Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (511)

Search Parameters:
Keywords = neutron generator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4528 KiB  
Article
Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors
by Alexey Dikov, Sergey Kislitsin, Boris Ivanov, Ruslan Kiryanov and Egor Maksimkin
Materials 2025, 18(14), 3391; https://doi.org/10.3390/ma18143391 - 19 Jul 2025
Viewed by 253
Abstract
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service [...] Read more.
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service life of nuclear reactors is a modern problem, since most operating reactors are early-generation reactors that have exhausted their design lifespan. The possibility of extending the service life is largely determined by the condition of the structural materials of the nuclear facility, i.e., their residual resources must ensure safe operation of the reactor. For the SAV-1 alloy, the structural material of the WWR-K reactor, studies were conducted on witness samples which were in the active zone during its operation for 56 years. It was found that yield strength and tensile strength of the irradiated SAV-1 alloy decreased by 24–48%, and relative elongation decreased by ~2% compared to the unirradiated alloy. Inside the grains and along their boundaries, there were particles of secondary phases enriched with silicon, which is typical for aged aluminum alloys. For irradiated structural steels of power reactors, studied at 350–450 C, hardening and a damping nature of creep were revealed, caused by dispersion hardening and the Hall–Petch effect. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

23 pages, 3721 KiB  
Article
Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors
by Jixing Ye and Gian-Franco Dalla Betta
Sensors 2025, 25(14), 4478; https://doi.org/10.3390/s25144478 - 18 Jul 2025
Viewed by 187
Abstract
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D [...] Read more.
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D pixel sensors have been used to equip the innermost tracking layers of the ATLAS and CMS detector upgrades at the High-Luminosity Large Hadron Collider. Additionally, the next generation of vertex detectors calls for precise measurement of charged particle timing at the pixel level. Owing to their fast response times, 3D sensors present themselves as a viable technology for these challenging applications. Nevertheless, both radiation hardness and fast timing require 3D sensors to be operated with high bias voltages on the order of ∼150 V and beyond. Special attention should therefore be devoted to avoiding problems that could cause premature electrical breakdown, which could limit sensor performance. In this paper, TCAD simulations are used to gain deep insight into the impact of surface isolation layers (i.e., p-stop and p-spray) used by different vendors on the high-voltage tolerance of small-pitch 3D sensors. Results relevant to different geometrical configurations and irradiation scenarios are presented. The advantages and disadvantages of the available technologies are discussed, offering guidance for design optimization. Experimentalmeasurements from existing samples based on both isolation techniques show good agreement with simulated breakdown voltages, thereby validating the simulation approach. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

16 pages, 3999 KiB  
Article
Influence of TRISO Fuel Particle Arrangements on Pebble Neutronics and Isotopic Evolution
by Ben Impson, Mohamed Elhareef, Zeyun Wu and Braden Goddard
J. Nucl. Eng. 2025, 6(3), 27; https://doi.org/10.3390/jne6030027 - 14 Jul 2025
Viewed by 409
Abstract
Pebble Bed Reactors (PBRs) represent a new generation of nuclear reactors. However, modeling TRi-structural ISOtropic (TRISO) fuel particles employed in PBRs presents a unique challenge in comparison to most conventional reactor designs. Rapid generation of different possible fuel particle configurations for Monte-Carlo simulations [...] Read more.
Pebble Bed Reactors (PBRs) represent a new generation of nuclear reactors. However, modeling TRi-structural ISOtropic (TRISO) fuel particles employed in PBRs presents a unique challenge in comparison to most conventional reactor designs. Rapid generation of different possible fuel particle configurations for Monte-Carlo simulations provides improved insights into the effects of particle distribution irregularities on the neutron economy. Defective pebbles could cause changes in the neutron flux in a nuclear reactor due to increased or decreased moderating effects. Different configurations of particle fuel also impact isotope production within the nuclear reactor. This study simulates several TRISO configurations representing limited capabilities of randomization algorithms, manufacturing defects configurations and/or special pebble design. All predictions are compared to an equivalent homogenized model used as baseline. The results show that the TRISO configuration has a non-negligible impact on the parameters under consideration. To explain these results, the ratio of the thermal flux of each model to the thermal flux of the homogeneous model is calculated. A clear pattern is observed in the data: as irregularities in the moderator medium emerge due to the distribution of TRISO particles, the neutron spectrum softens, leading to higher values of k and better fuel utilization. This dependence of the spectrum on the TRISO configuration is used to explain the pattern observed in the depletion calculation. The results open the possibility of optimizing the TRISO configuration in manufactured pebbles for fuel utilization and safeguards. Future work should focus on full core simulations to determine the extent of these findings. Full article
Show Figures

