Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = nisinic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1114 KiB  
Article
Listeria monocytogenes Under Acid and Antimicrobial Compounds Stress: Survival and Pathogenic Potential in Orange Juice
by Maria Belén Bainotti, Pilar Colás-Medà, Inmaculada Viñas and Isabel Alegre
Beverages 2025, 11(4), 96; https://doi.org/10.3390/beverages11040096 - 1 Jul 2025
Viewed by 525
Abstract
Listeria monocytogenes poses significant risks in acidic foods like unpasteurized fruit juices due to its capacity to survive under stressful conditions. This study evaluated L. monocytogenes survival in orange juice following acid adaptation and exposure to antimicrobial compounds. Acid adaptation was induced using [...] Read more.
Listeria monocytogenes poses significant risks in acidic foods like unpasteurized fruit juices due to its capacity to survive under stressful conditions. This study evaluated L. monocytogenes survival in orange juice following acid adaptation and exposure to antimicrobial compounds. Acid adaptation was induced using glucose-supplemented or citric acid-acidified media, followed by the evaluation of pathogen survival in orange juice stored at 4 °C, 15 °C, and 25 °C. While glucose adaptation reduced the medium pH to 4.5 and enabled bacterial growth (up to 7.5 total log CFU/mL), citric acid exposure caused around 1.4 log units of reduction. Contrary to expectations, the survival of acid-adapted cells was lower than that of non-acid-adapted cells, particularly in orange juice stored at 25 °C (around 4.8 vs. 1.4 log units of reduction after 6 days). The behaviour of non-acid-adapted cells was evaluated in response to different antimicrobial compounds (citral, coumaric acid, nisin, sinapic acid, and vanillin). Nisin was the most effective, achieving a reduction of about 3.5 log units with a dose of 2 mL/L. Nisin-treated cells also showed reduced survival during simulated gastrointestinal assays (around 1.5 log units of reduction). These results challenge the assumption that acid adaptation universally enhances survival in acidic matrices and highlight nisin’s dual role in microbial control and pathogenicity mitigation. This work underscores the need for tailored stress adaptation studies and natural antimicrobial applications to improve food safety in minimally processed fruit juices. Full article
Show Figures

Graphical abstract

14 pages, 2575 KiB  
Article
Lactic Acid Bacteria (LAB) and Their Bacteriocins for Applications in Food Safety Against Listeria monocytogenes
by Cristian Piras, Alessio Soggiu, Viviana Greco, Pierluigi Aldo Di Ciccio, Luigi Bonizzi, Anna Caterina Procopio, Andrea Urbani and Paola Roncada
Antibiotics 2025, 14(6), 572; https://doi.org/10.3390/antibiotics14060572 - 3 Jun 2025
Viewed by 971
Abstract
Background/Objectives: Listeria monocytogenes is a major foodborne pathogen responsible for listeriosis, a serious illness with high morbidity and mortality, particularly in vulnerable populations. Its persistence in food processing environments and resistance to conventional preservation methods pose significant food safety challenges. Lactic acid bacteria [...] Read more.
Background/Objectives: Listeria monocytogenes is a major foodborne pathogen responsible for listeriosis, a serious illness with high morbidity and mortality, particularly in vulnerable populations. Its persistence in food processing environments and resistance to conventional preservation methods pose significant food safety challenges. Lactic acid bacteria (LAB) offer a promising natural alternative due to their antimicrobial properties, especially through the production of bacteriocins. This study investigates the competitive interactions between Lactococcus lactis and L. monocytogenes under co-culture conditions, with a focus on changes in their secretomes to better understand how LAB-derived bacteriocins can help mitigate the Listeria burden. Methods: Proteomic approaches, including Tricine-SDS-PAGE, two-dimensional electrophoresis, and shotgun proteomics, were employed to analyze the molecular adaptations of both species in response to bacterial competition. Results: Our results reveal a significant increase in the secretion of enolase by L. monocytogenes when in competition with L. lactis, suggesting its role as a stress-responsive moonlighting protein involved in adhesion, immune evasion, and biofilm formation. Concurrently, L. lactis exhibited a shift in the production of its bacteriocin, nisin, favoring the expression of Nisin Z—a variant with improved solubility and diffusion properties. This differential regulation indicates that bacteriocin production is modulated by bacterial competition, likely as a defensive response to the presence of pathogens. Conclusions: These findings highlight the dynamic interplay between LAB and L. monocytogenes, underscoring the potential of LAB-derived bacteriocins as natural biopreservatives. Understanding the molecular mechanisms underlying microbial competition could enhance food safety strategies, particularly in dairy products, by reducing reliance on chemical preservatives and mitigating the risk of L. monocytogenes contamination. Full article
Show Figures

