Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = neutral point potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2697 KiB  
Communication
Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing
by Qingmei Zhong, Xiaomei Rong, Tingting Wu and Chuan Yan
Biosensors 2025, 15(8), 490; https://doi.org/10.3390/bios15080490 - 29 Jul 2025
Viewed by 299
Abstract
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While [...] Read more.
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While conventional colorimetric determination methods predominantly employ enzymatic or nanozyme catalysts, we present an innovative non-catalytic approach utilizing the redox-responsive properties of organic neutral radicals. Specifically, we designed and synthesized a novel radical TTM-DMODPA based on the tris (2,4,6-trichlorophenyl) methyl (TTM) scaffold, which exhibits remarkable optical tunability and oxidative sensitivity. This system enables dual-mode H2O2 quantification: (1) UV-vis spectrophotometry (linear range: 2.5–250 μmol/L, LOD: 1.275 μmol/L) and (2) smartphone-based visual analysis (linear range: 2.5–250 μmol/L, LOD: 3.633 μmol/L), the latter being particularly suitable for point-of-care testing. Validation studies using urine samples demonstrated excellent recovery rates (96–104%), confirming the method’s reliability for real-sample applications. Our work establishes a portable, instrument-free platform for urinary H2O2 determination, with significant potential in clinical diagnostics and environmental monitoring. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

25 pages, 3454 KiB  
Article
Dynamic Temperature–Vacuum Swing Adsorption for Sustainable Direct Air Capture: Parametric Optimisation for High-Purity CO2 Removal
by Maryam Nasiri Ghiri, Hamid Reza Nasriani, Leila Khajenoori, Samira Mohammadkhani and Karl S. Williams
Sustainability 2025, 17(15), 6796; https://doi.org/10.3390/su17156796 - 25 Jul 2025
Viewed by 547
Abstract
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg [...] Read more.
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg2(dobpdc), for DAC using a temperature–vacuum swing adsorption (TVSA) process. While this sorbent has demonstrated promising performance in point-source CO2 capture, this is the first dynamic simulation-based study to rigorously assess its effectiveness for low-concentration atmospheric CO2 removal. A transient one-dimensional TVSA model was developed in Aspen Adsorption and validated against experimental breakthrough data to ensure accuracy in capturing both the sharp and gradual adsorption kinetics. To enhance process efficiency and sustainability, this work provides a comprehensive parametric analysis of key operational factors, including air flow rate, temperature, adsorption/desorption durations, vacuum pressure, and heat exchanger temperature, on process performance, including CO2 purity, recovery, productivity, and specific energy consumption. Under optimal conditions for this sorbent (vacuum pressure lower than 0.15 bar and feed temperature below 15 °C), the TVSA process achieved ~98% CO2 purity, recovery over 70%, and specific energy consumption of about 3.5 MJ/KgCO2. These findings demonstrate that mmen-Mg2(dobpdc) can achieve performance comparable to benchmark DAC sorbents in terms of CO2 purity and recovery, underscoring its potential for scalable DAC applications. This work advances the development of energy-efficient carbon removal technologies and highlights the value of step-shape isotherm adsorbents in supporting global carbon-neutrality goals. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