Figure 1

25 pages, 5935 KiB  
Article
Point-Kernel Code Development for Gamma-Ray Shielding Applications
by Mario Matijević, Krešimir Trontl, Siniša Šadek and Paulina Družijanić
Appl. Sci. 2025, 15(14), 7795; https://doi.org/10.3390/app15147795 - 11 Jul 2025
Viewed by 220
Abstract
The point-kernel (PK) technique has a long history in applied radiation shielding, originating from the early days of digital computers. The PK technique applied to gamma-ray attenuation is one of many successful applications, based on the linear superposition principle applied to distributed radiation [...] Read more.
The point-kernel (PK) technique has a long history in applied radiation shielding, originating from the early days of digital computers. The PK technique applied to gamma-ray attenuation is one of many successful applications, based on the linear superposition principle applied to distributed radiation sources. Mathematically speaking, the distributed source will produce a detector response equivalent to the numerical integration of the radiation received from an equivalent number of point sources. In this treatment, there is no interference between individual point sources, while inherent limitations of the PK method are its inability to simulate gamma scattering in shields and the usage of simple boundary conditions. The PK method generally works for gamma-ray shielding with corrective B-factor for scattering and only specifically for fast neutron attenuation in a hydrogenous medium with the definition of cross section removal. This paper presents theoretical and programming aspects of the PK program developed for a distributed source of photons (line, disc, plane, sphere, slab volume, etc.) and slab shields. The derived flux solutions go beyond classical textbooks as they include the analytical integration of Taylor B-factor, obtaining a closed form readily suitable for programming. The specific computational modules are unified with a graphical user interface (GUI), assisting users with input/output data and visualization, developed for the fast radiological characterization of simple shielding problems. Numerical results of the selected PK test cases are presented and verified with the CADIS hybrid shielding methodology of the MAVRIC/SCALE6.1.3 code package from the ORNL. Full article
Show Figures

Figure 1

23 pages, 3988 KiB  
Article
Research on Equivalent One-Dimensional Cylindrical Modeling Method for Lead–Bismuth Fast Reactor Fuel Assemblies
by Jinjie Xiao, Yongfa Zhang, Song Li, Ling Chen, Jiannan Li and Cong Zhang
Energies 2025, 18(13), 3564; https://doi.org/10.3390/en18133564 - 6 Jul 2025
Viewed by 425
Abstract
The lead-cooled fast reactor (LFR), a Generation IV nuclear system candidate, presents unique neutronic characteristics distinct from pressurized water reactors. Its neutron spectrum spans wider energy ranges with fast neutron dominance, exhibiting resonance phenomena across energy regions. These features require a fine energy [...] Read more.
The lead-cooled fast reactor (LFR), a Generation IV nuclear system candidate, presents unique neutronic characteristics distinct from pressurized water reactors. Its neutron spectrum spans wider energy ranges with fast neutron dominance, exhibiting resonance phenomena across energy regions. These features require a fine energy group structure for fuel lattice calculations, significantly increasing computational demands. To balance local heterogeneity modeling with computational efficiency, researchers across the world adopt fuel assembly equivalence methods using 1D cylindrical models through volume equivalence principles. This approach enables detailed energy group calculations in simplified geometries, followed by lattice homogenization for few-group parameter generation, effectively reducing whole-core computational loads. However, limitations emerge when handling strongly heterogeneous components like structural/control rods. This study investigates the 1D equivalence method’s accuracy in lead–bismuth fast reactors under various fuel assembly configurations. Through comprehensive analysis of material distributions and their equivalence impacts, the applicability of the one-dimensional equivalence approach to fuel assemblies of different geometries and material types is analyzed in this paper. The research further proposes corrective solutions for low-accuracy scenarios, enhancing computational method reliability. This paper is significant in its optimization of the physical calculation and analysis process of a new type of fast reactor component and has important engineering application value. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

