Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (676)

Search Parameters:
Keywords = neuronal cell networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 14681 KiB  
Article
Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle
by Yanchun Bao, Fengying Ma, Chenxi Huo, Hongxia Jia, Yunhan Li, Xiaoyi Yang, Jiajing Liu, Pengbo Gu, Caixia Shi, Mingjuan Gu, Lin Zhu, Yu Wang, Bin Liu, Risu Na and Wenguang Zhang
Animals 2025, 15(15), 2277; https://doi.org/10.3390/ani15152277 - 4 Aug 2025
Abstract
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total [...] Read more.
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total of 6161 high-quality nuclei from the hypothalamus, 14,715 nuclei from the pituitary, and 26,072 nuclei from the ovary, providing a comprehensive cellular atlas across the HPO axis. In the hypothalamus, neurons exhibited synaptic and neuroendocrine specialization, with glutamatergic subtype Glut4 serving as a TGFβ signaling hub to regulate pituitary feedback, while GABAergic GABA1 dominated PRL signaling, likely adapting maternal behavior. Pituitary stem cells dynamically replenished endocrine populations via TGFβ, and lactotrophs formed a PRLPRLR paracrine network with stem cells, synergizing mammary development. Ovarian luteal cells exhibited steroidogenic specialization and microenvironmental synergy: endothelial cells coregulated TGFβ-driven angiogenesis and immune tolerance, while luteal–stromal PRLPRLR interactions amplified progesterone synthesis and nutrient support. Granulosa cells (GCs) displayed spatial-functional stratification, with steroidogenic GCs persisting across pseudotime as luteinization precursors, while atretic GCs underwent apoptosis. Spatial mapping revealed GCs’ annular follicular distribution, mediating oocyte–somatic crosstalk, and luteal–endothelial colocalization supporting vascularization. This study unveils pregnancy-specific HPO axis regulation, emphasizing multi-organ crosstalk through TGFβ/PRL pathways and stem cell-driven plasticity, offering insights into reproductive homeostasis and pathologies. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

20 pages, 681 KiB  
Review
Unraveling Glioblastoma Heterogeneity: Advancing Immunological Insights and Therapeutic Innovations
by Joshua H. Liu, Maksym Horiachok, Santosh Guru and Cecile L. Maire
Brain Sci. 2025, 15(8), 833; https://doi.org/10.3390/brainsci15080833 - 2 Aug 2025
Viewed by 352
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, largely due to its profound intratumoral heterogeneity and immunosuppressive microenvironment. Various classifications of GBM subtypes were created based on transcriptional and methylation profiles. This effort, followed by the development of new [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, largely due to its profound intratumoral heterogeneity and immunosuppressive microenvironment. Various classifications of GBM subtypes were created based on transcriptional and methylation profiles. This effort, followed by the development of new technology such as single-nuclei sequencing (snRNAseq) and spatial transcriptomics, led to a better understanding of the glioma cells’ plasticity and their ability to transition between diverse cellular states. GBM cells can mimic neurodevelopmental programs to resemble oligodendrocyte or neural progenitor behavior and hitchhike the local neuronal network to support their growth. The tumor microenvironment, especially under hypoxic conditions, drives the tumor cell clonal selection, which then reshapes the immune cells’ functions. These adaptations contribute to immune evasion by progressively disabling T cell and myeloid cell functions, ultimately establishing a highly immunosuppressive tumor milieu. This complex and metabolically constrained environment poses a major barrier to effective antitumor immunity and limits the success of conventional therapies. Understanding the dynamic interactions between glioma cells and their microenvironment is essential for the development of more effective immunotherapies and rational combination strategies aimed at overcoming resistance and improving patient outcomes. Full article
(This article belongs to the Special Issue Recent Advances in Translational Neuro-Oncology)
Show Figures

