Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,242)

Search Parameters:
Keywords = new vaccines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1786 KiB  
Article
Lycopene Inhibits PRRSV Replication by Suppressing ROS Production
by Ying-Xian Ma, Ya-Qi Han, Pei-Zhu Wang, Bei-Bei Chu, Sheng-Li Ming and Lei Zeng
Int. J. Mol. Sci. 2025, 26(15), 7560; https://doi.org/10.3390/ijms26157560 (registering DOI) - 5 Aug 2025
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel antiviral therapeutics. This study aimed to investigate the molecular mechanisms by which lycopene inhibits PRRSV replication. Initial assessments confirmed that lycopene did not adversely affect cellular viability, cell cycle progression, or apoptosis. Using fluorescence microscopy, flow cytometry, immunoblotting, quantitative real-time PCR (qRT-PCR), and viral titration assays, lycopene was shown to exhibit potent antiviral activity against PRRSV. Mechanistic studies revealed that lycopene suppresses reactive oxygen species (ROS) production, which is critical for PRRSV proliferation. Additionally, lycopene attenuated PRRSV-induced inflammatory responses, as demonstrated by immunoblotting, ELISA, and qRT-PCR assays. These findings suggest that lycopene inhibits PRRSV replication by modulating ROS levels and mitigating inflammation, offering a promising avenue for the development of antiviral therapeutics. This study provides new insights and strategies for combating PRRSV infections, emphasizing the potential of lycopene as a safe and effective antiviral agent. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

28 pages, 5831 KiB  
Article
An Italian Single-Center Genomic Surveillance Study: Two-Year Analysis of SARS-CoV-2 Spike Protein Mutations
by Riccardo Cecchetto, Emil Tonon, Asia Palmisano, Anna Lagni, Erica Diani, Virginia Lotti, Marco Mantoan, Livio Montesarchio, Francesca Palladini, Giona Turri and Davide Gibellini
Int. J. Mol. Sci. 2025, 26(15), 7558; https://doi.org/10.3390/ijms26157558 (registering DOI) - 5 Aug 2025
Abstract
The repeated occurrence of SARS-CoV-2 variants, largely driven by virus–host interactions, was and will remain a public health concern. Spike protein mutations shaped viral infectivity, transmissibility, and immune escape. From February 2022 to April 2024, a local genomic surveillance program in Verona, Italy, [...] Read more.
The repeated occurrence of SARS-CoV-2 variants, largely driven by virus–host interactions, was and will remain a public health concern. Spike protein mutations shaped viral infectivity, transmissibility, and immune escape. From February 2022 to April 2024, a local genomic surveillance program in Verona, Italy, was conducted on 1333 SARS-CoV-2-positive nasopharyngeal swabs via next generation full-length genome sequencing. Spike protein mutations were classified based on their prevalence over time. Mutations were grouped into five categories: fixed, emerging, fading, transient, and divergent. Notably, some divergent mutations displayed a “Lazarus effect,” disappearing and later reappearing in new lineages, indicating potential adaptive advantages in specific genomic contexts. This two-year surveillance study highlights the dynamic nature of spike protein mutations and their role in SARS-CoV-2 evolution. The findings underscore the need for ongoing mutation-focused genomic monitoring to detect early signals of variant emergence, especially among mutations previously considered disadvantageous. Such efforts are critical for driving public health responses and guiding future vaccine and therapeutic strategies. Full article
(This article belongs to the Special Issue The Interaction Between Cell and Virus, 3rd Edition)
Show Figures