29 pages, 2105 KiB  
Article
The Impact of Rural Digital Economy Development on Agricultural Carbon Emission Efficiency: A Study of the N-Shaped Relationship
by Yong Feng, Shuokai Wang and Fangping Cao
Agriculture 2025, 15(15), 1583; https://doi.org/10.3390/agriculture15151583 - 23 Jul 2025
Viewed by 234
Abstract
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based [...] Read more.
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based on provincial-level panel data from China spanning 2011 to 2022, this study examines the relationship between the rural digital economy and agricultural carbon emission efficiency, along with its underlying mechanisms, using bidirectional fixed effects models, mediation effect analysis, and Spatial Durbin Models. The results indicate the following: (1) A significant N-shaped-curve relationship exists between rural digital economy development and agricultural carbon emission efficiency. Specifically, agricultural carbon emission efficiency exhibits a three-phase trajectory of “increase, decrease, and renewed increase” as the rural digital economy advances, ultimately driving a sustained improvement in efficiency. (2) Industrial integration acts as a critical mediating mechanism. Rural digital economy development accelerates the formation of the N-shaped curve by promoting the integration between agriculture and other sectors. (3) Spatial spillover effects significantly influence agricultural carbon emission efficiency. Due to geographical proximity, regional diffusion, learning, and demonstration effects, local agricultural carbon emission efficiency fluctuates with changes in neighboring regions’ digital economy development levels. (4) The relationship between rural digital economy development and agricultural carbon emission efficiency exhibits a significant inverted N-shaped pattern in regions with higher marketization levels, planting-dominated areas of southeast China, and digital economy demonstration zones. Further analysis reveals that within rural digital economy development, production digitalization and circulation digitalization demonstrate a more pronounced inverted N-shaped relationship with agricultural carbon emission efficiency. This study proposes strategic recommendations to maximize the positive impact of the rural digital economy on agricultural carbon emission efficiency, unlock its spatially differentiated contribution potential, identify and leverage inflection points of the N-shaped relationship between digital economy development and emission efficiency, and implement tailored policy portfolios—ultimately facilitating agriculture’s green and low-carbon transition. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

33 pages, 7605 KiB  
Article
Dynamic Heat Transfer Modelling and Thermal Performance Evaluation for Cadmium Telluride-Based Vacuum Photovoltaic Glazing
by Changyu Qiu, Hongxing Yang and Kaijun Dong
Buildings 2025, 15(15), 2612; https://doi.org/10.3390/buildings15152612 - 23 Jul 2025
Viewed by 260
Abstract
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, [...] Read more.
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, the cadmium telluride-based vacuum PV glazing has been developed to enhance the thermal performance of BIPV applications. To fully understand the complex thermal behaviour under real-world operational scenarios, this study introduces a one-dimensional transient heat transfer model that can efficiently capture the time-dependent thermal dynamics of this novel glazing system. Based on the numerical solutions using the explicit finite difference method (FDM), the temperature profile of the vacuum PV glazing can be obtained dynamically. Consequently, the heat gain of the semi-transparent vacuum PV glazing can be calculated under time-varying outdoor and indoor conditions. The validated heat transfer model was applied under four different scenarios, viz. summer daytime, summer nighttime, winter daytime, and winter nighttime, to provide a detailed analysis of the dynamic thermal behaviour, including the temperature variation and the energy flow. The dynamic thermal characteristics of the vacuum PV glazing calculated by the transient heat transfer model demonstrate its excellent thermal insulation and solar control capabilities. Moreover, the thermal performance of vacuum PV glazing was compared with a standard double-pane window under various weather conditions of a typical summer day and a typical winter day. The results indicate that the vacuum PV glazing can effectively minimise both heat gain and heat loss. The fluctuation of the inner surface temperature can be controlled within a limited range away from the set point of the indoor room temperature. Therefore, the vacuum PV glazing contributes to stabilising the temperature of the indoor environment despite the fluctuating solar radiation and periodic outdoor temperature. It is suggested that the vacuum PV glazing has the potential to enhance the climate adaptability of BIPV windows under different climate backgrounds. Full article
(This article belongs to the Collection Renewable Energy in Buildings)
Show Figures