12 pages, 1540 KiB  
Review
Gravitational Waves: Echoes of the Biggest Bangs Since the Big Bang and/or BSM Physics?
by John Ellis
Universe 2025, 11(7), 213; https://doi.org/10.3390/universe11070213 - 26 Jun 2025
Viewed by 321
Abstract
“If one could ever prove the existence of gravitational waves, the processes responsible for their generation would probably be much more curious and interesting than even the waves themselves.” (Gustav Mie, 1868–1957). The discovery of gravitational waves has opened new windows on [...] Read more.
“If one could ever prove the existence of gravitational waves, the processes responsible for their generation would probably be much more curious and interesting than even the waves themselves.” (Gustav Mie, 1868–1957). The discovery of gravitational waves has opened new windows on astrophysics, cosmology and physics beyond the Standard Model (BSM). Measurements by the LIGO, Virgo and KAGRA Collaborations of stellar–mass binaries and neutron star mergers have shown that gravitational waves travel at close to the velocity of light and constrain BSM possibilities, such as a graviton mass and Lorentz violation in gravitational wave propagation. Follow-up measurements of neutron star mergers have provided evidence for the production of heavy elements, possibly including some essential for human life. The gravitational waves in the nanoHz range observed by Pulsar Timing Arrays (PTAs) may have been emitted by supermassive black hole binaries, but might also have originated from BSM cosmological scenarios such as cosmic strings, or phase transitions in the early Universe. The answer to the question in the title may be provided by gravitational-wave detectors at higher frequencies, such as LISA and atom interferometers. KCL-PH-TH/2024-05. Full article
Show Figures

Figure 1

15 pages, 2038 KiB  
Article
Mechanical Tensile Response of Ni–Graphene Nanocomposites in Hydrogen-Irradiation-Coupled Environments Using Molecular Dynamics Simulations
by Tonghe Liu, Xiaoting Yuan and Hai Huang
Nanomaterials 2025, 15(13), 970; https://doi.org/10.3390/nano15130970 - 22 Jun 2025
Viewed by 293
Abstract
In Gen-IV nuclear reactors, structural materials must endure unprecedented levels of neutron irradiation and hydrogen exposure, posing significant challenges for traditional Ni-based alloys. This study evaluates Ni–graphene nanocomposites (NGNCs) as a promising solution, leveraging their inherent radiation tolerance and hydrogen diffusion suppression. Using [...] Read more.
In Gen-IV nuclear reactors, structural materials must endure unprecedented levels of neutron irradiation and hydrogen exposure, posing significant challenges for traditional Ni-based alloys. This study evaluates Ni–graphene nanocomposites (NGNCs) as a promising solution, leveraging their inherent radiation tolerance and hydrogen diffusion suppression. Using molecular dynamics simulations, we investigate how Ni/graphene interfaces influence mechanical properties under combined hydrogen permeation and displacement damage. Key parameters, such as hydrogen concentration, displacement damage level, strain rate, and temperature, are systematically varied to assess their impact on stress–strain behavior (including Young’s modulus and tensile strength), with comparisons to single-crystal nickel. Our findings reveal that NGNCs exhibit distinct mechanical responses characterized by serrated stress–strain curves due to interfacial slip. Hydrogen and irradiation effects are complex: low hydrogen levels can increase Young’s modulus, while higher concentrations and irradiation generally degrade strength, with NGNCs being more affected than single-crystal nickel. Additionally, NGNCs show enhanced thermal stability but increased strain rate sensitivity. These results provide critical insights for designing materials that balance reinforcement with environmental resilience in nuclear applications. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

