Mechanical Tensile Response of Ni–Graphene Nanocomposites in Hydrogen-Irradiation-Coupled Environments Using Molecular Dynamics Simulations
Abstract
1. Introduction
2. Simulation Methodology
3. Results and Discussion
3.1. Hydrogen Concentration Effects on Mechanical Response
3.2. PKA Energy Effects on Mechanical Response
3.3. Strain Rate Effects on Mechanical Response
3.4. Simulation Temperature Effects on Mechanical Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoagland, R.G.; Kurtz, R.J.; Henager, C. Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 2004, 50, 775–779. [Google Scholar] [CrossRef]
- Wang, J.; Hoagland, R.; Hirth, J.; Misra, A. Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 2008, 56, 3109–3119. [Google Scholar] [CrossRef]
- Ackland, G. Controlling radiation damage. Science 2010, 327, 1587–1588. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Pascal, T.A.; Kim, H.; Goddard, W.A., III; Greer, J.R. Electronic–mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 2011, 11, 1241–1246. [Google Scholar] [CrossRef]
- Kim, Y.; Baek, J.; Kim, S.; Kim, S.; Ryu, S.; Jeon, S.; Han, S.M. Radiation resistant vanadium-graphene nanolayered composite. Sci. Rep. 2016, 6, 24785. [Google Scholar] [CrossRef]
- Yang, K.; Tang, P.; Zhang, Q.; Ma, H.; Liu, E.; Li, M.; Zhang, X.; Li, J.; Liu, Y.; Fan, T. Enhanced defect annihilation capability of the graphene/copper interface: An in situ study. Scr. Mater. 2021, 203, 114001. [Google Scholar] [CrossRef]
- He, L.; Si, S.; Xu, H.; Tang, C.; Liu, J.; Dong, S.; Jiang, C.; Xiao, X. Enhanced mechanical property and radiation resistance of reduced graphene oxide/tungsten composite with nacre-like architecture. Compos. Struct. 2020, 245, 112361. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, X.; Huang, H. Primary irradiation damage in Ni–graphene nanocomposites with pre-existing hydrogen: Insights from atomistic simulations. Eur. Phys. J. Plus 2024, 139, 22. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Xie, K.; Peng, Q. Enhanced self-healing of irradiation defects near a Ni–graphene interface by damaged graphene: Insights from atomistic modeling. J. Phys. Chem. Solids 2021, 151, 109909. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Gao, F.; Chen, F.; Ge, G.; Yan, Y.; Peng, Q. Release of helium-related clusters through a nickel–graphene interface: An atomistic study. Appl. Surf. Sci. 2019, 487, 218–227. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Chen, F.; Gao, F.; Peng, Q.; Ji, L.; Sun, X. Self-healing mechanism of irradiation defects in nickel–graphene nanocomposite: An energetic and kinetic perspective. J. Alloys Compd. 2018, 765, 253–263. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Chen, F.; Liu, J.; Sun, X.; Ji, L. Radiation tolerance of nickel–graphene nanocomposite with disordered graphene. J. Nucl. Mater. 2018, 510, 1–9. [Google Scholar] [CrossRef]
- Nanstad, R.K.; McClintock, D.A.; Hoelzer, D.T.; Tan, L.; Allen, T.R. High temperature irradiation effects in selected Generation IV structural alloys. J. Nucl. Mater. 2009, 392, 331–340. [Google Scholar] [CrossRef]
- Rowcliffe, A.F.; Mansur, L.K.; Hoelzer, D.T.; Nanstad, R.K. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors. J. Nucl. Mater. 2009, 392, 341–352. [Google Scholar] [CrossRef]