Figure 1

14 pages, 4627 KiB  
Communication
BDNF Overexpression Enhances Neuronal Activity and Axonal Growth in Human iPSC-Derived Neural Cultures
by Alba Ortega-Gasco, Francesca Percopo, Ares Font-Guixe, Santiago Ramos-Bartolome, Andrea Cami-Bonet, Marc Magem-Planas, Marc Fabrellas-Monsech, Emma Esquirol-Albala, Luna Goulet, Sergi Fornos-Zapater, Ainhoa Arcas-Marquez, Anna-Christina Haeb, Claudia Gomez-Bravo, Clelia Introna, Josep M. Canals and Daniel Tornero
Int. J. Mol. Sci. 2025, 26(15), 7262; https://doi.org/10.3390/ijms26157262 - 27 Jul 2025
Viewed by 552
Abstract
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional [...] Read more.
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional integration. Brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and neuronal development. In this study, we investigated whether constitutive BDNF expression in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) enhances their neurogenic and integrative potential in vitro. We found that NPCs engineered to overexpress BDNF produced neuronal cultures with increased numbers of mature and spontaneously active neurons, without altering the overall structure or organization of functional networks. Furthermore, BDNF-expressing neurons exhibited significantly greater axonal outgrowth, including directed axon extension in a compartmentalized microfluidic system, suggesting a chemoattractive effect of localized BDNF secretion. These effects were comparable to those observed with the early supplementation of recombinant BDNF. Our results demonstrate that sustained BDNF expression enhances neuronal maturation and axonal projection without disrupting network integrity. These findings support the use of BDNF not only as a therapeutic agent to improve cell therapy outcomes but also as a tool to accelerate the development of functional neural networks in vitro. Full article
(This article belongs to the Special Issue New Advances in Stem Cells in Human Health and Diseases)
Show Figures

Figure 1

19 pages, 2696 KiB  
Article
Cell Type-Specific Effects of Fusarium Mycotoxins on Primary Neurons and Astroglial Cells
by Viktória Szentgyörgyi, Brigitta Tagscherer-Micska, Anikó Rátkai, Katalin Schlett, Norbert Bencsik and Krisztián Tárnok
Toxins 2025, 17(8), 368; https://doi.org/10.3390/toxins17080368 - 25 Jul 2025
Viewed by 309
Abstract
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain [...] Read more.
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain barrier in many species, their effect on neuronal function remains unclear. We investigated the cell viability effects of these toxins on specified neural cell types, including mouse primary neuronal, astroglial, and mixed-cell cultures 24 or 48 h after mycotoxin administration. DON decreased cell viability in a dose-dependent manner, independent of the culture type. Fumonisin B1 was toxic in pure neuronal cultures only at high doses, but toxicity was attenuated in mixed and pure astroglial cultures. ZEA had significant effects on all culture types in 10 nM by increasing cell viability and network activity, as revealed by multi-electrode array measurements. Since ZEA is a mycoestrogen, we analyzed the effects of ZEA on the expression of estrogen receptor isotypes ERα and ERβ and the mitochondrial voltage-dependent anion channel via qRT-PCR. In neuronal and mixed cultures, ZEA administration decreased ERα expression, while in astroglial cultures, it induced the opposite effect. Thus, our results emphasize that Fusarium mycotoxins act in a cell-specific manner. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

29 pages, 17950 KiB  
Article
Organ-Specific Small Protein Networks in 100 kDa Ultrafiltrates: Functional Analysis and Implications for Neuroregenerative Medicine
by Jakub Peter Slivka, Chris Bauer, Tasneem Halhouli, Alexander Younsi, Michelle B. F. Wong, Mike K. S. Chan and Thomas Skutella
Int. J. Mol. Sci. 2025, 26(14), 6659; https://doi.org/10.3390/ijms26146659 - 11 Jul 2025
Viewed by 294
Abstract
In this research, the proteomic landscape of 100 kDa protein extract sourced from rabbit brain was compared to extracts from liver and from organ mixture (OM). Our aim was to compare the efficacy of Nanomised Organo Peptides (NOP) ultrafiltrates from two different tissues [...] Read more.
In this research, the proteomic landscape of 100 kDa protein extract sourced from rabbit brain was compared to extracts from liver and from organ mixture (OM). Our aim was to compare the efficacy of Nanomised Organo Peptides (NOP) ultrafiltrates from two different tissues and a tissue mixture for inducing neurite outgrowth, and subsequently to identify the molecular networks and proteins that could explain such effects. Proteins were isolated by gentle homogenization followed by crossflow ultrafiltration. Proteomic evaluation involved gel electrophoresis, complemented by mass spectrometry and bioinformatics. GO (Gene Ontology) and protein analysis of the mass spectrometry results identified a diverse array of proteins involved in critical specific biological functions, including neuronal development, regulation of growth, immune response, and lipid and metal binding. Data from this study are accessible from the ProteomeXchange repository (identifier PXD051701). Our findings highlight the presence of small proteins that play key roles in metabolic processes and biosynthetic modulation. In vitro outgrowth experiments with neural stem cells (NSCs) showed that 100 kDa protein extracts from the brain resulted in a greater increase in neurite length compared to the liver and organ mixture extracts. The protein networks identified in the NOP ultrafiltrates may significantly improve biological therapeutic strategies related to neural differentiation and outgrowth. This comprehensive proteomic analysis of 100 kDa ultrafiltrates revealed a diverse array of proteins involved in key biological processes, such as neuronal development, metabolic regulation, and immune response. Brain-specific extracts demonstrated the capacity to promote neurite outgrowth in NSCs, suggesting potential application for neuroregenerative therapies. Our findings highlight the potential of small proteins and organ-specific proteins in the development of novel targeted treatments for various diseases, particularly those related to neurodegeneration and aging. Full article
Show Figures