12 pages, 690 KiB  
Article
An Overview of the MUSES Calculation Engine and How It Can Be Used to Describe Neutron Stars
by Mateus Reinke Pelicer, Veronica Dexheimer and Joaquin Grefa
Universe 2025, 11(7), 200; https://doi.org/10.3390/universe11070200 - 20 Jun 2025
Cited by 1 | Viewed by 226
Abstract
For densities beyond nuclear saturation, there is still a large uncertainty in the equations of state (EoSs) of dense matter that translate into uncertainties in the internal structure of neutron stars. The MUSES Calculation Engine provides a free and open-source composable workflow management [...] Read more.
For densities beyond nuclear saturation, there is still a large uncertainty in the equations of state (EoSs) of dense matter that translate into uncertainties in the internal structure of neutron stars. The MUSES Calculation Engine provides a free and open-source composable workflow management system, which allows users to calculate the EoSs of dense and hot matter that can be used, e.g., to describe neutron stars. For this work, we make use of two MUSES EoS modules, i.e., Crust Density Functional Theory and Chiral Mean Field model, with beta-equilibrium with leptons enforced in the Lepton module, then connected by the Synthesis module using different functions: hyperbolic tangent, generalized Gaussian, bump, and smoothstep. We then calculate stellar structure using the QLIMR module and discuss how the different interpolating functions affect our results. Full article
(This article belongs to the Special Issue Compact Stars in the QCD Phase Diagram 2024)
Show Figures

Figure 1

15 pages, 1152 KiB  
Article
A Novel Logarithmic Approach to General Relativistic Hydrodynamics in Dynamical Spacetimes
by Mario Imbrogno, Rita Megale, Luca Del Zanna and Sergio Servidio
Universe 2025, 11(6), 194; https://doi.org/10.3390/universe11060194 - 18 Jun 2025
Viewed by 187
Abstract
We introduce a novel logarithmic approach within the Baumgarte–Shapiro–Shibata–Nakamura (BSSN) formalism for self-consistently solving the equations of general relativistic hydrodynamics (GRHD) in evolving curved spacetimes. This method employs a “3 + 1” decomposition of spacetime, complemented by the “1 + log” slicing condition [...] Read more.
We introduce a novel logarithmic approach within the Baumgarte–Shapiro–Shibata–Nakamura (BSSN) formalism for self-consistently solving the equations of general relativistic hydrodynamics (GRHD) in evolving curved spacetimes. This method employs a “3 + 1” decomposition of spacetime, complemented by the “1 + log” slicing condition and Gamma-driver shift conditions, which have been shown to improve numerical stability in spacetime evolution. A key innovation of our work is the logarithmic transformation applied to critical variables such as rest-mass density, energy density, and pressure, thus preserving physical positivity and mitigating numerical issues associated with extreme variations. Our formulation is fully compatible with advanced numerical techniques, including spectral methods and Fourier-based algorithms, and it is particularly suited for simulating highly nonlinear regimes in which gravitational fields play a significant role. This approach aims to provide a solid foundation for future numerical implementations and investigations of relativistic hydrodynamics, offering promising new perspectives for modeling complex astrophysical phenomena in strong gravitational fields, including matter evolution around compact objects like neutron stars and black holes, turbulent flows in the early universe, and the nonlinear evolution of cosmic structures. Full article
Show Figures