Figure 1

28 pages, 7506 KiB  
Article
Impact of Plateau Grassland Degradation on Ecological Suitability: Revealing Degradation Mechanisms and Dividing Potential Suitable Areas with Multi Criteria Models
by Yi Chai, Lin Xu, Yong Xu, Kun Yang, Rao Zhu, Rui Zhang and Xiaxing Li
Remote Sens. 2025, 17(15), 2539; https://doi.org/10.3390/rs17152539 - 22 Jul 2025
Viewed by 309
Abstract
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with [...] Read more.
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with escalating human activities have disrupted the seasonal growth cycles of grasslands, thereby intensifying degradation processes. To date, the key drivers and lifecycle dynamics of Grassland Depletion across the QTP remain contentious, limiting our comprehension of its ecological repercussions and regulatory mechanisms. This study comprehensively investigates grassland degradation on the Qinghai–Tibetan Plateau, analyzing its drivers and changes in ecological suitability during the growing season. By integrating natural factors (e.g., precipitation and temperature) and anthropogenic influences (e.g., population density and grazing intensity), it examines observational data from over 160 monitoring stations collected between the 1980s and 2020. The findings reveal three distinct phases of grassland degradation: an acute degradation phase in 1990 (GDI, Grassland Degradation Index = 2.53), a partial recovery phase from 1996 to 2005 (GDI < 2.0) during which the proportion of degraded grassland decreased from 71.85% in 1990 to 51.22% in 2005, and a renewed intensification of degradation after 2006 (GDI > 2.0), with degraded grassland areas reaching 56.39% by 2020. Among the influencing variables, precipitation emerged as the most significant driver, interacting closely with anthropogenic factors such as grazing practices and population distribution. Specifically, the combined impacts of precipitation with population density, grazing pressure, and elevation were particularly notable, yielding interaction q-values of 0.796, 0.767, and 0.752, respectively. Our findings reveal that while grasslands exhibit superior carbon sink potential relative to forests, their productivity and ecological functionality are undergoing considerable declines due to the compounded effects of multiple interacting factors. Consequently, the spatial distribution of ecologically suitable zones has contracted significantly, with the remaining high-suitability regions concentrating in the “twin-star” zones of Baingoin and Zanda grasslands, areas recognized as focal points for future ecosystem preservation. Furthermore, the effects of climate change and intensifying anthropogenic activity have driven the reduction in highly suitable grassland areas, shrinking from 41,232 km2 in 1990 to 24,485 km2 by 2020, with projections indicating a further decrease to only 2844 km2 by 2060. This study sheds light on the intricate mechanisms behind Grassland Depletion, providing essential guidance for conservation efforts and ecological restoration on the QTP. Moreover, it offers theoretical underpinnings to support China’s carbon neutrality and peak carbon emission goals. Full article
Show Figures

Figure 1

22 pages, 498 KiB  
Review
The XEC Variant: Genomic Evolution, Immune Evasion, and Public Health Implications
by Alaa A. A. Aljabali, Kenneth Lundstrom, Altijana Hromić-Jahjefendić, Nawal Abd El-Baky, Debaleena Nawn, Sk. Sarif Hassan, Alberto Rubio-Casillas, Elrashdy M. Redwan and Vladimir N. Uversky
Viruses 2025, 17(7), 985; https://doi.org/10.3390/v17070985 - 15 Jul 2025
Viewed by 794
Abstract
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official [...] Read more.
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official surveillance data from 2023 to early 2025, prioritizing virological, clinical, and immunological reports related to XEC and its parent lineages. Defined by the distinctive spike protein mutations, T22N and Q493E, XEC exhibits modest reductions in neutralization in vitro, although current evidence suggests that mRNA booster vaccines, including those targeting JN.1 and KP.2, retain cross-protective efficacy against symptomatic and severe disease. The XEC strain of SARS-CoV-2 has drawn particular attention due to its increasing prevalence in multiple regions and its potential to displace other Omicron subvariants, although direct evidence of enhanced replicative fitness is currently lacking. Preliminary analyses also indicated that glycosylation changes at the N-terminal domain enhance infectivity and immunological evasion, which is expected to underpin the increasing prevalence of XEC. The XEC variant, while still emerging, is marked by a unique recombination pattern and a set of spike protein mutations (T22N and Q493E) that collectively demonstrate increased immune evasion potential and epidemiological expansion across Europe and North America. Current evidence does not conclusively associate XEC with greater disease severity, although additional research is required to determine its clinical relevance. Key knowledge gaps include the precise role of recombination events in XEC evolution and the duration of cross-protective T-cell responses. New research priorities include genomic surveillance in undersampled regions, updated vaccine formulations against novel spike epitopes, and long-term longitudinal studies to monitor post-acute sequelae. These efforts can be augmented by computational modeling and the One Health approach, which combines human and veterinary sciences. Recent computational findings (GISAID, 2024) point to the potential of XEC for further mutations in under-surveilled reservoirs, enhancing containment challenges and risks. Addressing the potential risks associated with the XEC variant is expected to benefit from interdisciplinary coordination, particularly in regions where genomic surveillance indicates a measurable increase in prevalence. Full article
(This article belongs to the Special Issue Translational Research in Virology)
Show Figures