Figure 1

37 pages, 1459 KiB  
Review
Current Landscape of Preclinical Models for Pediatric Gliomas: Clinical Implications and Future Directions
by Syed M. Faisal, Monika Yadav, Garrett R. Gibson, Adora T. Klinestiver, Ryan M. Sorenson, Evan Cantor, Maria Ghishan, John R. Prensner, Andrea T. Franson, Kevin F. Ginn, Carl Koschmann and Viveka Nand Yadav
Cancers 2025, 17(13), 2221; https://doi.org/10.3390/cancers17132221 - 2 Jul 2025
Viewed by 1442
Abstract
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and [...] Read more.
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and TP53 inactivation, all of which contribute to tumor biology and therapeutic resistance. Developing physiologically relevant preclinical models that replicate both tumor biology and the tumor microenvironment (TME) is critical for advancing effective treatments. This review highlights recent progress in in vitro, ex vivo, and in vivo models, including patient-derived brain organoids, genetically engineered mouse models (GEMMs), and region-specific midline organoids incorporating SHH, BMP, and FGF2/8/19 signaling to model pontine gliomas. Key genetic alterations can now be introduced using lipofectamine-mediated transfection, PiggyBac plasmid systems, and CRISPR-Cas9, allowing the precise study of tumor initiation, progression, and therapy resistance. These models enable the investigation of TME interactions, including immune responses, neuronal infiltration, and therapeutic vulnerabilities. Future advancements involve developing immune-competent organoids, integrating vascularized networks, and applying multi-omics platforms like single-cell RNA sequencing and spatial transcriptomics to dissect tumor heterogeneity and lineage-specific vulnerabilities. These innovative approaches aim to enhance drug screening, identify new therapeutic targets, and accelerate personalized treatments for pediatric gliomas. Full article
Show Figures

Figure 1

13 pages, 724 KiB  
Review
The Emerging Role of the Molecular Chaperone Clusterin in Parkinson’s Disease
by Giulia Carini, Salihu Mohammed, Alice Filippini, Ileana Ramazzina and Isabella Russo
Int. J. Mol. Sci. 2025, 26(13), 6351; https://doi.org/10.3390/ijms26136351 - 1 Jul 2025
Viewed by 498
Abstract
Clusterin (CLU) is a heterodimeric, ATP-independent molecular chaperone that exhibits high expression in the brain. While CLU primarily functions in the extracellular environment, its chaperone activity in the intracellular compartment under different stress conditions, as well as its involvement in various signaling networks, [...] Read more.
Clusterin (CLU) is a heterodimeric, ATP-independent molecular chaperone that exhibits high expression in the brain. While CLU primarily functions in the extracellular environment, its chaperone activity in the intracellular compartment under different stress conditions, as well as its involvement in various signaling networks, has been demonstrated. CLU has been extensively associated with Alzheimer’s Disease; however, increasing evidence links this chaperone to Parkinson’s Disease (PD) as well. Thus, in this review we will discuss evidence concerning the involvement of CLU in the pathogenesis of PD with a particular focus on molecular mechanisms leading to the formation and the spreading of alpha-Synuclein (α-Syn) aggregates. Specifically, the role of CLU will be discussed in neurons and in glial cells, taking into account that the neuron–glia cross-talk is an essential and dynamic interplay that is compromised in neurodegenerative disorders. Moreover, the possible role of CLU as a biomarker in different biological fluids, such as cerebrospinal fluid, plasma, and serum, and its therapeutic potential will be addressed. In this regard, the past years have seen huge efforts to discover molecules able to mitigate α-Syn burden and its related toxicity. Overall, this overview highlights CLU as an intriguing target that can affect biochemical events underlying PD pathology. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

