study, the model is applied to a dataset from the Hong Kong SAR. As the data period includes the SARS (severe acute respiratory syndrome) epidemic in 2003, we further construct a growth curve model to account for the extra impact of public health measures. The results show that the effects of SO2, NO2, and PM10 decay quickly, while the other pollutants have a period of stable accumulation (18–38 days for O3, 2–30 days for NOx, 1–13 days for RH, and 4–12 days for temperature). The results also show that the proposed model has a better fitting performance than previous models and hence has potential applications in health monitoring programs. Full article
(This article belongs to the Special Issue Air Pollutant Exposure and Respiratory Injury)
Show Figures

Figure 1

17 pages, 1212 KiB  
Article
Enzyme Activities Transforming Sulphur in Brunic Arenosols in Forest Exposure to the Nitrogen Plants
by Anetta Siwik-Ziomek, Monika Skowrońska, Atilgan Atilgan and Burak Sayin
Sustainability 2025, 17(5), 1776; https://doi.org/10.3390/su17051776 - 20 Feb 2025
Viewed by 550
Abstract
This study has been conducted to assess the anthropogenic impact of the ANWIL S.A. nitrogen plants, one of the largest producers of nitrogen fertilizers in Poland, on the activity of arylsulphatase (AR), rhodanese (RDN) and catalase (CAT) related to sulphur transformation in forest [...] Read more.
This study has been conducted to assess the anthropogenic impact of the ANWIL S.A. nitrogen plants, one of the largest producers of nitrogen fertilizers in Poland, on the activity of arylsulphatase (AR), rhodanese (RDN) and catalase (CAT) related to sulphur transformation in forest soils. Samples of rusty brown soils were collected in the area adjacent to the ANWIL S.A. nitrogen plants in Włocławek. The profiles were located in the vicinity of the following production plants: No. W1—approximately 2.5 km away, No. W2—approximately 2 km away, and No. W3—approximately 0.8 km away. The control profile was established in the Tuchola Forest, which is part of the Biosphere Reserve. In order to recognize the impact caused by pollutants and the capacity of soil for re-generation, the resistance index (RS) and resilience index (RL) were determined. The highest RS value (0.964) was noted for rhodanese activity in layer Bv in W2, where the lowest RS for CAT (0.019) was observed. This study demonstrated the resilience of CAT activity in layer Bv in all the soil profiles adjacent to ANWIL. The highest resilience indicator was soil catalase activity. Enzymatic activity can be used to indicate the anthropogenic impact and the transformation of nutrients in forest soil. Full article
Show Figures

Figure 1

27 pages, 3950 KiB  
Article
Post-War Air Quality Index in Mosul City, Iraq: Does War Still Have an Impact on Air Quality Today?
by Zena Altahaan and Daniel Dobslaw
Atmosphere 2025, 16(2), 135; https://doi.org/10.3390/atmos16020135 - 27 Jan 2025
Cited by 2 | Viewed by 1978
Abstract
The air quality in Mosul was adversely affected both directly and indirectly during and after the conflict phase, spanning from the occupation to the liberation of the city from ISIS (2014–2017). Direct impacts included the ignition of oil fields and sulphur deposits, as [...] Read more.
The air quality in Mosul was adversely affected both directly and indirectly during and after the conflict phase, spanning from the occupation to the liberation of the city from ISIS (2014–2017). Direct impacts included the ignition of oil fields and sulphur deposits, as well as the use of military weapons and their propellants. Indirectly, the air quality was also compromised by various other factors negatively affecting the quality due to excessive emission levels of air pollutants, such as particulate matter (PM), sulphur dioxide (SO2), nitrogen dioxide (NO2) and other toxic gases. Six important locations in the city of Mosul were selected, and the concentrations of the parameters PM2.5, PM10, formaldehyde (HCHO), total volatile organic compounds (TVOC), NO2 and SO2 were determined at monthly intervals during the year 2022. The sites were selected both according to their proximity and their specific distance from the direct conflict zone. The aim was to assess the present pollutant levels based on WHO guidelines and to compare the results with previous pre-war studies to understand the long-term war impact on air quality. The results showed that the annual average values of PM2.5, PM10 and NO2 were above the WHO limits at all locations throughout the year. In contrast, the annual average values of TVOC, HCHO and SO2 were within the limits in the hot months but exceeded them in the cold months (December to March), which can be attributed to the use of heating material in winter. Two sites revealed higher pollution levels than the others, which can be attributed to their proximity to the devastated areas (conflict zones), high traffic density and a high density of power generators. These factors were further exacerbated by post-war migration from the destroyed and unsafe areas. Thus, in addition to the short-term effects of burning oil fields and sulphur deposits, as well as airborne weapon emissions, the increase in traffic, the use of decentralized power generators, and the higher demand for heating oil, progressive desertification due to deforestation and the destruction of extensive green areas, as well as increasing and unaddressed environmental violations in general, can be held responsible for declining air quality in the urban area. This work should be considered as preliminary work to emphasise the urgent need for conventional air quality monitoring to consolidate air quality data and monitor the effectiveness of different approaches to mitigate war-related air quality deterioration. Possible approaches include the implementation of air purification technologies, the preservation of existing ecosystems, the replacement of fossil energy sources with renewable energy options, proactive and sustainable urban planning and enforcing strict air quality regulations and policies to control and reduce pollution levels. Full article
Show Figures