Figure 1

16 pages, 1414 KiB  
Article
Integrated Analysis of the Safety Experience in Adults with the Bivalent Respiratory Syncytial Virus Prefusion F Vaccine
by Kumar Ilangovan, David Radley, Michael Patton, Emma Shittu, Maria Maddalena Lino, Christos Goulas, Kena A. Swanson, Annaliesa S. Anderson, Alejandra Gurtman and Iona Munjal
Vaccines 2025, 13(8), 827; https://doi.org/10.3390/vaccines13080827 (registering DOI) - 1 Aug 2025
Viewed by 251
Abstract
Background/objectives: This was a post hoc analysis of safety data across the bivalent respiratory syncytial virus prefusion F (RSVpreF) vaccine clinical trial development program. Methods: Data from eight clinical trials in 46,913 immunocompetent adults who received RSVpreF or placebo were analyzed. Local reactions [...] Read more.
Background/objectives: This was a post hoc analysis of safety data across the bivalent respiratory syncytial virus prefusion F (RSVpreF) vaccine clinical trial development program. Methods: Data from eight clinical trials in 46,913 immunocompetent adults who received RSVpreF or placebo were analyzed. Local reactions and systemic events were assessed among non-pregnant ≥18-year-olds (n = 9517); adverse events (AEs) among pregnant and non-pregnant 18–59-year-olds (n = 9238); and vaccine-related AEs among non-pregnant ≥18-year-olds (n = 39,314). Post-marketing data in non-pregnant adults were considered. Results: Local reactions and systemic events were reported more frequently in RSVpreF versus placebo recipients; injection site pain was the most common local reaction (RSVpreF, 18.9%; placebo, 7.4%), and fatigue (23.5%; 18.4%) and headache (19.5%; 15.0%) were the most common systemic events. Percentages of AEs within 1 month after vaccination were similar across groups (RSVpreF, 12.8%; placebo, 13.1%); severe AEs were reported in ≤1.5% of participants. Differences in percentages of individuals reporting vaccine-related AEs between the RSVpreF and placebo groups were <0.2% for all related AEs. Serious AEs throughout the study were reported in ≤14.0% (RSVpreF, 12.6%; placebo, 14.0%). No atrial fibrillation, Guillain-Barré syndrome, or acute polyneuropathy cases were reported. The AE data from post-marketing data sources were consistent with the safety profile from the clinical trial program, with no new safety concerns. Conclusions: Integrated data demonstrated that RSVpreF was well tolerated with a favorable safety profile in non-pregnant and pregnant adults. Ongoing surveillance through real-world use and clinical trial experience continue to support the safety profile of RSVpreF. ClinicalTrials.gov: NCT03529773/NCT04071158/NCT04785612/NCT05035212/NCT05096208/NCT05842967/NCT04032093/NCT04424316. Full article
(This article belongs to the Special Issue Host Immunity and Vaccines for Respiratory Pathogens)
Show Figures

Figure 1

17 pages, 1353 KiB  
Article
Inhibition of Human Coronavirus 229E by Lactoferrin-Derived Peptidomimetics
by Maria Carmina Scala, Magda Marchetti, Martina Landi, Marialuigia Fantacuzzi, Fabiana Superti, Mariangela Agamennone, Pietro Campiglia and Marina Sala
Pharmaceutics 2025, 17(8), 1006; https://doi.org/10.3390/pharmaceutics17081006 - 1 Aug 2025
Viewed by 204
Abstract
Background/Objectives: Viral respiratory infections have a significant impact on global health and the economy. While vaccines are effective in preventing infection, they might not be available or sufficient when used alone and must be complemented by specific therapeutic strategies. The development of new [...] Read more.
Background/Objectives: Viral respiratory infections have a significant impact on global health and the economy. While vaccines are effective in preventing infection, they might not be available or sufficient when used alone and must be complemented by specific therapeutic strategies. The development of new antiviral agents is increasingly important due to the continual emergence of novel respiratory pathogens. Previously we identified bovine lactoferrin (bLf)-derived tetrapeptides and peptidomimetics that showed potent in vitro activity against the influenza A virus in the picomolar range. Methods: Inspired by these results, in this study, we evaluated the antiviral potential of these compounds against HCoV-229E, a human coronavirus that can cause severe disease in immunocompromised individuals, using a compound repositioning approach. Results: Functional studies revealed that SK(N-Me)HS (3) interferes with viral entry and replication, while compound SNKHS (5) primarily blocks infection in the early stages. Biophysical analyses confirmed the occurrence of high-affinity binding to the viral spike protein, and computational studies suggested that the compounds target a region involved in conformational changes necessary for membrane fusion. Conclusions: These findings highlight these compounds as promising candidates for coronavirus entry inhibition and underscore the value of compound repurposing in antiviral development. Full article
(This article belongs to the Special Issue Peptides-Based Antiviral Agents)
Show Figures