Figure 1

21 pages, 5958 KiB  
Article
Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto)
by Diana M. Villanueva, Aldo G. Gonzales, Claudio A. Saez and Antonio M. Lazarte
Plants 2025, 14(14), 2173; https://doi.org/10.3390/plants14142173 - 14 Jul 2025
Viewed by 346
Abstract
Arsenic (As) contamination in the Tambo River (Perú), linked to mining activities and volcanic eruptions, poses significant health and agricultural risks. This study evaluated sodium alginate extracted from the brown macroalgae Lessonia trabeculata (LT) as a biosorbent for As removal. Water samples from [...] Read more.
Arsenic (As) contamination in the Tambo River (Perú), linked to mining activities and volcanic eruptions, poses significant health and agricultural risks. This study evaluated sodium alginate extracted from the brown macroalgae Lessonia trabeculata (LT) as a biosorbent for As removal. Water samples from three river points revealed As concentrations up to 0.309 mg/L, exceeding regulatory limits (0.1 mg/L). Sodium alginate was obtained via a simplified alkaline method, yielding an average of 21.44% (w/w relative to dry algae biomass) and characterized by Fourier Transform Infrared Spectroscopy (FTIR), showing structural similarity to industrial alginate (A1). Biosorption assays under simulated environmental conditions (neutral pH, 20 °C) demonstrated that LT alginate (A2) reduced As by 99% at 48 h with a 1.0 g/L dose, outperforming A1. Langmuir (qmax = 0.0012 mmol/g; b = 506.9 L/mg) and Freundlich (n = 1.94) isotherms confirmed favorable adsorption, while kinetics followed a Pseudo-Second-Order Model, suggesting physisorption. These results highlight LT alginate as a sustainable and scalable solution for remediating As-contaminated water, promoting the conservation of a vulnerable marine resource. This study underscores the potential of algal biopolymers in bioremediation strategies aligned with environmental and socioeconomic needs. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

13 pages, 472 KiB  
Article
A Lack of Agency: Artificial Intelligence Has So Far Shown Little Potential for Church Innovation—An Exploratory Interview Study with Protestant and Catholic Leaders in Germany
by Ilona Nord and Leon Schleier
Religions 2025, 16(7), 885; https://doi.org/10.3390/rel16070885 - 10 Jul 2025
Cited by 1 | Viewed by 336
Abstract
This study explores the use of artificial intelligence (AI) in religious leadership in Germany, focusing on the interplay between technological innovation, theological principles, and human interaction. Drawing on qualitative methods, 23 Christian leaders and experts were interviewed to examine their perceptions, assessments, and [...] Read more.
This study explores the use of artificial intelligence (AI) in religious leadership in Germany, focusing on the interplay between technological innovation, theological principles, and human interaction. Drawing on qualitative methods, 23 Christian leaders and experts were interviewed to examine their perceptions, assessments, and potential applications of AI and related technologies in their work, alongside ethical and theological considerations. The findings reveal a prevailing ambivalence towards AI: while it is generally accepted as a tool for administrative tasks, its use in pastoral contexts encounters resistance due to ethical concerns and theological tensions. Despite predominantly neutral to positive attitudes, many leaders lack proactive engagement in exploring AI’s transformative potential—pointing to a marked lack of agency. Digital competence among leaders emerges as a significant factor influencing the openness to AI adoption. This study identifies key barriers to the integration of AI into religious practice and underscores the need for strategic education and planning. It advocates for a balanced approach to leveraging AI in ways that align with religious values while embracing innovation in a digitalizing society. Full article
Show Figures