Figure 1

15 pages, 5014 KiB  
Article
Transformer–Gate Recurrent Unit-Based Hourly Purified Natural Gas Prediction Algorithm
by Chang Su, Jingcai Huang, Shasha Dong, Yuqi He, Ji Li, Luyao Hu, Xiao Liu and Yong Liao
Processes 2025, 13(1), 116; https://doi.org/10.3390/pr13010116 - 4 Jan 2025
Cited by 1 | Viewed by 1024
Abstract
With the rapid development of industrial automation and intelligence, the consumption of resources and the environmental impact of production processes cannot today be ignored. Today, natural gas, as a commonly used energy source, produces significantly lower emissions of carbon dioxide, sulphur dioxide, and [...] Read more.
With the rapid development of industrial automation and intelligence, the consumption of resources and the environmental impact of production processes cannot today be ignored. Today, natural gas, as a commonly used energy source, produces significantly lower emissions of carbon dioxide, sulphur dioxide, and nitrogen oxides from combustion than coal and oil, and can be further purified to remove the small amount of impurities it contains, such as sulphur compounds. Therefore, purified natural gas (hereinafter referred to as purified gas), as a clean energy source, plays an important role in realising sustainable development. At the same time, It becomes more and more important to dispatch purified gas resources reasonably and accurately, and the paramount factor is that the load of purified gas needs to be predicted accurately. Therefore, this paper proposes a Transformer–GRU-based hourly prediction model for purified gas. The model uses the Transformer model for data fusion and feature extraction, and then combines the time series processing capability of the Gate Recurrent Unit (GRU) model to capture long-term dependencies and short-term dynamic changes in time series data. In this paper, the purified gas load data of Chongqing Municipality in 2020 was first preprocessed, and then divided into daily and hourly load datasets according to the measurement step. Meanwhile, considering the influence of temperature factor, the experimental dataset is subdivided according to whether it includes temperature data or not, and then the Transformer–GRU model was built for prediction, respectively. The results show that, compared with the Dual-Stage Attention-Based Recurrent Neural Network (DA-RNN) and the Transformer and GRU models alone, the Transformer–GRU model exhibits good performance in terms of the coefficient of determination, the average absolute percentage error, and mean square error, which can well meet the requirement of hourly prediction accuracy and has greater application value. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 8160 KiB  
Article
Meta-Study on Sulphur Supply of Various Crop Species in Organic Farming Between 1998 and 2023 in European Countries—Part 2: Effects of S Concentration and N:S Ratio of Different Plant Parts on Dry Biomass, N-Uptake and Legume N2 Fixation
by Hartmut Kolbe
Agronomy 2024, 14(12), 2989; https://doi.org/10.3390/agronomy14122989 - 16 Dec 2024
Viewed by 859
Abstract
The sulphur content of the atmosphere has fallen sharply in recent decades. Due to a reduction in plant nutrition with sulphur, this has also led to a drop in the S concentrations in certain plant species over time. As a result, a lot [...] Read more.
The sulphur content of the atmosphere has fallen sharply in recent decades. Due to a reduction in plant nutrition with sulphur, this has also led to a drop in the S concentrations in certain plant species over time. As a result, a lot of experimental work was carried out to remedy the emerging yield and quality deficiencies on the farms. In this summarised study, data from 98 sites in Germany and other European countries were recorded from 1998 to 2023, received from sulphur fertiliser trials carried out on farms and experimental stations under organic farming conditions. This second part of meta-analysis focuses on establishing relationships between the status of plant nutrient supply with sulphur and biomass yield responses, the nitrogen uptake of crop species and the extent of N2 fixation in legumes. The results of regression analyses based on the effect of the S concentrations and the N:S ratios of the crop species on the relative yield differences between 851 standard variants (=100%) and 1177 sulphur treatment variants. In principle, declining yield increases were determined as a result of increasing S concentrations and decreasing N:S ratios. Except in the case of grain legume young plants, both characteristics were suitable for determining corresponding limit values for yield formation. Different values were determined depending on the plant species and harvest material. In extensive comparative analyses and discussion with literature data, minimum sulphur concentrations and maximum values for N:S ratios for young plants, vegetative harvest material (straw) and grain materials are proposed to ensure optimum biomass yields of permanent grassland, lucerne–clover–grass, grain legumes and cereals for use in practice of agricultural systems of different intensities. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