Figure 1

19 pages, 4552 KiB  
Article
Cognitive–Affective Dynamics of Political Attitude Polarization: EEG-Based Behavioral Evidence from a COVID-19 Vaccine Mandate Task
by Jing Li and Zhiwei Xu
Behav. Sci. 2025, 15(8), 1043; https://doi.org/10.3390/bs15081043 - 1 Aug 2025
Viewed by 238
Abstract
Political polarization in policy evaluations arises from identity-driven cognitive–affective dynamics, yet the neural mechanisms underlying the real-time processing of policy texts remain unexplored. This study bridges this gap by employing EEG to capture neurobehavioral responses during a COVID-19 vaccine mandate judgment task. The [...] Read more.
Political polarization in policy evaluations arises from identity-driven cognitive–affective dynamics, yet the neural mechanisms underlying the real-time processing of policy texts remain unexplored. This study bridges this gap by employing EEG to capture neurobehavioral responses during a COVID-19 vaccine mandate judgment task. The analysis of 70 politically stratified participants revealed significantly elevated gamma1 (30–50 Hz) activity in the right prefrontal cortex among policy supporters, reflecting enhanced attentional engagement and value integration. These topographically specific neural dissociations demonstrate how ideological alignment modulates cognitive–affective processing. Our findings establish EEG as a robust tool for quantifying implicit identity-driven evaluations, offering new pathways to decode polarization in contested policy contexts. Full article
(This article belongs to the Special Issue Neural Correlates of Cognitive and Affective Processing)
Show Figures

Figure 1

24 pages, 3039 KiB  
Article
Plasmodium falciparum Subtilisin-like Domain-Containing Protein (PfSDP), a Cross-Stage Antigen, Elicits Short-Lived Antibody Response Following Natural Infection with Plasmodium falciparum
by Jonas A. Kengne-Ouafo, Collins M. Morang’a, Nancy K. Nyakoe, Daniel Dosoo, Richmond Tackie, Joe K. Mutungi, Saikou Y. Bah, Lucas N. Amenga-Etego, Britta Urban, Gordon A. Awandare, Bismarck Dinko and Yaw Aniweh
Cells 2025, 14(15), 1184; https://doi.org/10.3390/cells14151184 - 31 Jul 2025
Viewed by 490
Abstract
With the increasing detection of artemisinin resistance to front-line antimalarials in Africa and notwithstanding the planned roll-out of RTS’S and R21 in Africa, the search for new vaccines with high efficacy remains an imperative. Towards this endeavour, we performed in silico screening to [...] Read more.
With the increasing detection of artemisinin resistance to front-line antimalarials in Africa and notwithstanding the planned roll-out of RTS’S and R21 in Africa, the search for new vaccines with high efficacy remains an imperative. Towards this endeavour, we performed in silico screening to identify Plasmodium falciparum gametocyte stage genes that could be targets of protection or diagnosis. Through the analysis we identified a gene, Pf3D7_1105800, coding for a Plasmodium falciparum subtilisin-like domain-containing protein (PfSDP) and thus dubbed the gene Pfsdp. Genetic diversity assessment revealed the Pfsdp gene to be relatively conserved across continents with signs of directional selection. Using RT qPCR and Western blots, we observed that Pfsdp is expressed in all developmental stages of the parasite both at the transcript and protein level. Immunofluorescence assays found PfSDP protein co-localizing with PfMSP-1 and partially with Pfs48/45 at the asexual and sexual stages, respectively. Further, we demonstrated that anti-PfSDP peptide-specific antibodies inhibited erythrocyte invasion by 20–60% in a dose-dependent manner, suggesting that PfSDP protein might play a role in merozoite invasion. We also discovered that PfSDP protein is immunogenic in children from different endemic areas with antibody levels increasing from acute infection to day 7 post-treatment, followed by a gradual decay. The limited effect of antibodies on erythrocyte invasion could imply that it might be more involved in other processes in the development of the parasite. Full article
Show Figures