Figure 1

21 pages, 5422 KiB  
Article
Preservation Study for Raw Conditioned Mutton During Refrigerated Storage by Food Preservatives
by Jiying Qiu, Junhua Wang, Shuangzhi Zhao, Yang Li, Jinyu Yang, Xingwang Zhang, Liang Wang, Xiaoxiao Jiang, Xiangyan Chen, Leilei Chen and Qingxin Zhou
Foods 2025, 14(9), 1579; https://doi.org/10.3390/foods14091579 - 30 Apr 2025
Viewed by 461
Abstract
The quality modification of chilled, raw conditioned mutton (RCM) after storage significantly impacts consumer preferences, making shelf-life extension and quality preservation crucial. This study evaluated the effects of sodium diacetate (SDA), sodium dehydroacetate (DHA-S), ε-polylysine hydrochloride (PLH), and nisin on RCM quality and [...] Read more.
The quality modification of chilled, raw conditioned mutton (RCM) after storage significantly impacts consumer preferences, making shelf-life extension and quality preservation crucial. This study evaluated the effects of sodium diacetate (SDA), sodium dehydroacetate (DHA-S), ε-polylysine hydrochloride (PLH), and nisin on RCM quality and bacterial community at concentrations of 3.0, 0.50, 0.30, and 0.50 g/kg, respectively. Major spoilage bacteria were isolated, and the inhibitory effects of these preservatives were studied, leading to the development of compound preservatives. TVC increased significantly during RCM preparation, with continuous increases in TVC and TVB-N levels throughout storage, reaching spoilage thresholds by day 5. Bacterial diversity decreased markedly, with Brochothrix and Pseudomonas dominating. SDA effectively inhibited TVC proliferation and TVB-N formation, maintaining bacterial diversity and reducing Brochothrix and Pseudomonas abundance while promoting the growth of lactic acid bacteria. Five spoilage bacteria strains were isolated, including Serratia liquefaciens B2107-1, a potent meat spoilage bacterium under refrigeration. PLH and SDA demonstrated significant inhibitory activity against this bacterium, with minimum inhibitory concentrations (MICs) of 0.175 and 0.400 mg/mL, respectively. Combining PLH and SDA at 1MIC + 3MIC exhibited a synergistic antimicrobial effect, maintaining RCM quality with reduced SDA usage. These findings demonstrate the significant potential of these preservatives in chilled, raw meat products. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

21 pages, 1023 KiB  
Article
Effect of Antimicrobial Compounds on the Survival and Pathogenic Potential of Acid-Adapted Salmonella Enteritidis and Escherichia coli O157:H7 in Orange Juice
by Maria Belén Bainotti, Pilar Colás-Medà, Inmaculada Viñas and Isabel Alegre
Antibiotics 2025, 14(4), 335; https://doi.org/10.3390/antibiotics14040335 - 24 Mar 2025
Cited by 1 | Viewed by 778
Abstract
Background: The consumption of unpasteurized fruit juices poses a food safety risk due to the survival of pathogens such as Salmonella Enteritidis and Escherichia coli O157:H7. Methods: This study evaluated natural antimicrobials (nisin, coumaric acid, citral, sinapic acid, and vanillin) in orange juice [...] Read more.
Background: The consumption of unpasteurized fruit juices poses a food safety risk due to the survival of pathogens such as Salmonella Enteritidis and Escherichia coli O157:H7. Methods: This study evaluated natural antimicrobials (nisin, coumaric acid, citral, sinapic acid, and vanillin) in orange juice as a strategy to ensure the control of these pathogens during the preservation of the non-thermally treated juices. Results: The addition of nisin, coumaric, or citral did not alter the juice’s physicochemical characteristics, ensuring product quality. Nisin (1–2 mL/L), coumaric acid (0.25–0.5 g/L), and citral (0.25–0.5 mL/L) were the most effective in reducing bacterial populations. The antimicrobial activity of the most effective compounds was then tested against both acid-adapted and non-acid-adapted bacteria in refrigerated juice, applying Weibull and linear decay models to assess bacterial inactivation. Non-acid-adapted S. Enteritidis showed a rapid 5 log reduction after 30 h of refrigeration with the highest nisin dose, while the acid-adapted strain exhibited a smaller reduction (2 and 1.5 log units for 1 and 2 mL/L, respectively). Citral was effective but excluded due to solubility and aroma concerns. Non-acid-adapted E. coli O157:H7 showed a 5 log reduction with coumaric acid at 0.5 g/L, whereas acid-adapted strains exhibited a lower reduction (around 1.5 log units). Nisin and coumaric acid also reduced bacterial survival in gastrointestinal tract simulations. However, acid-adapted bacteria were more resistant. Conclusions: These findings highlight the potential of these antimicrobials for food safety applications, though further studies should explore their mechanisms and combinations for enhanced efficacy. Full article
Show Figures