Figure 1

32 pages, 6149 KiB  
Article
The Carbon Reduction Contribution of Battery Electric Vehicles: Evidence from China
by Ying Sun, Le Xiong, Rui Yan, Ruizhu Rao and Hongshuo Du
Energies 2025, 18(13), 3578; https://doi.org/10.3390/en18133578 - 7 Jul 2025
Viewed by 315
Abstract
The transition to passenger car electrification is a crucial step in China’s strategic efforts to achieve carbon peak and carbon neutrality. However, previous research has not considered the variances in vehicle models. Hence, this study aims to fill this gap by comparing the [...] Read more.
The transition to passenger car electrification is a crucial step in China’s strategic efforts to achieve carbon peak and carbon neutrality. However, previous research has not considered the variances in vehicle models. Hence, this study aims to fill this gap by comparing the carbon emission reduction and economic feasibility of battery electric vehicles (BEVs) in the Chinese market, taking into account different powertrains, vehicle segments, classes, and driving ranges. Next, the study identifies the most cost-effective BEV within each market segment, employing life-cycle assessment and life cycle cost analysis methods. Moreover, at different levels of technological development, we construct three low-carbon measures, including electricity decarbonization (ED), energy efficiency improvement (EEI), and vehicle lightweight (LW), to quantify the emission mitigation potentials from different carbon reduction pathways. The findings indicate that BEVs achieve an average carbon reduction of about 31.85% compared to internal combustion engine vehicles (ICEVs), demonstrating a significant advantage in carbon reduction. However, BEVs are not economically competitive. The total life cycle cost of BEVs is 1.04–1.68 times higher than that of ICEVs, with infrastructure costs accounting for 18.8–57.8% of the vehicle’ s life cycle costs. In terms of cost-effectiveness, different models yield different results, with sedans generally outperforming sport utility vehicles (SUVs). Among sedans, both A-class and B-class sedans have already reached a point of cost-effectiveness, with the BEV400 emerging as the optimal choice. In low-carbon emission reduction scenarios, BEVs could achieve carbon reduction potentials of up to 45.3%, 14.9%, and 9.0% in the ED, EEI, and LW scenarios, respectively. Thus, electricity decarbonization exhibits the highest potential for mitigating carbon emissions, followed by energy efficiency improvement and vehicle lightweight. There are obvious differences in the stages of impact among different measures. The ED measure primarily impacts the waste treatment process (WTP) stage, followed by the vehicle cycle, while the EEI measure only affects the WTP stage. The LW measure has a complex impact on emission reductions, as the carbon reductions achieved in the WTP stage are partially offset by the increased carbon emissions in the vehicle cycle. Full article
Show Figures

Figure 1

25 pages, 1908 KiB  
Article
SARS-CoV-2 Receptor Binding Domain (RBD) Protein–Protein Conjugate Induces Similar or Better Antibody Responses as Spike mRNA in Rhesus Macaques
by Puthupparampil V. Scaria, Christopher G. Rowe, Ivan Kosik, Zhe Hu, Jonathan P. Renn, Nada Alani, Pinar Kemanli, Sachy Orr-Gonzalez, Lynn E. Lambert, Kayode Adeyemi, Justin Y. A. Doritchamou, Emma K. Barnafo, Kelly M. Rausch, Liya Muslinkina, Robert D. Morrison, John-Paul Todd, Dominic Esposito, Andrew Lees, Jonathan Yewdell and Patrick E. Duffy
Vaccines 2025, 13(6), 648; https://doi.org/10.3390/vaccines13060648 - 17 Jun 2025
Viewed by 903
Abstract
Background/Objectives: Rapid development of vaccines against SARS-CoV-2 was pivotal to controlling the COVID-19 pandemic. The emergency also provided a rare opportunity to test novel vaccine platforms such as mRNA in large clinical trials. Most of the early vaccines used SARS-CoV-2 Spike protein [...] Read more.
Background/Objectives: Rapid development of vaccines against SARS-CoV-2 was pivotal to controlling the COVID-19 pandemic. The emergency also provided a rare opportunity to test novel vaccine platforms such as mRNA in large clinical trials. Most of the early vaccines used SARS-CoV-2 Spike protein as the target antigen. Nevertheless, subsequent studies have shown that Receptor Binding Domain (RBD) of Spike also can yield efficacious vaccines, and we previously demonstrated that chemical conjugation of RBD to a carrier protein, EcoCRM®, enhanced antibody responses and induced strong virus neutralization activity in mice. Methods: Here, we compared the immunogenicity of this conjugate to that of an approved mRNA vaccine from Pfizer/BioNTech in rhesus macaques over a period of nine months. Results: AS01-adjuvanted RBD conjugate induced a similar or better antibody response, receptor binding inhibition, and virus neutralization activity against different variants of SARS-CoV-2, compared to mRNA. IgG subclass profiles induced by conjugate and mRNA vaccines were initially dominated by IgG1 and IgG3 then switched to IgG2 and IgG4 dominant profiles during the subsequent six-month period. Polyclonal immune sera from the conjugate and mRNA had similar antibody avidity at multiple time points. Conclusions: In summary, antibody responses in rhesus macaques induced by the RBD-EcoCRM conjugate and the Spike mRNA vaccine are very similar. These results demonstrate the potential for the RBD-EcoCRM conjugate as a vaccine against SARS-CoV-2. Full article
(This article belongs to the Special Issue Receptor-Binding Domain-Based Vaccines Against SARS-CoV-2)
Show Figures