Figure 1

14 pages, 834 KiB  
Review
Immunization as Protection Against Long COVID in the Americas: A Scoping Review
by Gabriela Zambrano-Sánchez, Josue Rivadeneira, Carlos Manterola, Tamara Otzen and Luis Fuenmayor-González
Vaccines 2025, 13(8), 822; https://doi.org/10.3390/vaccines13080822 (registering DOI) - 31 Jul 2025
Viewed by 463
Abstract
Introduction: Long COVID syndrome is defined as persistent or new symptoms that appear after an acute SARS-CoV-2 infection and last at least three months without explanation. It is estimated that between 10% and 20% of those infected develop long COVID; however, data is [...] Read more.
Introduction: Long COVID syndrome is defined as persistent or new symptoms that appear after an acute SARS-CoV-2 infection and last at least three months without explanation. It is estimated that between 10% and 20% of those infected develop long COVID; however, data is not precise in Latin America. Although high immunization rates have reduced acute symptoms and the pandemic’s impact, there is a lack of evidence of its efficacy in preventing long COVID in the region. Methods: This scoping review followed PRISMA-ScR guidelines. Studies on vaccinated adults with long COVID from Central and South America and the Caribbean were included (Mexico was also considered). A comprehensive search across multiple databases was conducted. Data included study design, participant characteristics, vaccine type, and efficacy outcomes. Results are presented narratively and in tables. Results: Out of 3466 initial records, 8 studies met the inclusion criteria after rigorous selection processes. These studies encompassed populations from Brazil, Mexico, Latin America, and Bonaire, with 11,333 participants, 69.3% of whom were female. Vaccination, particularly with three or more doses, substantially reduces the risk and duration of long COVID. Variability was noted in the definitions and outcomes assessed across studies. Conclusions: This scoping review highlights that SARS-CoV-2 vaccination exhibits potential in reducing the burden of long COVID in the Americas. However, discrepancies in vaccine efficacy were observed depending on the study design, the population studied, and the vaccine regimen employed. Further robust, region-specific investigations are warranted to delineate the effects of vaccination on long COVID outcomes. Full article
Show Figures

Figure 1

21 pages, 4740 KiB  
Article
Mosquito Exosomal Tetraspanin CD151 Facilitates Flaviviral Transmission and Interacts with ZIKV and DENV2 Viral Proteins
by Durga Neupane, Md Bayzid, Girish Neelakanta and Hameeda Sultana
Int. J. Mol. Sci. 2025, 26(15), 7394; https://doi.org/10.3390/ijms26157394 - 31 Jul 2025
Viewed by 206
Abstract
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of [...] Read more.
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of transmembrane domain glycoproteins involved in cellular organization, signaling, and protein–protein interactions have been recognized as potential mediators of flaviviral infection and transmission. While their roles in vertebrate hosts have been explored, their involvement in flaviviral replication and dissemination within medically important vectors remains poorly understood. In this study, we investigated the role of arthropod tetraspanins in mosquito cells and extracellular vesicles (EVs) derived from cells infected with Zika virus (ZIKV) and dengue virus (serotype 2; DENV2). Among several of the tetraspanins analyzed, only CD151 was significantly upregulated in both mosquito cells and in EVs derived from ZIKV/DENV2-infected cells. RNAi-mediated silencing of CD151 led to a marked reduction in viral burden, suggesting its crucial role in flavivirus replication. Inhibition of EV biogenesis using GW4869 further demonstrated that EV-mediated viral transmission contributes to flavivirus propagation. Additionally, co-immunoprecipitation and immunofluorescence analyses revealed direct interactions between CD151 and ZIKV NS2B and DENV2 capsid proteins. Overall, our findings highlight the functional importance of mosquito CD151 in the replication and transmission of ZIKV and DENV2. This study provides new insights into the molecular mechanisms of flaviviral infection in mosquitoes and suggests that targeting vector tetraspanins may offer a potential approach to controlling mosquito-borne flaviviruses. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