Figure 1

20 pages, 5612 KiB  
Article
The Effects of Nisin Treatment on the Phenylpropanoid and Physiological Mechanisms of Fresh-Cut Pumpkin
by Yuge Guan, Yan Sun, Ning Yuan, Rentao Zhang, Sainan Lu, Qianqian Li, Xinghua Lu, Linjiang Pang and Wenzhong Hu
Foods 2025, 14(5), 733; https://doi.org/10.3390/foods14050733 - 21 Feb 2025
Viewed by 724
Abstract
Pumpkin is rich in nutritional value, and it can be eaten as a vegetable or as a staple food, making it popular among modern consumers. However, after fresh cutting, pumpkins are susceptible to moisture loss, softening, microbial contamination, and browning, all of which [...] Read more.
Pumpkin is rich in nutritional value, and it can be eaten as a vegetable or as a staple food, making it popular among modern consumers. However, after fresh cutting, pumpkins are susceptible to moisture loss, softening, microbial contamination, and browning, all of which significantly compromise their quality during storage. Therefore, it is essential to develop effective preservation techniques for maintaining the quality of fresh-cut pumpkins. Nisin, a safe natural preservative, has not yet been studied for use on fresh-cut pumpkins. This study examines the effects of nisin treatment on the quality of fresh-cut pumpkins and then explores preservation mechanisms based on physiological and metabolomic analysis. Results show that 0.4 g/L nisin treatment effectively delays surface browning without impacting odor and maintains microbial safety throughout storage. Additionally, nisin significantly enhances the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, 4-coumarate-CoA ligase, and cinnamyl alcohol dehydrogenase, thereby promoting the accumulation of total phenols and carotenoids. The result of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of differential metabolites between control and nisin-treated groups reveals that the most significant pathways affected by nisin treatment are amino acid metabolism and phenylpropanoid metabolism, which suggests that nisin enhances preservation by modulating phenylpropanoid metabolism and alleviating amino acid metabolism. This study provides a theoretical basis and offers new insights into improving the storage quality of fresh-cut pumpkins. Full article
Show Figures