- Ezugwu, E.; Wang, Z.; Machado, A. The machinability of nickel-based alloys: A review. J. Mater. Process. Technol. 1999, 86, 1–16. [Google Scholar] [CrossRef]
- Antolovich, S.D. Microstructural aspects of fatigue in Ni-base superalloys. Philos. Trans. R. Soc. A 2015, 373, 20140128. [Google Scholar] [CrossRef]
- Aitkaliyeva, A.; He, L.; Wen, H.; Miller, B.; Bai, X.-M.; Allen, T. Irradiation effects in Generation IV nuclear reactor materials. In Structural Materials for Generation IV Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 253–283. [Google Scholar]
- Zhu, Z.; Huang, H.; Liu, J.; Gao, J.; Zhu, Z. Xenon ion irradiation induced hardening in inconel 617 containing experiment and numerical calculation. J. Nucl. Mater. 2019, 525, 32–39. [Google Scholar] [CrossRef]
- Stopher, M. The effects of neutron radiation on nickel-based alloys. Mater. Sci. Technol. 2017, 33, 518–536. [Google Scholar] [CrossRef]
- Muroga, T.; Kitajima, K.; Ishino, S. The effect of recoil energy spectrum on cascade structures and defect production efficiencies. J. Nucl. Mater. 1985, 133, 378–382. [Google Scholar] [CrossRef]
- Zhang, X.; Hattar, K.; Chen, Y.; Shao, L.; Li, J.; Sun, C.; Yu, K.; Li, N.; Taheri, M.L.; Wang, H. Radiation damage in nanostructured materials. Prog. Mater. Sci. 2018, 96, 217–321. [Google Scholar] [CrossRef]
- Chang, Y.; Himmel, L. Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature. J. Appl. Phys. 1966, 37, 3567–3572. [Google Scholar] [CrossRef]
- Liu, T.; Ge, X.; Chen, F.; Jiang, Y.; Huang, H. An experimental study on corrosion resistance of Ti35 alloy and its high-fluence hydrogen bombardment behavior. J. Phys. Chem. Solids 2025, 201, 112646. [Google Scholar] [CrossRef]
- Ye, Y.; Ma, L.; Tang, T.; Liu, T.; Chen, F.; Ge, X.; Jiang, Y.; Yu, X.; Huang, H. Characterization of microstructure and properties of Ti35 alloy and its high-fluence hydrogen irradiation-induced surface exfoliation. Eur. Phys. J. Plus 2024, 139, 822. [Google Scholar] [CrossRef]
- Ding, Y.-F.; Li, Y.-P.; Liu, X.-Y.; Ran, G.; Huang, X.-Y.; Han, Q.; Chen, Y.; Huang, J.-C.; Zhou, Z.-H. In-situ transmission electron microscopy observation of the evolution of dislocation loops and gas bubbles in tungsten during H2+ and He+ dual-beam irradiation. Tungsten 2021, 3, 434–447. [Google Scholar] [CrossRef]
- Terentyev, D.; Chang, C.-C.; Yin, C.; Zinovev, A.; He, X.-F. Neutron irradiation effects on mechanical properties of ITER specification tungsten. Tungsten 2021, 3, 415–433. [Google Scholar] [CrossRef]
- Luneville, L.; Sublet, J.C.; Simeone, D. Impact of nuclear transmutations on the primary damage production: The example of Ni based steels. J. Nucl. Mater. 2018, 505, 262–266. [Google Scholar] [CrossRef]
- Wang, H.; Han, E.-H. Ab initio molecular dynamics simulation on interfacial reaction behavior of Fe-Cr-Ni stainless steel in high temperature water. Comput. Mater. Sci. 2018, 149, 143–152. [Google Scholar] [CrossRef]
- Shivachev, B.L.; Troev, T.; Yoshiie, T. Positron lifetime computations of defects in nickel containing hydrogen or helium. J. Nucl. Mater. 2002, 306, 105–111. [Google Scholar] [CrossRef]
- Ono, K.; Sakamoto, R.; Muroga, T.; Yoshida, N. Dynamical process of defects clustering in nickel under low energy hydrogen ion irradiation. J. Nucl. Mater. 1996, 233–237, 1040–1044. [Google Scholar] [CrossRef]