20 pages, 310 KiB  
Article
Risk of SARS-CoV-2 Reinfections Among Healthcare Workers of Four Large University Hospitals in Northern Italy: Results of an Online Survey Within the ORCHESTRA Project
by Filippo Liviero, Anna Volpin, Patrizia Furlan, Silvia Cocchio, Vincenzo Baldo, Sofia Pavanello, Angelo Moretto, Fabriziomaria Gobba, Alberto Modenese, Marcella Mauro, Francesca Larese Filon, Angela Carta, Maria Grazia Lourdes Monaco, Gianluca Spiteri, Stefano Porru and Maria Luisa Scapellato
Vaccines 2025, 13(8), 815; https://doi.org/10.3390/vaccines13080815 (registering DOI) - 31 Jul 2025
Viewed by 178
Abstract
Background/Objectives: This retrospective multicenter study, conducted within the ORCHESTRA Project, investigated SARS-CoV-2 reinfections among 5777 healthcare workers (HCWs) from four University Hospitals (Modena, Verona, Padova and Trieste) in northern Italy, aiming to assess the risk of reinfection and its determinants, comparing the clinical [...] Read more.
Background/Objectives: This retrospective multicenter study, conducted within the ORCHESTRA Project, investigated SARS-CoV-2 reinfections among 5777 healthcare workers (HCWs) from four University Hospitals (Modena, Verona, Padova and Trieste) in northern Italy, aiming to assess the risk of reinfection and its determinants, comparing the clinical characteristics of reinfections with those of first infections, and examining the impact of preventive measures and vaccination strategies. Methods: HCWs completed an online questionnaire between June and August 2022. The survey collected demographic, occupational, and clinical data, including information on first infections and reinfections. Statistical analyses were performed using SPSS 28.0, through bivariate and multivariate approaches. Results: Response rates were 41.8% for Modena, 39.5% for Verona, 17.9% for Padova, and 17.4% for Trieste. Among the respondents, 4.8% (n = 276) experienced 2 infections and 0.5% (n = 27) reported 3 infections, out of a total of 330 reinfection cases. Additionally, 43.0% (n = 2787) reported only one infection, while 51.5% were never infected. Reinfection rates increased across five study phases (based on the epidemiological context), likely due to the emergence of new SARS-CoV-2 variants. A booster vaccine dose significantly reduced reinfection risk. Higher reinfection risk was found among HCWs aged ≤30 years, those with chronic respiratory diseases, and those working in COVID-19 wards, particularly nurses and allied health professionals. Reinfections were associated with a lower frequency of symptoms both during the period of swab positivity and after a negative swab, as well as with a shorter duration of swab positivity. No significant differences in symptom duration were found between first infections and reinfections. Conclusions: Despite its limitations, the online questionnaire proved a useful tool. Natural infection and vaccination reduced both reinfection risk and symptom severity. Prior infections should be considered in planning vaccination schedules and prioritizing HCWs. Full article
(This article belongs to the Special Issue Vaccination and Public Health in the 21st Century)
13 pages, 822 KiB  
Article
Analysis of Sequential Pneumococcal Vaccination Coverage in the Elderly Resident Population of the Viterbo Local Health Authority from 2018 to 2023
by Andrea Bongiovanni, Giulia Santolini, Francesco Vairo, Francesco Corea, Silvia Aquilani and Chiara de Waure
Vaccines 2025, 13(8), 807; https://doi.org/10.3390/vaccines13080807 - 30 Jul 2025
Viewed by 266
Abstract
Background: Pneumococcal disease is a significant health burden, particularly among older adults and individuals with chronic conditions. Sequential pneumococcal vaccination (PCV13 followed by PPSV23) has been recommended in Italy since 2017 for its demonstrated efficacy, safety, and cost-effectiveness in preventing invasive pneumococcal disease [...] Read more.
Background: Pneumococcal disease is a significant health burden, particularly among older adults and individuals with chronic conditions. Sequential pneumococcal vaccination (PCV13 followed by PPSV23) has been recommended in Italy since 2017 for its demonstrated efficacy, safety, and cost-effectiveness in preventing invasive pneumococcal disease (IPD). Nevertheless, limited data are available on the sequential pneumococcal vaccination coverage in Italy. This study aimed to evaluate the coverage and trends of sequential pneumococcal vaccination among individuals who turned 65 years old within the Viterbo Local Health Authority between 2018 and 2023. Methods: A retrospective cohort study was conducted using data from the Regional Vaccination Registry (AVR), a comprehensive digital vaccination dataset. Vaccination coverage was calculated based on individuals completing the sequential pneumococcal vaccination within two years after turning 65 years old. Trends as well as subgroup variations based on sex, citizenship, district of residence, and municipality size were analyzed. Results: Among 27,657 individuals who turned 65 years of age during the study period, only 2.32% completed the sequential pneumococcal vaccination. Coverage increased steadily from 2018 (0.60%) to a peak in 2020 (3.27%), followed by a plateau and a decline in 2023 (2.53%). Coverage varied across demographic and geographic subgroups: females (2.58%) had higher coverage than males (2.04%), Italian citizens (2.45%) exceeded foreign residents (0.64%), and residents in District C (3.03%) led over District A (1.08%). Smaller municipalities (≤10,000 inhabitants) showed higher coverage (2.52%) than larger ones (1.98%). Conclusions: Adherence to sequential pneumococcal vaccination has been very low throughout the considered study period. This is highly relevant information to consider in the view of new available pneumococcal vaccines for immunization of the elderly. Furthermore, geographic and demographic differences highlight the need for targeted public health interventions. Full article
(This article belongs to the Special Issue Vaccines and Vaccine Preventable Diseases)
Show Figures