Figure 1

15 pages, 3221 KiB  
Article
Genomic Insights into Probiotic Lactococcus lactis T-21, a Wild Plant-Associated Lactic Acid Bacterium, and Its Preliminary Clinical Safety for Human Application
by Masanori Fukao, Keisuke Tagawa, Yosuke Sunada, Kazuya Uehara, Takuya Sugimoto, Takeshi Zendo, Jiro Nakayama and Shuichi Segawa
Microorganisms 2025, 13(2), 388; https://doi.org/10.3390/microorganisms13020388 - 10 Feb 2025
Viewed by 1595
Abstract
Lactococcus lactis T-21 is a lactic acid bacterium isolated from wild cranberries in Japan that demonstrates significant immunomodulatory properties and has been incorporated into commercial health products. However, probiogenomic analyses specific to T-21 have remained largely unexplored. This study performed a thorough genomic [...] Read more.
Lactococcus lactis T-21 is a lactic acid bacterium isolated from wild cranberries in Japan that demonstrates significant immunomodulatory properties and has been incorporated into commercial health products. However, probiogenomic analyses specific to T-21 have remained largely unexplored. This study performed a thorough genomic characterisation of T-21 and evaluated its safety in initial clinical trials. Genomic analysis revealed substantial genetic diversity and metabolic capabilities, including enhanced fermentative potential demonstrated by its ability to metabolise a wide range of plant-derived carbohydrates, and genetic determinants associated with exopolysaccharide biosynthesis and nisin production, distinguishing T-21 from domesticated dairy strains. These attributes, reflective of its wild plant origin, may contribute to its metabolic versatility and unique probiotic functionalities. A preliminary clinical trial assessing the safety of T-21-fermented milk in healthy Japanese adults indicated no significant adverse outcomes, corroborating its safety for human consumption. Together, these findings support the feasibility of utilising non-dairy, wild plant-origin strains in dairy fermentation processes as probiotics. This study expands our understanding of the genomic basis for T-21’s probiotic potential and lays the groundwork for further investigations into its functional mechanisms and potential applications in promoting human health. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

19 pages, 6275 KiB  
Article
The Antibacterial Activity and Mechanisms of a Mixed Bio-Preservative on the Bacillus Stains in Crab Roe Sauce
by Rongrong Yu, Rongxue Sun, Ning Jiang, Bin Zhang, Cheng Wang, Qianyuan Liu, Zhiqiang Li and Xingna Wang
Foods 2025, 14(3), 525; https://doi.org/10.3390/foods14030525 - 6 Feb 2025
Viewed by 1433
Abstract
Crab roe sauce (CRS) is prone to spoilage due to microbial contamination. Therefore, this study aimed to investigate the inhibitory effects and mechanisms of a mixed bio-preservative (0.025% ε-polylysine hydrochloride (ε-PL) + 0.01% nisin (NS) + 0.01% tea polyphenols (TPs)) on the specific [...] Read more.
Crab roe sauce (CRS) is prone to spoilage due to microbial contamination. Therefore, this study aimed to investigate the inhibitory effects and mechanisms of a mixed bio-preservative (0.025% ε-polylysine hydrochloride (ε-PL) + 0.01% nisin (NS) + 0.01% tea polyphenols (TPs)) on the specific spoilage bacteria (SSB) in CRS. First, the SSB in CRS were isolated and identified by 16S rRNA sequencing. Two isolates were selected as representative strains based on their enzymatic spoilage potential and spoilage capability in CRS. By comparing the inhibition zones, ε-PL, NS, and TPs were selected from five conventional bio-preservatives (ε-PL, NS, TPs, grape seed extract (GSE), and rosemary extract (RE)) to prepare the mixed bio-preservative. The results showed that the minimum inhibitory concentration (MIC) of the mixed bio-preservative against Bacillus pumilus and Bacillus subtilis was 56.3 µg/mL. The growth curves and cell viability tests revealed that the mixed bio-preservative reduced the viability of both strains. The conductivity, alkaline phosphatase activity, and nucleic acid and soluble protein leakage indicated that the mixed bio-preservative disrupted the integrity of the cell walls and membranes of the two isolates in a concentration-dependent manner. Scanning electron microscopy further confirmed the damage to the cell membranes of the two isolates by the mixed bio-preservative. Overall, the mixed bio-preservative exhibited excellently inhibitory effects on the SSB and could be a promising method for the preservation of CRS. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