Figure 1

10 pages, 1554 KiB  
Article
Investigating the Secondary Thermal Neutron Intensity of Neutron Capture-Enhanced Proton Therapy
by Takahiro Shimo, Shintaro Shiba, Hiroyuki Watanabe, Masashi Yamanaka, Kazuki Matsumoto, Akihiro Yamano, Hisato Nagano and Kohichi Tokuuye
Appl. Sci. 2025, 15(12), 6833; https://doi.org/10.3390/app15126833 - 17 Jun 2025
Viewed by 337
Abstract
This study aimed to investigate the distribution of thermal neutron fluence generated during proton-beam therapy (PBT) scanning, focusing on neutrons produced within the body using Monte Carlo simulations (MCSs). MCSs used the Particle and Heavy Ion Treatment Code System to define a 35 [...] Read more.
This study aimed to investigate the distribution of thermal neutron fluence generated during proton-beam therapy (PBT) scanning, focusing on neutrons produced within the body using Monte Carlo simulations (MCSs). MCSs used the Particle and Heavy Ion Treatment Code System to define a 35 × 35 × 35 cm3 water phantom, and proton-beam energies ranging from 70.2 to 228.7 MeV were investigated. The MCS results were compared with neutron fluence measurements obtained from gold activation analysis, showing good agreement with a difference of 3.54%. The internal thermal neutron distribution generated by PBT was isotropic around the proton-beam axis, with the Bragg peak depth varying between 3.45 and 31.9 cm, while the thermal neutron peak depth ranged from 5.41 to 15.9 cm. Thermal neutron generation depended on proton-beam energy, irradiated particle count, and depth. Particularly, the peak of the thermal neutron fluence did not occur within the treatment target volume but in a location outside the target, closer to the source. This discrepancy between the Bragg peak and the thermal neutron fluence peak is a key finding of this study. These data are crucial for optimizing beam angles to maximize dose enhancement within the target during clinical applications of neutron capture-enhanced particle therapy. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

17 pages, 1481 KiB  
Article
Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen and Jean-Paul Jay-Gerin
J. Nucl. Eng. 2025, 6(2), 17; https://doi.org/10.3390/jne6020017 - 9 Jun 2025
Viewed by 475
Abstract
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, [...] Read more.
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, and enhance safety. Boron, widely used as a neutron absorber, plays a significant role in reactor performance and safety. This study focuses on the yields of radiolytic species in subcritical and supercritical water exposed to 4He and 7Li recoil ions from the 10B(n,α)7Li fission reaction in SCWR/SCW-SMR environments. (2) Methods: We use Monte Carlo track chemistry simulations to calculate yields (G values) of primary radicals (eaq, H, and OH) and molecular species (H2 and H2O2) from water radiolysis by α-particles and Li3⁺ recoils across 1 picosecond to 0.1 millisecond timescales. (3) Results: Simulations show substantially lower radical yields, notably eaq and OH, alongside higher molecular product yields compared to low linear energy transfer (LET) radiation, underscoring the high-LET nature of 10B(n,α)7Li recoil nuclei. Key changes include elevated G(OH) and G(H2), and a decrease in G(H), primarily driven during the homogeneous chemical stage of radiolysis by the reaction H + H2O → OH + H2. This reaction significantly contributes to H2 production, potentially reducing the need for added hydrogen in coolant water to mitigate oxidizing species. In supercritical conditions, low G(H₂O₂) suggests that H2O2 is unlikely to be a major contributor to material oxidation. (4) Conclusions: The 10B(n,α)7Li reaction’s yield estimates could significantly impact coolant chemistry strategies in SCWRs and SCW-SMRs. Understanding radiolytic behavior in these conditions aids in refining reactor models and coolant chemistry to minimize corrosion and radiolytic damage. Future experiments are needed to validate these predictions. Full article
Show Figures