Figure 1

15 pages, 253 KiB  
Conference Report
Challenges and Opportunities of Genomic Surveillance SARS-CoV-2 in Mexico Meeting
by Hugo G. Castelán-Sánchez, Gamaliel López-Leal, Rodrigo López-García, Ugo Avila-Ponce de León, Luis Delaye, Maribel Hernández-Rosales, Selene Zárate, Claudia Wong, Eric Avila-Vales, Irma López-Martínez, Margarita Valdés-Alemán, Ramón A. González, Luis A. Mendoza-Torres, Nelly Selem-Mojica, Edgar E. Sevilla-Reyes, Paola Rojas-Estevez, Marcela Mercado-Reyes, Aidee Orozco-Hernández, Jesús Torres-Flores and León Martínez-Castilla
Biol. Life Sci. Forum 2025, 48(1), 1; https://doi.org/10.3390/blsf2025048001 - 29 Jul 2025
Viewed by 179
Abstract
In late 2019, a new virus, SARS-CoV-2, emerged in Wuhan, China, causing COVID-19 and the subsequent global pandemic. As of 30 April 2023, more than 774 million cases of COVID-19 had been reported worldwide, including over 7.5 million in Mexico. Despite advances in [...] Read more.
In late 2019, a new virus, SARS-CoV-2, emerged in Wuhan, China, causing COVID-19 and the subsequent global pandemic. As of 30 April 2023, more than 774 million cases of COVID-19 had been reported worldwide, including over 7.5 million in Mexico. Despite advances in vaccination, epidemic surges of COVID-19 continued to occur globally, highlighting the importance of sharing and disseminating the experiences gained during these first years to better understand the virus’s evolution and respond accordingly. For this reason, the National Council for Science and Technology (CONACYT) organized the meeting “Challenges and Opportunities for Genomic Surveillance of SARS-CoV-2 in Mexico” from 15 to 17 August 2022, to present the efforts and results accumulated over more than two years of the pandemic. In this meeting report, we summarize the key findings of each participant and provide their contact information. Full article
15 pages, 770 KiB  
Review
Research Progress on the Gc Proteins of Akabane Virus
by Xiaolin Lan, Fang Liang, Gan Li, Weili Kong, Ruining Wang, Lin Wang, Mengmeng Zhao and Keshan Zhang
Vet. Sci. 2025, 12(8), 701; https://doi.org/10.3390/vetsci12080701 - 27 Jul 2025
Viewed by 252
Abstract
The Akabane virus (AKAV) is a significant member of the Orthobunyavirus genus, with its envelope glycoprotein Gc, focusing on its molecular structural features, immunoregulatory mechanisms, and application value in pathogen diagnosis and vaccine design. As a key structural protein of AKAV, Gc mediates [...] Read more.
The Akabane virus (AKAV) is a significant member of the Orthobunyavirus genus, with its envelope glycoprotein Gc, focusing on its molecular structural features, immunoregulatory mechanisms, and application value in pathogen diagnosis and vaccine design. As a key structural protein of AKAV, Gc mediates virus adsorption and neutralizing antibody recognition through the N-terminal highly variable region (HVR), while the C-terminal conserved region (CR) dominates the membrane fusion process, and its glycosylation modification has a significant regulatory effect on protein function. In clinical diagnostics, serological assays based on Gc proteins (e.g., ELISA, immunochromatographic test strips) have been standardized; in vaccine development, the neutralizing epitope of Gc proteins has become a core target for subunit vaccine design. Follow-up studies were deeply needed to analyze the structure-function interaction mechanism of Gc proteins to provide theoretical support for the construction of a new type of AKAV prevention and control system. Full article
Show Figures