17 pages, 3305 KiB  
Article
In Vitro Insights into Bacteriocin-Mediated Modulation of Chicken Cecal Microbiota
by Amal Mamjoud, Séverine Zirah, Eric Biron, Omar Fliss and Ismail Fliss
Int. J. Mol. Sci. 2025, 26(2), 755; https://doi.org/10.3390/ijms26020755 - 17 Jan 2025
Viewed by 1466
Abstract
Reducing the use of antibiotics in animal husbandry is essential to limit the spread of resistance. A promising alternative to antibiotics resides in bacteriocins, which are antimicrobial peptides produced by bacteria showing a great diversity in terms of spectrum of activity, structure, and [...] Read more.
Reducing the use of antibiotics in animal husbandry is essential to limit the spread of resistance. A promising alternative to antibiotics resides in bacteriocins, which are antimicrobial peptides produced by bacteria showing a great diversity in terms of spectrum of activity, structure, and mechanism of action. In this study, the effects of diverse bacteriocins on the composition and metabolic activity of chicken cecal microbiota were examined in vitro, in comparison with antibiotics. Different impacts on microbiota composition were revealed by 16S metabarcoding, with colistin having the most dramatic impact on diversity. Bacteriocins produced by Gram-negative bacteria, microcins J25 and E492, did not significantly influence the microbiota composition. In contrast, bacteriocins from Gram-positive bacteria impacted the abundance of lactic acid bacteria, with nisin Z showing the most impact while pediocin PA-1 (M31L) exhibited a moderate effect at the highest concentration tested. This study emphasizes the potential of bacteriocins as alternatives to antibiotics in poultry to protect from pathogens such as Salmonella, Clostridium, and Enterococcus. Full article
(This article belongs to the Special Issue Natural Compounds: Advances in Antimicrobial Activity)
Show Figures

Figure 1

16 pages, 3933 KiB  
Article
Influence of Nisin Grafting on the Antibacterial Efficacy of AMP Self-Assembled Monolayers (SAMs)
by Chloé Richet, Adeline Marguier, Audrey Bertin, Thérèse Leblois and Vincent Humblot
Molecules 2024, 29(22), 5417; https://doi.org/10.3390/molecules29225417 - 17 Nov 2024
Viewed by 1384
Abstract
The use of antimicrobial peptides (AMPs) covalently grafted on surfaces has been recognized in recent years as a promising strategy to fight against biofilm formation. However, after grafting, the understanding of AMP–bacteria interactions is still debated in the literature. In this study, Nisin, [...] Read more.
The use of antimicrobial peptides (AMPs) covalently grafted on surfaces has been recognized in recent years as a promising strategy to fight against biofilm formation. However, after grafting, the understanding of AMP–bacteria interactions is still debated in the literature. In this study, Nisin, a cyclic AMP, was grafted onto gold surfaces via an indirect grafting on acidic thiol self-assembled monolayers using succinimide linkers. The physical and chemical properties of these SAMs were then finely characterized by XPS and FT-IR to confirm the covalent grafting of Nisin. The antiadhesion and bactericidal effects were then studied for Escherichia coli ATCC25922, Staphylococcus aureus ATCC 25923, and Listeria ivanovii Li4(pVS2) by a posteriori analysis of the culture supernatants (i.e., indirect technique) and ex situ by optical microscopy following crystal violet staining (i.e., direct technique). Statistical analysis reveals that the Nisin coating has bactericidal and antiadhesive properties towards Gram-positive bacteria, while no significant results were obtained for Gram-negative bacteria. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

15 pages, 6718 KiB  
Article
Inhibitory Effect of DNase–Chitosan–Nisin Nanoparticles on Cell Viability, Motility, and Spatial Structures of Listeria monocytogenes Biofilms
by Xinyi Pang, Xueying Du, Xin Hu, Zeyin Feng, Jing Sun, Xiangfei Li and Yingjian Lu
Foods 2024, 13(22), 3544; https://doi.org/10.3390/foods13223544 - 6 Nov 2024
Cited by 2 | Viewed by 1691
Abstract
Listeria monocytogenes biofilm contamination on food contact surfaces is a major concern for the food industry. Nanoparticle encapsulation appears as a novel strategy for food surface disinfection to prevent biofilm formation. Chitosan nanoparticles loaded with nisin and DNase I (DNase-CS-N) have been constructed [...] Read more.
Listeria monocytogenes biofilm contamination on food contact surfaces is a major concern for the food industry. Nanoparticle encapsulation appears as a novel strategy for food surface disinfection to prevent biofilm formation. Chitosan nanoparticles loaded with nisin and DNase I (DNase-CS-N) have been constructed to exhibit antimicrobial activity against L. monocytogenes. This study aimed to investigate their ability to inhibit L. monocytogenes biofilm formation and eliminate preformed biofilms on food contact surfaces (polystyrene, polyurethane, and stainless steel). DNase-CS-N could decrease 99% and 99.5% biofilm cell numbers at 1/2 MIC and MIC, respectively. At sub-MICs, DNase-CS-N could reduce cell motility (swimming and swarming) and slime production of L. monocytogenes. In terms of effect on biofilm elimination, DNase-CS-N at the concentration of 4 MIC led to 3–4 log reduction in biofilm cells in preformed biofilms, performing higher efficiency compared with other treatments (CSNPs, CS-N). Furthermore, the three-dimensional structure of L. monocytogenes biofilms was severely disrupted after DNase-CS-N treatment, with bacterial cells scattered on the surface. The morphology of biofilm cells was also greatly damaged with wrinkled surfaces, disrupted cell membranes, and leakage of intracellular nucleic acids and proteins. These results indicate the potential applicability of DNase-CS-N for inhibiting and eliminating L. monocytogenes biofilms on food contact surfaces. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

14 pages, 3205 KiB  
Article
Antimicrobial Activity of Diffusible Substances Produced by Lactococcus lactis Against Bacillus cereus in a Non-Contact Co-Culture Model
by Yuting Han, Adenike A. Akinsemolu, Christian K. Anumudu, Taghi Miri and Helen Onyeaka
Hygiene 2024, 4(4), 469-482; https://doi.org/10.3390/hygiene4040035 - 5 Nov 2024
Cited by 1 | Viewed by 2140
Abstract
The symptoms of foodborne illness caused by Bacillus cereus often go unreported, complicating the effectiveness of conventional chemical and physical methods used to inhibit its growth in food production. This challenge, combined with the increasing use of lactic acid bacteria (LAB) in the [...] Read more.
The symptoms of foodborne illness caused by Bacillus cereus often go unreported, complicating the effectiveness of conventional chemical and physical methods used to inhibit its growth in food production. This challenge, combined with the increasing use of lactic acid bacteria (LAB) in the food industry and consumer preference for minimally processed products, prompted this study. The antibacterial activity of diffusible substances produced by Lactococcus lactis ATCC 11454 against Bacillus cereus NC11143 and Escherichia coli K-12 MG1655 was investigated using a non-contact co-culture model utilising deMann Rogosa and Sharpe broth, with glucose as a carbon source. This study employed plate counting and flow cytometry to assess the impact of these substances on bacterial growth and to analyse their composition and antimicrobial efficacy. The co-culture of Lactococcus lactis ATCC 11454 resulted in the production of a stable antimicrobial peptide, which was heat resistant and acid tolerant. Purification was achieved via ammonium sulphate precipitation and preparative HPLC, yielding a peptide with a molecular mass of 3.3 kDa, with daughter ion fractions similar to nisin A. Antimicrobial activity studies demonstrated that the diffusible substances effectively inhibited B. cereus growth over a period of eight days and exhibited bactericidal activity, killing 99% of the B. cereus cells. Additionally, these substances also inhibited Escherichia coli K-12 MG1655 grown under similar conditions. Comparative analysis revealed that in the co-culture assay, L. lactis produced a 50% higher yield of the antimicrobial peptides compared to pure cultures. Similarly, the specific growth rate of L. lactis was four times higher. With respect to protein purification and concentration, ammonium sulphate precipitation coupled with solid phase extraction was most effective in the purification and concentration of the diffusible substances. The findings provide a basis for utilising bacteriocin-producing strains as a preservation method, offering an alternative to traditional chemical and physical control approaches especially for the food industry. Full article
(This article belongs to the Special Issue Food Hygiene and Human Health)
Show Figures

Figure 1

15 pages, 3416 KiB  
Article
Acid–Heat-Induced Fabrication of Nisin-Loaded Egg White Protein Nanoparticles: Enhanced Structural and Antibacterial Stability
by Shengqi Rao, Caochen Jia, Xiangning Lu, Yisheng Yu, Zhirong Wang and Zhenquan Yang
Foods 2024, 13(11), 1741; https://doi.org/10.3390/foods13111741 - 1 Jun 2024
Cited by 2 | Viewed by 1704
Abstract
As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this [...] Read more.
As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid–heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively. Full article
Show Figures