Figure 1

19 pages, 3412 KiB  
Article
Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling and Realistic Equations of State
by Pavel E. Kashargin, Alexander A. Lebedev and Sergey V. Sushkov
Symmetry 2025, 17(6), 910; https://doi.org/10.3390/sym17060910 - 9 Jun 2025
Viewed by 307
Abstract
We numerically construct compact stars in the scalar–tensor theory of gravity with non-minimal derivative coupling of a scalar field to the curvature and nonzero cosmological constant. There are two free parameters in this model of gravity: the non-minimal derivative coupling parameter and [...] Read more.
We numerically construct compact stars in the scalar–tensor theory of gravity with non-minimal derivative coupling of a scalar field to the curvature and nonzero cosmological constant. There are two free parameters in this model of gravity: the non-minimal derivative coupling parameter and the cosmological constant parameter ξ. We study the relationship between the model parameters and characteristic of the neutron star, which allowed us to limit the permissible range of ξ and . In particular, in the case ξ=1, the external geometry of the neutron star coincides with the Schwarzschild–anti-de Sitter geometry, while the internal geometry of the star differs from the case of the standard gravity theory. Many realistic equations of the state of neutron star matter were considered. In general, the neutron star model in the theory of gravity with a non-minimal derivative coupling does not contradict astronomical data and is viable. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2025)
Show Figures

Figure 1

22 pages, 8160 KiB  
Article
Design and Characterization of the Modified Purdue Subcritical Pile for Nuclear Research Applications
by Matthew Niichel, Vasileios Theos, Riley Madden, Hannah Pike, True Miller, Brian Jowers and Stylianos Chatzidakis
Instruments 2025, 9(2), 13; https://doi.org/10.3390/instruments9020013 - 6 Jun 2025
Viewed by 1331
Abstract
First demonstrated in 1942, subcritical and zero-power critical assemblies, also known as piles, are a fundamental tool for research and education at universities. Traditionally, their role has been primarily instructional and for measuring the fundamental properties of neutron diffusion and transport. However, these [...] Read more.
First demonstrated in 1942, subcritical and zero-power critical assemblies, also known as piles, are a fundamental tool for research and education at universities. Traditionally, their role has been primarily instructional and for measuring the fundamental properties of neutron diffusion and transport. However, these assemblies could hold potential for modern applications and nuclear research. The Purdue University subcritical pile previously lacked a substantial testing volume, limiting its utility to simple neutron activation experiments for the purpose of undergraduate education. Following the design and addition of a mechanical and electrical testbed, this paper aims to provide an overview of the testbed design and characterize the neutron flux of the rearranged Purdue subcritical pile, justifying its use as a modern scientific instrument. The newly installed 1.5 × 105 cubic-centimeter volume testbed enables a systematic investigation of neutron and gamma effects on materials and the generation of a comprehensive data set with the potential for machine learning applications. The neutron flux throughout the pile is measured using gold-197 and indium-115 foil activation alongside cadmium-covered foils for two-group neutron energy classification. The neutron flux measurements are then used to benchmark a detailed geometrically and materialistically accurate Monte Carlo model using OpenMC 0.15.0 and MCNP 6.3. The experimental measurements reveal that the testbed has a neutron environment with a total neutron flux approaching 9.5 × 103 n/cm2 × s and a thermal flux of 6.5 × 103 n/cm2 × s. This work establishes that the modified Purdue subcritical pile can provide fair neutron and gamma fluxes within a large volume to enable the radiation testing of integral electronic components and can be a versatile research instrument with the potential to support material testing and limited isotope activation, while generating valuable training data sets for machine learning algorithms in nuclear applications. Full article
Show Figures

Figure 1

24 pages, 3097 KiB  
Review
Advancements and Development Trends in Lead-Cooled Fast Reactor Core Design
by Cong Zhang, Ling Chen, Yongfa Zhang and Song Li
Processes 2025, 13(6), 1773; https://doi.org/10.3390/pr13061773 - 4 Jun 2025
Viewed by 998
Abstract
Motivated by the growth of global energy demand and the goal of carbon neutrality, lead-cooled fast reactors, which are core reactor types of fourth-generation nuclear energy systems, have become a global research hotspot due to their advantages of high safety, nuclear fuel breeding [...] Read more.
Motivated by the growth of global energy demand and the goal of carbon neutrality, lead-cooled fast reactors, which are core reactor types of fourth-generation nuclear energy systems, have become a global research hotspot due to their advantages of high safety, nuclear fuel breeding capability, and economic efficiency. However, its engineering implementation faces key challenges, such as material compatibility, closed fuel cycles, and irradiation performance of structures. This paper comprehensively reviews the latest progress in the core design of lead-cooled fast reactors in terms of the innovation of nuclear fuel, optimization of coolant, material adaptability, and design of assemblies and core structures. The research findings indicate remarkable innovation trends in the field of lead-cooled fast reactor core design, including optimizing the utilization efficiency of nuclear fuel based on the nitride fuel system and the traveling wave burnup theory, effectively suppressing the corrosion effect of liquid metal through surface modification technology and the development of ceramic matrix composites; replacing the lead-bismuth eutectic system with pure lead coolant to enhance economic efficiency and safety; and significantly enhancing the neutron economy and system integration degree by combining the collaborative design strategy of the open-type assembly structure and control drums. In the future, efforts should be made to overcome the radiation resistance of materials and liquid metal corrosion technology, develop closed fuel cycle systems, and accelerate the commercialization process through international standardization cooperation to provide sustainable clean energy solutions for basic load power supply, high-temperature hydrogen production, ship propulsion, and other fields. Full article
(This article belongs to the Special Issue Process Safety Technology for Nuclear Reactors and Power Plants)
Show Figures

Figure 1

20 pages, 1423 KiB  
Article
The Solution Method for Ultra-Fine Group Slowing-Down Equations Applicable to Stochastic Media
by Song Li, Lei Liu, Yongfa Zhang, Qian Zhang and Qi Cai
Mathematics 2025, 13(11), 1857; https://doi.org/10.3390/math13111857 - 2 Jun 2025
Viewed by 416
Abstract
This study presents an innovative solution method for ultra-fine group slowing-down equations tailored to stochastic media with double heterogeneity (DH), focusing on advanced nuclear fuels such as fully ceramic microencapsulated (FCM) fuel and Mixed Oxide (MOX) fuel. Addressing the limitations of conventional resonance [...] Read more.
This study presents an innovative solution method for ultra-fine group slowing-down equations tailored to stochastic media with double heterogeneity (DH), focusing on advanced nuclear fuels such as fully ceramic microencapsulated (FCM) fuel and Mixed Oxide (MOX) fuel. Addressing the limitations of conventional resonance calculation methods in handling DH effects, the proposed UFGSP method (the ultra-fine group slowing-down method with the Sanchez–Pomraning method) integrates the Sanchez–Pomraning technique with the ultra-fine group transport theory to resolve spatially dependent resonance cross-sections in both matrix and particle phases. The method employs high-fidelity geometric modeling, iterative cross-section homogenization, and flux reconstruction to capture neutron self-shielding effects in stochastically distributed media. Validation across seven FCM fuel cases, four poison particle configurations (BISO/QUADRISO, Bi/Tri-structural Isotropic), and four plutonium spot problems demonstrated exceptional accuracy, with maximum deviations in effective multiplication factor keff and resonance cross-sections remaining within ±138 pcm and ±2.4%, respectively. Key innovations include the ability to resolve radial flux distributions within TRISO particles and address resonance interference in MOX fuel matrices. The results confirm that the UFGSP method significantly enhances computational precision for DH problems, offering a robust tool for next-generation reactor design and safety analysis. Full article
(This article belongs to the Section C: Mathematical Analysis)
Show Figures

Figure 1

Back to TopTop