Figure 1

31 pages, 12094 KiB  
Article
Engineering Lipid–Polymer Nanoparticles for siRNA Delivery to Cancer Cells
by Arthur Manda, Abdulelah Alhazza, Hasan Uludağ and Hamidreza Montazeri Aliabadi
Pharmaceuticals 2025, 18(6), 864; https://doi.org/10.3390/ph18060864 - 10 Jun 2025
Viewed by 886
Abstract
Background: RNA interference (RNAi) is a powerful tool that can target many proteins without the expensive and time-consuming drug development studies. However, due to the challenges in delivering RNA molecules, the potential impact of RNAi approaches is yet to be fully realized [...] Read more.
Background: RNA interference (RNAi) is a powerful tool that can target many proteins without the expensive and time-consuming drug development studies. However, due to the challenges in delivering RNA molecules, the potential impact of RNAi approaches is yet to be fully realized in clinical settings. Lipid nanoparticles (LNPs) have been the most successful delivery system for nucleic acids, but targeted delivery to a solid tumor still eludes the developed LNPs. We hypothesized that specially designed low-molecular-weight PEIs can partially or completely replace the ionizable lipids for more accommodating vehicles due to the structural flexibility offered by polymers, which could lead to safer and more efficient nucleic acid delivery. Methods: To achieve this, we first optimized the LNP formulations as a point of reference for three outcomes: cellular uptake, cytotoxicity, and silencing efficiency. Using a response surface methodology (Design Expert), we optimized siRNA delivery by varying mole fractions of lipid components. Leveraging the optimal LNP formulation, we integrated specifically designed cationic polymers as partial or complete replacements for the ionizable lipid. This methodological approach, incorporating optimal combined designs and response surface methodologies, refined the LPNPs to an optimal efficiency. Results: Our data revealed that DOPE and Dlin-MC3-DMA contributed to higher efficiency in selected breast cancer cells over DSPC and ALC-0315 as neutral and ionizable lipids, respectively, based on the software analysis and direct comparative experiments. Incorporation of selected polymers enhanced the cellular internalization significantly, which in some formulations resulted in higher efficiency. Conclusions: These findings offer a framework for the rational design of LPNPs, that could enhance the passive targeting and silencing efficiency in cancer treatment and broader applications for RNAi-based strategies. Full article
Show Figures