47 pages, 5883 KiB  
Article
Meta-Study on Sulphur Supply of Various Crop Species in Organic Farming Between 1998 and 2023 in European Countries—Part 1: Effects of Sulphur Supply on Plant Dry Biomass, Nitrogen Uptake, Legume N2 Fixation and Sulphur Fertiliser Requirement Determinations
by Hartmut Kolbe
Agronomy 2024, 14(12), 2975; https://doi.org/10.3390/agronomy14122975 - 13 Dec 2024
Cited by 1 | Viewed by 1368
Abstract
Sulphur is an essential nutrient that fulfils various important functions in plants, including the formation of amino acids, proteins, chlorophyll and the support of nitrogen uptake, e.g., in legumes. The sulphur content of the atmosphere due to industrial combustion has fallen sharply in [...] Read more.
Sulphur is an essential nutrient that fulfils various important functions in plants, including the formation of amino acids, proteins, chlorophyll and the support of nitrogen uptake, e.g., in legumes. The sulphur content of the atmosphere due to industrial combustion has fallen sharply in recent decades, which has ultimately led to yield and quality deficiencies on farms. In this summarised study, data from 98 sites in Europe were recorded from 1998 to 2023. The sulphur fertiliser trials were conducted on farms, and experimental stations under organic farming conditions. A total of 1169 treatment variants and 598 standard variants without S-fertilisation were analysed. Fertilisation was carried out with various sources of sulphur in different quantities and forms, usually directly before or during crop cultivation. The amounts of plant-available S in the soil were determined at depths of 0–90 cm. Site characteristics such as Smin, Nmin, soil type, pH value, precipitation and the extent of livestock farming were recorded. A sufficient amount of data was available for each experimental aspect to quantitatively describe the influence of increasing S supply to the soil or plant species groups (permanent grassland, lucerne-clover-grass, grain legumes and cereals) from severe deficiency to oversupply. The analyses therefore focused on establishing relationships between yield responses, correlations with the nitrogen uptake of crop species and N2 fixation in legumes and the nutrient supply with plant-available sulphur. An assessment procedure was drawn up for soil supply with available sulphur that is too low (classes A, B), optimal (class C: 20–30 kg S ha−1) and too high (classes D, E). The results were also used to develop practical methods for determining fertiliser requirements for different crop species and the crop rotation in organic farming. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop