Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fuels
2.2. Thermal-Technical Parameters of the Fuels Under Study
2.3. Analysis of Trace Element Content in the Inorganic Residue of Sewage Sludge
2.4. Thermogravimetric Analysis and Determination of Basic Combustion Parameters
2.5. Determination of Concentrations of Main Components in Flue Gases
3. Results and Discussion
3.1. Combustion of Individual Fuels
3.2. Combustion of Coal and Sewage Sludge Based Mixtures
3.3. Synergetic Effects in Combustion of Mixtures
3.4. Analysis of Concentrations of Gaseous Substances
4. Conclusions
- Sewage sludge has been found to contain high ash content, a high content of volatile substances, and a low heat of combustion, in contrast to coal.
- The chemical composition of sewage sludge was found to be dominated by silicon (in the form of quartz and silicates), calcium (in the form of calcite, gypsum, and apatite), and iron (in the form of oxides and silicates). The inorganic residue was found to be primarily silicon oxide, with a content of 45.1%, followed by phosphorus oxide (17.7%), calcium oxide (11.6%), and iron oxide (11.0%). Nevertheless, SS ash after combustion should be disposed of in special landfills where ash after combustion of thermal coals is disposed of, in order to avoid negative consequences when heavy metals are released into groundwater.
- The ignition temperature of the sewage sludge is 40% lower than that of coal, and its combustion index is 4.6 times lower.
- It has been established that for the combustion of sewage sludge with such calorific properties, the most suitable fuel mixture is based on 75% coal and 25% sewage sludge. This mixture has an additive burning character, while compared to coal, it has a lower ignition temperature. The remaining parameters remain relatively stable when compared to other mixtures that contain greater quantities of sewage sludge.
- The addition of 25% sewage sludge to coal has been shown to affect the reduction of nitrogen oxides and sulphur oxides.
- Adding 25% of sewage sludge to coal allows reducing coal consumption without significant reduction of combustion parameters of the mixture, which indicates an increase in energy efficiency of SS utilisation by combustion with coal.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Ad | ash a dry state (%) |
Cdaf, Hdaf, Ndaf, Odaf, Sdaf | fraction of carbon, hydrogen, nitrogen, oxygen and sulfur converted to a dry ash-free state (%) |
DerWeigest | Der.Weig curve profile obtained by calculation (%/min) |
DerWeigexp | Der.Weig curve profile obtained experimentally (%/min) |
HFmax | maximum heat flux value (W/g) |
Qri | lower heating value in working condition (MJ/kg) |
Qdafs | higher heating value in dry ash-free state (MJ/kg) |
Wr | humidity in working condition (%) |
Wa | moisture content in the analytical state (%) |
S | combustion index (min−2 °C−3) |
Tb | burnout temperature (°C) |
TΔm | temperature Δmmax (°C) |
THF | temperature HFmax (°C) |
Ti | ignition temperature (°C) |
Vdaf | gaseous content in dry ash-free state (%) |
Δmmax | peak mass loss rate value/maximum combustion rate (%/min) |
Δmmean | average value of mass change rate from ignition temperature to burnout temperature, (%/min) |
References
- Amir Raza, M.; Karim, A.; Aman, M.M.; Ahmad Al-Khasawneh, M.; Faheem, M. Global progress towards the Coal: Tracking coal reserves, coal prices, electricity from coal, carbon emissions and coal phase-out. Gondwana Res. 2025, 139, 43–72. [Google Scholar] [CrossRef]
- Tasev, G.; Makreski, P.; Jovanovski, G.; Životić, D.; Boev, I.; Jelenkovic, R. The environmental and health damage caused by the use of coal. ChemTexts 2025, 11, 3. [Google Scholar] [CrossRef]
- Achakulwisut, P.; Erickson, P.; Guivarch, C.; Schaeffer, R.; Brutschin, E.; Pye, S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 2023, 14, 5425. [Google Scholar] [CrossRef]
- Brunelli, L.; Belloni, E.; Pigliautile, I.; Cardelli, R.; Pisello, A.L.; Cotana, F. A novel methodology for accessible design of multi-source renewable energy community: Application to a wooded area in central Italy. Int. J. Electr. Power Energy Syst. 2025, 165, 110496. [Google Scholar] [CrossRef]
- Hunan, C.X.; Balsalobre-Lorente, D.; Syed, Q.R. Electricity generation from renewable and non-renewable energy sources in China: The role of environmental policy stringency, FDI, and economic growth. Energy 2025, 318, 134695. [Google Scholar] [CrossRef]
- Appiah-Otoo, I.; Chen, X.; Ampah, J.D. Exploring the moderating role of foreign direct investment in the renewable energy and economic growth nexus: Evidence from West Africa. Energy 2023, 281, 128346. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Sun, X.; Zhu, X.; Yan, B.; Chen, G. Different pretreatment of biomass for gasification: A critical review. J. Energy Inst. 2025, 119, 101992. [Google Scholar] [CrossRef]
- Bisen, D.; Chouhan, A.P.S.; Pant, M.; Chakma, S. Advancement of thermochemical conversion and the potential of biomasses for production of clean energy: A review. Renew. Sustain. Energy Rev. 2025, 208, 115016. [Google Scholar] [CrossRef]
- Lv, X.; Liu, J.; Yang, Y.; Xie, T. Review and perspectives on of multi-scale simulations of biomass chemical looping combustion. Fuel 2025, 382, 133759. [Google Scholar] [CrossRef]
- Ling, J.L.J.; Yang, W.; Park, H.S.; Lee, H.E.; Lee, S.H. A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage. Energy 2023, 284, 128566. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Zhao, Y.; Xu, L.; Feng, S.; Wang, Z.; Zhang, L.; Shen, B. Effects of torrefaction pretreatment on fuel quality and combustion characteristics of biomass: A review. Fuel 2024, 358, 130314. [Google Scholar] [CrossRef]
- Mohapatra, S.S.; Singh, R.K. Production and characterization of the maximum liquid product obtained from co-pyrolysis of sugarcane bagasse and thermocol waste. Cellulose 2021, 28, 4223–4239. [Google Scholar] [CrossRef]
- Ni, Z.; Zhang, Y.; Liu, X.; Shi, H.; Yao, Y.; Tian, J.; Hu, P.; He, L.; Lin, Q.; Meng, K. Effect of furnace temperature and oxygen concentration on combustion and CO/NO emission characteristics of sewage sludge. Renew. Energy 2024, 234, 121225. [Google Scholar] [CrossRef]
- Quan, L.M.; Kamyab, H.; Yuzir, A.; Ashokkumar, V.; Hosseini, S.E.; Balasubramanian, B.; Kirpichnikova, I. Review of the application of gasification and combustion technology and waste-to-energy technologies in sewage sludge treatment. Fuel 2022, 316, 123199. [Google Scholar] [CrossRef]
- Ni, Z.; Zhang, Y.; Liu, X.; Shi, H.; Yao, Y.; Tian, J.; Hu, P.; He, L.; Lin, Q.; Liu, L. Co-combustion of sewage sludge with corn stalk based on TG-MS and TG-DSC: Gas products, interaction mechanisms, and kinetic behavior. Energy 2024, 308, 132747. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, L.; Chen, Y.; Li, J.; Bai, T.; Jin, Z.; Jin, Y. Sulfur migration and conversion during co-combustion of sewage sludge and coal slime. Renew. Energy 2024, 237, 121646. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, X.; Shi, H.; Tian, J.; Yao, Y.; Hu, P.; He, L.; Meng, K.; Lin, Q. Interaction mechanism and pollutant emission characteristics of sewage sludge and corncob co-combustion. Renew. Energy 2024, 231, 120961. [Google Scholar] [CrossRef]
- Ahmad, M.B.; Embaye, T.M.; Meng, Z.; Wang, F.; Cui, W.; Bukhsh, K.; Deng, S.; Bai, Z.; Ruan, R.; Wang, X. Experimental study on co-combustion of domestic garbage and sewage sludge: Evaluation of synergistic effect and thermo-kinetic behavior. J. Energy Inst. 2024, 114, 101658. [Google Scholar] [CrossRef]
- Nadziakiewicz, J.; Koziol, M. Co-combustion of sludge with coal. Appl. Energy 2003, 75, 239–248. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, L.; Guo, B.; Shen, X.; Zheng, X.; Xiang, J.; Jin, Y. Investigation of interaction mechanisms during co-combustion of sewage sludge and coal slime: Combustion characteristics and NO/SO2 emission behavior. Sci. Total Environ. 2022, 851, 158166. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, H.; Yang, T.; Zhu, Y.; Li, R. Combustion Characterization and Kinetic Analysis of Mixed Sludge and Lignite Combustion. ACS Omega 2024, 9, 6912–6923. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Wang, X.; Magdziarz, A.; Yu, S.; Deng, S.; Bai, J.; Zhang, Q.; Tan, H. Ash fusion and mineral evolution during the co-firing of coal and municipal sewage sludge in power plants. Fuel 2022, 310, 122416. [Google Scholar] [CrossRef]
- Glushkov, D.O.; Matiushenko, A.I.; Nurpeiis, A.E.; Zhuikov, A.V. An experimental investigation into the fuel oil-free start-up of a coal-fired boiler by the main solid fossil fuel with additives of brown coal, biomass and charcoal for ignition enhancement. Fuel Process. Technol. 2021, 223, 106986. [Google Scholar] [CrossRef]
- Chicherin, S.; Zhuikov, A.; Kuznetsov, P. The Return of Coal-Fired Combined Heat and Power Plants: Feasibility and Environmental Assessment in the Case of Conversion to Another Fuel or Modernizing an Exhaust System. Sustainability 2024, 16, 1974. [Google Scholar] [CrossRef]
- Fu, B.; Liu, G.; Mian, M.M.; Zhou, C.; Sun, M.; Wu, D.; Liu, Y. Co-combustion of industrial coal slurry and sewage sludge: Thermochemical and emission behavior of heavy metals. Chemosphere 2019, 233, 440–451. [Google Scholar] [CrossRef]
- Isaac, K.; Bada, S.O. The co-combustion performance and reaction kinetics of refuse derived fuels with South African high ash coal. Heliyon 2020, 6, e03309. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Yang, Q.; Liang, R. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy 2009, 33, 50–56. [Google Scholar] [CrossRef]
- Zhuikov, A.V.; Glushkov, D.O.; Kuznetsov, P.N.; Grishina, I.I.; Samoilo, A.S. Ignition of two-component and three-component fuel mixtures based on brown coal and char under slow heating conditions. J. Therm. Anal. Calorim. 2022, 147, 11965–11976. [Google Scholar] [CrossRef]
- Raza, M.; Abu-Jdayil, B.; Al-Marzouqi, A.H.; Inayat, A. Inayat Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renew. Energy 2022, 183, 67–77. [Google Scholar] [CrossRef]
- Zhu, G.; Wen, C.; Liu, T.; Xu, M.; Ling, P.; Wen, W.; Li, R. Combustion and co-combustion of biochar: Combus-tion performance and pollutant emissions. Appl. Energy 2024, 376, 124292. [Google Scholar] [CrossRef]
- Oladejo, J.M.; Adegbite, S.; Pang, C.H.; Liu, H.; Parvez, A.M.; Wu, T. A novel index for the study of synergistic effects during the co-processing of coal and biomass. Appl. Energy. 2017, 188, 215–225. [Google Scholar] [CrossRef]
- Liu, Z.; Quek, A.; Hoekman, S.K.; Srinivasan, M.P.; Balasubramanian, R. Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresour. Technol. 2012, 123, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Armakan, S.; Civan, M.; Yurdakul, S. Determining co-combustion characteristics, kinetics and synergy behaviors of raw and torrefied forms of two distinct types of biomass and their blends with lignite. J. Therm. Anal. Calorim. 2022, 147, 12855–12869. [Google Scholar] [CrossRef]
- Zhao, R.; Qin, J.; Chen, T.; Wu, J. TG-FTIR study on co-combustion of bituminous coal semicoke and lignite. J. Therm. Anal. Calorim. 2022, 147, 1849–1858. [Google Scholar] [CrossRef]
- Yuan, Y.; Zuo, H.; Wang, J.; Gao, Y.; Xue, Q.; Wang, J. Co-combustion behavior, kinetic and ash melting characteristics analysis of clean coal and biomass pellet. Fuel 2022, 324, 124727. [Google Scholar] [CrossRef]
- Zhuikov, A.; Glushkov, D.; Pleshko, A.; Grishina, I.; Chicherin, S. Co-Combustion of Coal and Biomass: Heating Surface Slagging and Flue Gases. Fire 2025, 8, 106. [Google Scholar] [CrossRef]
- Nyashina, G.; Glushkov, D.; Strizhak, P. Study of the influence of gas environment on thermal decomposition of composite biomass with varying temperature. Biomass Convers. Biorefin. 2025, 125466. [Google Scholar] [CrossRef]
- Qin, S.; He, X.; Li, Z.; Jia, L.; Qiao, X.; Chang, X.; Cheng, P.; Jin, Y. Co-combustion of sewage sludge and high ash coal: Thermal behavior, ash formation behavior, interaction mechanisms and economic analysis. Energy 2025, 323, 135847. [Google Scholar] [CrossRef]
- Sever Akdağ, A.; Atak, O.; Atimtay, A.T.; Sanin, F.D. Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor. Energy 2018, 158, 417–426. [Google Scholar] [CrossRef]
Fuels | Wr | Wa | Ad | Vdaf | Cdaf | Hdaf | Ndaf | Sdaf | Odaf | Qri | Qdafs |
---|---|---|---|---|---|---|---|---|---|---|---|
% | MJ/kg | ||||||||||
C | 32.6 | 5.3 | 8.9 | 45.1 | 72.8 | 5.1 | 1.0 | 0.3 | 23.1 | 16.3 | 28.7 |
SS | 35.2 | 6.7 | 56.5 | 83.7 | 56.1 | 6.1 | 6.2 | 1.6 | 30.0 | 9.6 | 22.7 |
Ash | SiO2 | P2O5 | CaO | K2O | Fe2O3 | ZnO | SO3 | TiO2 | SrO | Cr2O3 | Al2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|
% | |||||||||||
SS | 45.1 | 17.7 | 11.6 | 2.1 | 11.0 | 0.2 | 4.9 | 1.8 | 0.1 | 0.2 | 5.4 |
Characteristics | Biofuels | ||||
---|---|---|---|---|---|
C | 75% C + 25% SS | 50% C + 50% SS | 25% C + 75% SS | SS | |
Ti, °C | 365 | 355 | 291 | 274 | 260 |
Δmmax1, %/min | - | - | 3.9 | 4.1 | 4.9 |
TΔm1, °C | - | - | 340 | 333 | 330 |
HFmax1, W/g | - | - | 1.2 | 1.2 | 1.2 |
THF1, °C | - | - | 347 | 341 | 338 |
Δmmax2, %/min | 25.2 | 19.1 | 11.7 | 7.4 | 1.4 |
TΔm2, °C | 430 | 418 | 422 | 424 | 535 |
HFmax2, W/g | 6.1 | 3.9 | 2.4 | 1.7 | - |
THF2, °C | 433 | 427 | 428 | 430 | - |
Tb | 560 | 571 | 586 | 594 | 675 |
S, min−2 °C−3 | 1.4 | 1.0 | 0.7 | 0.5 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuikov, A.; Pyanykh, T.; Kolosov, M.; Grishina, I.; Zhuikova, Y.; Kuznetsov, P.; Chicherin, S. Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal. Energies 2025, 18, 2906. https://doi.org/10.3390/en18112906
Zhuikov A, Pyanykh T, Kolosov M, Grishina I, Zhuikova Y, Kuznetsov P, Chicherin S. Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal. Energies. 2025; 18(11):2906. https://doi.org/10.3390/en18112906
Chicago/Turabian StyleZhuikov, Andrey, Tatyana Pyanykh, Mikhail Kolosov, Irina Grishina, Yana Zhuikova, Petr Kuznetsov, and Stanislav Chicherin. 2025. "Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal" Energies 18, no. 11: 2906. https://doi.org/10.3390/en18112906
APA StyleZhuikov, A., Pyanykh, T., Kolosov, M., Grishina, I., Zhuikova, Y., Kuznetsov, P., & Chicherin, S. (2025). Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal. Energies, 18(11), 2906. https://doi.org/10.3390/en18112906