Graphical abstract

22 pages, 4653 KiB  
Article
SARS-CoV-2 Variant-Specific Antibodies in Vaccinated Inflammatory Bowel Disease Patients
by Eva Ulla Lorentzen, Richard Vollenberg, Rieke Neddermeyer, Michael Schoefbaenker, Eike R. Hrincius, Stephan Ludwig, Phil-Robin Tepasse and Joachim Ewald Kuehn
Vaccines 2025, 13(6), 595; https://doi.org/10.3390/vaccines13060595 - 30 May 2025
Viewed by 766
Abstract
Background/Objectives: Patients suffering from inflammatory bowel diseases (IBDs) undergoing treatment with anti-TNF antibodies mount a diminished humoral immune response to vaccination against SARS-CoV-2 compared to healthy controls. The characterization of variant-specific immune responses is particularly warranted among immunosuppressed patients, where reduced responses may [...] Read more.
Background/Objectives: Patients suffering from inflammatory bowel diseases (IBDs) undergoing treatment with anti-TNF antibodies mount a diminished humoral immune response to vaccination against SARS-CoV-2 compared to healthy controls. The characterization of variant-specific immune responses is particularly warranted among immunosuppressed patients, where reduced responses may necessitate further medical interventions. Methods: This pilot study investigated the humoral immune response of vaccinated IBD patients on anti-TNF medication and a comparable group of healthy individuals against the viral variants Alpha, Beta, Gamma, Delta, and Omicron BA.1 and BA.5. While total IgG antibodies targeting the receptor binding site of the spike protein of SARS-CoV-2 were quantified using a chemiluminescence microparticle immunoassay (CMIA), their potential neutralizing capacity was determined using commercial and variant-specific in-house surrogate virus neutralization tests (sVNTs) against a variant-specific in-house VSV-pseudotyped virus neutralization test (pVNT) as the gold standard. Results: Employing variant-specific assays recapitulated the immune escape functions of virus variants. Conspicuously, antibody reactivity against Alpha and Omicron BA.1 and BA.5 was strikingly poor in IBD patient sera post-initial vaccination compared to healthy individuals. A comparison of the diagnostic performance of assays with the pVNT revealed that identification of patients with inadequate humoral responses by CMIA and sVNT may require adjustments to cut-off values and end-point titration of sera. Following adaptation of cut-off values, patient sera exhibited reduced reactivity against all tested variants. The assay panel used substantiated the impact of anti-TNF therapy in IBD patients as to reduced strength, function, and breadth of the immune response to several SARS-CoV-2 variants. The immune response measured following the second vaccination was comparable to the antibody response observed in healthy individuals following the first vaccination. Conclusion: Variant-specific sVNTs and pVNTs have the potential to serve as valuable tools for evaluating the efficacy of adapted vaccines and to inform clinical interventions in the care of immunosuppressed patients. Anti-TNF-treated individuals with antibody levels below the optimized CMIA threshold should be considered for early booster vaccination and/or close immunological monitoring. Full article
Show Figures

Figure 1

36 pages, 2975 KiB  
Review
A Review of Hybrid Three-Level ANPC Inverters: Topologies, Comparison, Challenges and Improvements in Applications
by Xiaobin Mu, Hao Chen, Xiang Wang, Weimin Wu, Houqing Wang, Liang Yuan, Henry Shu-Hung Chung and Frede Blaabjerg
Energies 2025, 18(10), 2613; https://doi.org/10.3390/en18102613 - 19 May 2025
Viewed by 1219
Abstract
Considering the cost, efficiency, power density, and other issues of the power electronic system, many papers have mixed the wide-bandgap (WBG) power devices, mainly SiC MOSFET and GaN FET/HEMT, with Si IGBT/MOSFET in the three-level active neutral-point clamped (T-ANPC) topology, forming the hybrid [...] Read more.
Considering the cost, efficiency, power density, and other issues of the power electronic system, many papers have mixed the wide-bandgap (WBG) power devices, mainly SiC MOSFET and GaN FET/HEMT, with Si IGBT/MOSFET in the three-level active neutral-point clamped (T-ANPC) topology, forming the hybrid T-ANPC (HT-ANPC) topology. This paper reviews these latest HT-ANPC topologies from the perspective of the material types of switching devices and compares the advantages and disadvantages of various topologies. The potential challenges of HT-ANPC inverters in several mainstream applications are reviewed, and their improvements are compared and discussed in detail. Next, a brief topology selection and design process are provided based on analyzing various typical topologies. In addition, some future research trends on this topic are discussed. The paper will help researchers to select appropriate HT-ANPC topologies in different applications and have a better understanding of the critical issues to be considered during system design. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