- Zamanzade, M.; Müller, C.; Velayarce, J.R.; Motz, C. Susceptibility of different crystal orientations and grain boundaries of polycrystalline Ni to hydrogen blister formation. Int. J. Hydrog. Energy 2019, 44, 7706–7714. [Google Scholar] [CrossRef]
- Kupriiyanova, Y.; Bryk, V.; Borodin, O.; Kalchenko, A.; Voyevodin, V.; Tolstolutskaya, G.; Garner, F. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8–12% Cr ferritic-martensitic steels. J. Nucl. Mater. 2016, 468, 264–273. [Google Scholar] [CrossRef]
- Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.E.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J.; et al. Primary radiation damage: A review of current understanding and models. J. Nucl. Mater. 2018, 512, 450–479. [Google Scholar] [CrossRef]
- Ran, Q.; Zhou, Y.; Zou, Y.; Wang, J.; Duan, Z.; Sun, Z.; Fu, B.; Gao, S. Molecular dynamics simulation of displacement cascades in cubic silicon carbide. Nucl. Mater. Energy 2021, 27, 100957. [Google Scholar] [CrossRef]
- Buchan, J.; Robinson, M.; Christie, H.; Roach, D.; Ross, D.; Marks, N.A. Molecular dynamics simulation of radiation damage cascades in diamond. J. Appl. Phys. 2015, 117, 245901. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Bonny, G.; Castin, N.; Terentyev, D. Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy. Modell. Simul. Mater. Sci. Eng. 2013, 21, 085004. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef]
- Torres, E.; Pencer, J.; Radford, D. Atomistic simulation study of the hydrogen diffusion in nickel. Comput. Mater. Sci. 2018, 152, 374–380. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P. The stopping and range of ions in matter. In Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter; Springer: Berlin/Heidelberg, Germany, 1985; pp. 93–129. [Google Scholar]
- Salman, M.B.; Park, M.; Banisalman, M.J. Revealing the effects of strain and alloying on primary irradiation defects evolution in tantalum through atomistic simulations. Metals Mater. Int. 2023, 29, 3618–3629. [Google Scholar] [CrossRef]
- Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 2018, 9, 1084. [Google Scholar] [CrossRef]
- Wen, Y.-H.; Zhu, Z.-Z.; Zhu, R.-Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Comput. Mater. Sci. 2008, 41, 553–560. [Google Scholar] [CrossRef]
- Katakam, K.C.; Yedla, N. Tensile and creep behavior of nickel nanowires containing volume defects: Insight into the deformation mechanisms and microstructural evolution using molecular dynamics simulations. Mater. Chem. Phys. 2022, 277, 125560. [Google Scholar] [CrossRef]
- Dora, T.; Singh, S.K.; Mishra, R.R.; Homer, E.R.; Ogata, S.; Verma, A. Deformation and boundary motion analysis of a faceted twin grain boundary. Int. J. Mech. Sci. 2024, 269, 109044. [Google Scholar] [CrossRef]
- Xu, X.; Binkele, P.; Verestek, W.; Schmauder, S. Molecular dynamics simulation of high-temperature creep behavior of nickel polycrystalline nanopillars. Molecules 2021, 26, 2606. [Google Scholar] [CrossRef]
- Brandl, C.; Derlet, P.M.; Van Swygenhoven, H. Strain rates in molecular dynamics simulations of nanocrystalline metals. Philos. Mag. 2009, 89, 3465–3475. [Google Scholar] [CrossRef]