Figure 1

22 pages, 1005 KiB  
Review
New Approaches to the Treatment of Alzheimer’s Disease
by Marta Kruk-Słomka, Dominika Kuceł, Maria Małysz, Adrianna Machnikowska, Jolanta Orzelska-Górka and Grażyna Biała
Pharmaceuticals 2025, 18(8), 1117; https://doi.org/10.3390/ph18081117 - 26 Jul 2025
Viewed by 408
Abstract
Alzheimer’s disease (AD) is one of the most common chronic neurodegenerative disorders worldwide. It is characterized by progressive memory loss and cognitive decline, leading to dementia. The pathogenesis of the disease is primarily attributed to two pathological protein structures: amyloid-beta (Aβ) plaques and [...] Read more.
Alzheimer’s disease (AD) is one of the most common chronic neurodegenerative disorders worldwide. It is characterized by progressive memory loss and cognitive decline, leading to dementia. The pathogenesis of the disease is primarily attributed to two pathological protein structures: amyloid-beta (Aβ) plaques and tau protein neurofibrils. The current treatment strategies for AD are mainly symptomatic, highlighting the urgent need for the development of new, more effective therapies for the disease. The purpose of this paper is to provide a comprehensive and scientific review of the latest research regarding novel therapeutic options in the treatment of AD. In recent years, research has focused on more advanced and diversified strategies, including immunotherapy, gene therapy, tyrosine kinase inhibitors, therapies targeting mitochondrial function, and neurogenesis-related process modulation. One of the most promising treatment strategies for AD is immunotherapy. Intensive research is currently underway on both passive immunization, which involves the administration of monoclonal antibodies, and active immunization through vaccinations that stimulate the body to produce specific antibodies. Further research into novel therapeutic directions is essential, particularly concerning the role of the immune system in the pathogenesis of AD. Immunization appears to be a highly promising approach to developing effective methods for preventing AD or delaying the progression of this disease. Full article
(This article belongs to the Special Issue NeuroImmunoEndocrinology)
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Epitope Profiling of SARS-CoV-2 Spike Antigen Provides a Novel Strategy for Developing ELISAs Specific for Different Spike Protein Variants in Bivalent Vaccine Formulations
by Luciano Ettorre, Trevor Williams, Camille Houy, Shaolong Zhu, Michael Kishko, Ali Azizi, Andrew D. James, Beata Gajewska and Jason Szeto
Vaccines 2025, 13(8), 794; https://doi.org/10.3390/vaccines13080794 - 26 Jul 2025
Viewed by 363
Abstract
Background/Objectives: An initial COVID-19 candidate vaccine containing a purified ancestral SARS-CoV-2 spike antigen was characterized with an ELISA using recombinant monoclonal antibodies (mAbs) generated against this variant. Upon the emergence of a new Beta (B.1.351) spike variant early in the pandemic, the assessment [...] Read more.
Background/Objectives: An initial COVID-19 candidate vaccine containing a purified ancestral SARS-CoV-2 spike antigen was characterized with an ELISA using recombinant monoclonal antibodies (mAbs) generated against this variant. Upon the emergence of a new Beta (B.1.351) spike variant early in the pandemic, the assessment of a bivalent vaccine containing ancestral and Beta spike antigens began. Due to accelerated project timelines, mAbs generated specifically against the Beta spike antigen were not available at the time to address assay development and vaccine testing requirements. Methods: Using only the initial mAb panel raised against the ancestral spike antigen, an epitope-blocking ELISA strategy was developed to independently measure Beta spike antigen in bivalent vaccine formulations. To facilitate this, epitope profiling of spike antigens from both ancestral and Beta variants was performed with biolayer interferometry and hydrogen–deuterium exchange mass spectrometry using the original panel of mAbs. Results: The resulting blocking ELISA was precise and specific for the Beta spike antigen and detected the expected amount of this antigen in bivalent vaccine formulations. The specific amount of ancestral spike protein in the bivalent vaccine was also confirmed using the original ELISA developed at the onset of the pandemic. Conclusions: This epitope-blocking strategy helped to overcome key reagent availability issues and could be applied to other projects involving related proteins. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