24 pages, 4411 KiB  
Article
Characterization of Historical Tailings Dam Materials for Li-Sn Recovery and Potential Use in Silicate Products—A Case Study of the Bielatal Tailings Dam, Eastern Erzgebirge, Saxony, Germany
by Kofi Moro, Nils Hoth, Marco Roscher, Fabian Kaulfuss, Johanes Maria Vianney and Carsten Drebenstedt
Sustainability 2025, 17(10), 4469; https://doi.org/10.3390/su17104469 - 14 May 2025
Cited by 1 | Viewed by 628
Abstract
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. [...] Read more.
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. To evaluate the tailings resource potential, drill core sampling was conducted at multiple points at a depth of 7 m. Subsequent analyses included geochemical characterization using sodium peroxide fusion, lithium borate fusion, X-ray fluorescence (XRF), and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). Particle size distribution analysis via a laser particle size analyzer and wet sieving was conducted alongside milieu parameter (pH, Eh, EC) analysis. A theoretical assessment of the tailings’ potential for geopolymer applications was conducted by comparing them with other tailings used in geopolymer research and relevant European standards. The results indicated average concentrations of lithium (Li) of 0.1 wt%, primarily hosted in Li-mica phases, and concentrations of tin (Sn) of 0.12 wt%, predominantly occurring in cassiterite. Particle size analysis revealed that the tailings material is generally fine-grained, comprising approximately 60% silt, 32% fine sand, and 8% clay. These textural characteristics influenced the spatial distribution of elements, with Li and Sn enriched in fine-grained fractions predominantly concentrated in the dam’s central and western sections, while coarser material accumulated near injection points. Historical advancements in mineral processing, particularly flotation, had significantly influenced Sn distribution, with deeper layers showing higher Sn enrichment, except for the final operational years, which also exhibited elevated Sn concentrations. Due to the limitations of X-ray fluorescence (XRF) in detecting Li, a strong correlation between rubidium (Rb) and Li was established, allowing Li quantification via Rb measurements across varying particle sizes, redox conditions, and geological settings. This demonstrated that Rb can serve as a reliable proxy for Li quantification in diverse contexts. Geochemical and mineralogical analyses revealed a composition dominated by quartz, mica, topaz, and alkali feldspars. The weakly acidic to neutral conditions (pH 5.9–7.7) and reducing redox potential (Eh, 570 to 45 mV) of the tailings material indicated a minimal risk of acid mine drainage. Preliminary investigations into using Altenberg tailings as geopolymer materials suggested that their silicon-rich composition could serve as a substitute for coal fly ash in construction; however, pre-treatment would be needed to enhance reactivity. This study underscores the dual potential of tailings for element recovery and sustainable construction, emphasizing the importance of understanding historical processing techniques for informed resource utilization. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

15 pages, 4829 KiB  
Article
Physicochemical Properties of Moderately Heat-Treated Rice Protein Within Alkaline Solution and Its Evaluation as a Spray-Drying Microencapsulation Wall Material
by Mengqi Liu, Rumeng Huang, Lifeng Wang, Mohamed Eid and Wenfei Xiong
Foods 2025, 14(10), 1739; https://doi.org/10.3390/foods14101739 - 14 May 2025
Viewed by 461
Abstract
This study addresses the shortcoming of rice protein, which has limited its widespread use as a food ingredient due to its extremely low solubility in neutral aqueous solution. Herein, rice protein (RP) was dispersed in aqueous solutions with different alkali concentrations (0.075 M~0.125 [...] Read more.
This study addresses the shortcoming of rice protein, which has limited its widespread use as a food ingredient due to its extremely low solubility in neutral aqueous solution. Herein, rice protein (RP) was dispersed in aqueous solutions with different alkali concentrations (0.075 M~0.125 M), and then heat-treated (80 °C, 1~4 h) to obtain a modified RP. The physicochemical properties of the modified RP in neutral aqueous solution and its performance as a microencapsulated wall material were then comprehensively analyzed. The results showed that the solubility of the RP at pH 7.0 could be increased to more than 56.3% by alkali solution combined with moderate heat treatment for 1 h. Further analysis revealed that the enhancement of the RP solubility performance was mainly due to the depolymerization of rice glutenin cluster aggregates, with the average size decreasing to 140~180 nm, which was also accompanied by an increase in net zeta potential. Structural analysis pointed to a significant decrease in the surface hydrophobicity and free sulfhydryl content of the RP after thermal treatment in alkaline solution, while degradation of glutenin subunits (especially for the results of alkaline treatment at higher concentrations) and an increase in random coil content occurred. These physicochemical properties and conformational transitions of the modified RP contributed to its excellent emulsification properties and microencapsulation ability (encapsulation efficiency > 97%). Nevertheless, the redispersing properties of microcapsules prepared with the modified RP as a wall material were significantly weaker than those of sodium caseinate. These findings provide new guidance and insights into the modulation of functional properties and applications of RP. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Figure 1

Back to TopTop