- Hoover, W.G.; Ladd, A.J.; Moran, B. High-strain-rate plastic flow studied via nonequilibrium molecular dynamics. Phys. Rev. Lett. 1982, 48, 1818. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, M. Mechanical behaviors of nanocrystalline Cu/SiC composites: An atomistic investigation. Comput. Mater. Sci. 2017, 129, 129–136. [Google Scholar] [CrossRef]
- Zou, Z.; Patera, L.L.; Comelli, G.; Africh, C. Strain release at the graphene-Ni(100) interface investigated by in-situ and operando scanning tunnelling microscopy. Carbon 2021, 172, 296–301. [Google Scholar] [CrossRef]
- Pacilé, D.; Leicht, P.; Papagno, M.; Sheverdyaeva, P.M.; Moras, P.; Carbone, C.; Krausert, K.; Zielke, L.; Fonin, M.; Dedkov, Y.S. Artificially lattice-mismatched graphene/metal interface: Graphene/Ni/Ir(111). Phys. Rev. B 2013, 87, 035420. [Google Scholar] [CrossRef]
- Dahal, A.; Batzill, M. Graphene–nickel interfaces: A review. Nanoscale 2014, 6, 2548–2562. [Google Scholar] [CrossRef] [PubMed]
- Vanin, M.; Mortensen, J.J.; Kelkkanen, A.; Garcia-Lastra, J.M.; Thygesen, K.S.; Jacobsen, K.W. Graphene on metals: A van der Waals density functional study. Phys. Rev. B 2010, 81, 081408. [Google Scholar] [CrossRef]
- Lawrence, S.K.; Somerday, B.P.; Ingraham, M.D.; Bahr, D.F. Probing the effect of hydrogen on elastic properties and plastic deformation in nickel using nanoindentation and ultrasonic methods. JOM 2018, 70, 1068–1073. [Google Scholar] [CrossRef]
- Simonetti, S. Effect of hydrogen pair in an iron-nickel alloy embrittlement. J. Nanostruct. Chem. 2013, 3, 81. [Google Scholar] [CrossRef]
- Lizzit, D.; Trioni, M.I.; Bignardi, L.; Lacovig, P.; Lizzit, S.; Martinazzo, R.; Larciprete, R. Dual-route hydrogenation of the graphene/Ni interface. ACS Nano 2019, 13, 1828–1838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, P.; Zhang, W. Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses. Materials 2023, 16, 1731. [Google Scholar] [CrossRef]
- Xu, X.; Wen, M.; Fukuyama, S.; Yokogawa, K. Simulation of hydrogen embrittlement at crack tip in nickel single crystal by embedded atom method. Mater. Trans. 2001, 42, 2283–2289. [Google Scholar] [CrossRef]
- Thomas, G.; Drotning, W. Hydrogen induced lattice expansion in nickel. Metall. Trans. A 1983, 14, 1545–1548. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Ghosh, K.S.; Ghosh, M.M. Molecular Dynamics Based Modelling of Tensile Deformation and Nanoindentation of Tungsten Nanoparticles for Estimating Useful Mechanical Properties. Mater. Today Proc. 2018, 5, 20699–20703. [Google Scholar] [CrossRef]
- Lin, P.-D.; Nie, J.-F.; Lu, Y.-P.; Shi, C.-X.; Cui, S.-G.; Cui, W.-D.; He, L. Atomic irradiation defects induced hardening model in irradiated tungsten based on molecular dynamics and CPFEM. Int. J. Plast. 2024, 174, 103895. [Google Scholar] [CrossRef]
- Ma, L.; Li, C.; Shang, X.; Hu, W. Influence of Irradiation on Mechanical Properties of Nickel. Adv. Mater. Sci. Eng. 2019, 2019, 9892704. [Google Scholar] [CrossRef]
- Ustrzycka, A.; Dominguez-Gutierrez, F.J.; Chromiński, W. Atomistic analysis of the mechanisms underlying irradiation-hardening in Fe–Ni–Cr alloys. Int. J. Plast. 2024, 182, 104118. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, S.; Deng, H.; Hu, W. Atomistic simulation of mechanical properties and crack propagation of irradiated nickel. Comput. Mater. Sci. 2016, 120, 21–28. [Google Scholar] [CrossRef]