16 pages, 777 KiB  
Communication
The Platform Readiness Dashboard: A Tool for Evaluating Vaccine Platform Suitability for a Rapid Response to Epidemic and Pandemic Threats
by Ramin Sabet-Azad, Catherine Hoath, Nicole Bézay and Anna Särnefält
Vaccines 2025, 13(8), 793; https://doi.org/10.3390/vaccines13080793 - 26 Jul 2025
Viewed by 804
Abstract
Rapid vaccine availability is essential for effective epidemic and pandemic response. Building on the Coalition for Epidemic Preparedness Innovations (CEPI) 100 Days Mission, which aims to have new vaccines ready for initial authorization and manufacturing at scale within 100 days of recognition of [...] Read more.
Rapid vaccine availability is essential for effective epidemic and pandemic response. Building on the Coalition for Epidemic Preparedness Innovations (CEPI) 100 Days Mission, which aims to have new vaccines ready for initial authorization and manufacturing at scale within 100 days of recognition of a pandemic pathogen, the CEPI has developed a Chemistry, Manufacturing and Controls (CMC) Rapid Response Framework to define technical and logistical CMC requirements to enable rapid vaccine availability. Central to this framework is the availability of adaptable vaccine platforms that can be readily tailored to emerging pathogens. To support strategic decision-making and identify gaps in platform capabilities, CEPI has created the Platform Readiness Dashboard. This tool provides a structured, multi-dimensional initial assessment of platform maturity across six key categories: Adaptability, Compatibility, Suitability, Regulatory, Manufacturing, and Facility Readiness. Each category includes specific technical and operational considerations scored using a color-coded system to reflect outbreak response readiness level. This Dashboard aims to enable vaccine developers, manufacturers, funders, and outbreak response teams to evaluate platform strengths and limitations at any given time, informing funding, preparedness and response activities. By offering a dynamic view of essential platform readiness indicators, the dashboard can communicate progress supporting faster responses to future health emergencies. Full article
(This article belongs to the Special Issue Estimating Vaccines' Value and Impact)
Show Figures

Figure 1

Back to TopTop