Graphical abstract

12 pages, 9459 KiB  
Article
Effect of Soy Protein Products on Growth and Metabolism of Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus
by Wei Wen, Miao Hu, Yaxin Gao, Pengfei Zhang, Weimin Meng, Fengxia Zhang, Bei Fan, Fengzhong Wang and Shuying Li
Foods 2024, 13(10), 1525; https://doi.org/10.3390/foods13101525 - 14 May 2024
Cited by 2 | Viewed by 3345
Abstract
Microbial nitrogen sources are promising, and soy protein as a plant-based nitrogen source has absolute advantages in creating microbial culture medium in terms of renewability, eco-friendliness, and greater safety. Soy protein is rich in variety due to different extraction technologies and significantly different [...] Read more.
Microbial nitrogen sources are promising, and soy protein as a plant-based nitrogen source has absolute advantages in creating microbial culture medium in terms of renewability, eco-friendliness, and greater safety. Soy protein is rich in variety due to different extraction technologies and significantly different in the cell growth and metabolism of microorganisms as nitrogen source. Therefore, different soy proteins (soy meal powder, SMP; soy peptone, SP; soy protein concentrate, SPC; soy protein isolate, SPI; and soy protein hydrolysate, SPH) were used as nitrogen sources to culture Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus to evaluate the suitable soy nitrogen sources of the above strains. The results showed that B. subtilis had the highest bacteria density in SMP medium; S. lactis had the highest bacteria density in SPI medium; and S. clavuligerus had the highest PMV in SPI medium. Nattokinase activity was the highest in SP medium; the bacteriostatic effect of nisin was the best in SPI medium; and the clavulanic acid concentration was the highest in SMP medium. Based on analyzing the correlation between the nutritional composition and growth metabolism of the strains, the results indicated that the protein content and amino acid composition were the key factors influencing the cell growth and metabolism of the strains. These findings present a new, high-value application opportunity for soybean protein. Full article
Show Figures

Figure 1

12 pages, 4129 KiB  
Article
Effect of Fermented Milk Supplemented with Nisin or Plantaricin Q7 on Inflammatory Factors and Gut Microbiota in Mice
by Yisuo Liu, Yushan Bu, Jiayuan Cao, Yinxue Liu, Tai Zhang, Linlin Hao and Huaxi Yi
Nutrients 2024, 16(5), 680; https://doi.org/10.3390/nu16050680 - 28 Feb 2024
Cited by 4 | Viewed by 1959
Abstract
Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from [...] Read more.
Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host’s health. Full article
Show Figures

Figure 1

18 pages, 2113 KiB  
Article
Evaluation of Safety and Probiotic Traits from a Comprehensive Genome-Based In Silico Analysis of Ligilactobacillus salivarius P1CEA3, Isolated from Pigs and Producer of Nisin S
by Ester Sevillano, Irene Lafuente, Nuria Peña, Luis M. Cintas, Estefanía Muñoz-Atienza, Pablo E. Hernández and Juan Borrero
Foods 2024, 13(1), 107; https://doi.org/10.3390/foods13010107 - 28 Dec 2023
Cited by 5 | Viewed by 2328
Abstract
Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut [...] Read more.
Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut microbiota. L. salivarius P1CEA3, a porcine isolated strain, was first selected and identified by its antimicrobial activity against a broad range of pathogenic bacteria due to the production of the novel bacteriocin nisin S. The assembled L. salivarius P1CEA3 genome includes a circular chromosome, a megaplasmid (pMP1CEA3) encoding the nisin S gene cluster, and two small plasmids. A comprehensive genome-based in silico analysis of the L. salivarius P1CEA3 genome reveals the presence of genes related to probiotic features such as bacteriocin synthesis, regulation and production, adhesion and aggregation, the production of lactic acid, amino acids metabolism, vitamin biosynthesis, and tolerance to temperature, acid, bile salts and osmotic and oxidative stress. Furthermore, the strain is absent of risk-related genes for acquired antibiotic resistance traits, virulence factors, toxic metabolites and detrimental metabolic or enzymatic activities. Resistance to common antibiotics and gelatinase and hemolytic activities have been discarded by in vitro experiments. This study identifies several probiotic and safety traits of L. salivarius P1CEA3 and suggests its potential as a promising probiotic in swine production. Full article
Show Figures

Figure 1

Back to TopTop