- Du, J.-P.; Geng, W.; Arakawa, K.; Li, J.; Ogata, S. Hydrogen-enhanced vacancy diffusion in metals. J. Phys. Chem. Lett. 2020, 11, 7015–7020. [Google Scholar] [CrossRef]
- Aihara, T.; Kaneko, R.; Sluiter, M.H.F.; Kawazoe, Y. Molecular dynamics simulation of temperature dependence of dislocation behavior in fcc Ni single crystal under tensile condition. Mater. Trans. 2001, 42, 425–428. [Google Scholar] [CrossRef]
- Fan, H.; Wang, Q.; El-Awady, J.A.; Raabe, D.; Zaiser, M. Strain rate dependency of dislocation plasticity. Nat. Commun. 2021, 12, 1845. [Google Scholar] [CrossRef]
- Ghermaoui, I.; Oudriss, A.; Metsue, A.; Milet, R.; Madani, K.; Feaugas, X. Multiscale analysis of hydrogen-induced softening in fcc nickel single crystals oriented for multiple-slips: Elastic screening effect. Sci. Rep. 2019, 9, 13042. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Boroujeni, A.Y.; Mirzaeifar, R. Nanocrystalline nickel-graphene nanoplatelets composite: Superior mechanical properties and mechanics of properties enhancement at the atomistic level. Phys. Rev. Mater. 2017, 1, 076001. [Google Scholar] [CrossRef]
- Kuo, C.; Arsenault, R. The thermally activated dislocation motion in neutron irradiated iron-nickel alloys. Metall. Trans. A 1975, 6, 207–212. [Google Scholar] [CrossRef]
- Zhao, M.; Yoshimi, K.; Maruyama, K.; Yubuta, K. Thermal vacancy behavior analysis through thermal expansion, lattice parameter and elastic modulus measurements of B2-type FeAl. Acta Mater. 2014, 64, 382–390. [Google Scholar] [CrossRef]
- Murzaev, R.T.; Krylova, K.A.; Baimova, J.A. Thermal expansion and thermal conductivity of Ni/graphene composite: Molecular dynamics simulation. Materials 2023, 16, 3747. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, J.; Yeom, M.S.; Shin, J.W.; Kim, H.; Cui, Y.; Kysar, J.W.; Hone, J.; Jung, Y.; Jeon, S.; et al. Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat. Commun. 2013, 4, 2114. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ge, X.; Yu, X.; Jiang, Y.; Peng, Q. Atomistic studies of helium trapping and diffusion at Ni–graphene interfaces. Eur. Phys. J. Plus 2025, 140, 497. [Google Scholar] [CrossRef]
- Krylova, K.A.; Safina, L.R.; Shcherbinin, S.A.; Baimova, J.A. Methodologyfor molecular dynamics simulation of plastic deformation of a nickel/graphene composite. Materials 2022, 15, 4038. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Yuan, X.; Huang, H. Mechanical Tensile Response of Ni–Graphene Nanocomposites in Hydrogen-Irradiation-Coupled Environments Using Molecular Dynamics Simulations. Nanomaterials 2025, 15, 970. https://doi.org/10.3390/nano15130970
Liu T, Yuan X, Huang H. Mechanical Tensile Response of Ni–Graphene Nanocomposites in Hydrogen-Irradiation-Coupled Environments Using Molecular Dynamics Simulations. Nanomaterials. 2025; 15(13):970. https://doi.org/10.3390/nano15130970
Chicago/Turabian StyleLiu, Tonghe, Xiaoting Yuan, and Hai Huang. 2025. "Mechanical Tensile Response of Ni–Graphene Nanocomposites in Hydrogen-Irradiation-Coupled Environments Using Molecular Dynamics Simulations" Nanomaterials 15, no. 13: 970. https://doi.org/10.3390/nano15130970
APA StyleLiu, T., Yuan, X., & Huang, H. (2025). Mechanical Tensile Response of Ni–Graphene Nanocomposites in Hydrogen-Irradiation-Coupled Environments Using Molecular Dynamics Simulations. Nanomaterials, 15(13), 970. https://doi.org/10.3390/nano15130970