35 pages, 5871 KiB  
Article
Transcriptomic and Proteomic Changes in the Brain Along with Increasing Phenotypic Severity in a Rat Model of Neonatal Hyperbilirubinemia
by John Paul Llido, Giorgia Valerio, David Křepelka, Aleš Dvořák, Cristina Bottin, Fabrizio Zanconati, Julia Theresa Regalado, Audrey Franceschi Biagioni, Mohammed Qaisiya, Libor Vítek, Claudio Tiribelli and Silvia Gazzin
Int. J. Mol. Sci. 2025, 26(13), 6262; https://doi.org/10.3390/ijms26136262 - 28 Jun 2025
Viewed by 1051
Abstract
Kernicterus spectrum disorder is the permanent and highly disabling neurologic sequel of neonatal exposure to hyperbilirubinemia, presenting, among other symptoms, variable and untreatable motor disabilities. To search for potential biomolecular explanations, we used a Gunn rat colony exhibiting spontaneous hyperbilirubinemia and a large [...] Read more.
Kernicterus spectrum disorder is the permanent and highly disabling neurologic sequel of neonatal exposure to hyperbilirubinemia, presenting, among other symptoms, variable and untreatable motor disabilities. To search for potential biomolecular explanations, we used a Gunn rat colony exhibiting spontaneous hyperbilirubinemia and a large variability of motor deficits on a beam-walking test. Histological and microscopic analyses confirmed worsening damage in the cerebellum (Cll; hypoplasia, increased death of neurons, and disrupted astroglial structures) and parietal motor cortex (hCtx; increased cell sufferance and astrogliosis). Clustering and network analyses of transcriptomic data reveal rearrangement of the physiological expression patterns and signaling pathways associated with bilirubin neurotoxicity. Bilirubin content among hyperbilirubinemic (jj) animals is overlapped, which suggests that the amount of bilirubin challenge does not fully explain the tissue, transcriptomic, proteomic, and neurobehavioral alterations. The expression of nine genes involved in key postnatal brain development processes is permanently altered in a phenotype-dependent manner. Among them, Grm1, a metabotropic glutamatergic receptor involved in glutamate neurotoxicity, is consistently downregulated in both brain regions both at the transcriptomic and proteomic levels. Our results support the role of Grm1 and glutamate as biomolecular markers of ongoing bilirubin neurotoxicity, suggesting the possibility to improve diagnosis by 1H-MR spectroscopy. Full article
(This article belongs to the Special Issue Bilirubin: Health Challenges and Opportunities)
Show Figures

Graphical abstract

17 pages, 3073 KiB  
Article
Forecast of Aging of PEMFCs Based on CEEMD-VMD and Triple Echo State Network
by Jie Sun, Shiyuan Pan, Qi Yang, Yiming Wang, Lei Qin, Wang Han, Ruixiang Wang, Lei Gong, Dongdong Zhao and Zhiguang Hua
Sensors 2025, 25(13), 3868; https://doi.org/10.3390/s25133868 - 21 Jun 2025
Viewed by 649
Abstract
Accurately forecasting the degradation trajectory of proton exchange membrane fuel cells (PEMFCs) across a spectrum of operational scenarios is indispensable for effective maintenance scheduling and robust health surveillance. However, this task is highly intricate due to the fluctuating nature of dynamic operating conditions [...] Read more.
Accurately forecasting the degradation trajectory of proton exchange membrane fuel cells (PEMFCs) across a spectrum of operational scenarios is indispensable for effective maintenance scheduling and robust health surveillance. However, this task is highly intricate due to the fluctuating nature of dynamic operating conditions and the limitations inherent in short-term forecasting techniques, which collectively pose significant challenges to achieving reliable predictions. To enhance the accuracy of PEMFC degradation forecasting, this research proposes an integrated approach that combines the complete ensemble empirical mode decomposition with the variational mode decomposition (CEEMD-VMD) and triple echo state network (TriESN) to predict the deterioration process precisely. Decomposition can filter out high-frequency noise and retain low-frequency degradation information effectively. Among data-driven methods, the echo state network (ESN) is capable of estimating the degradation performance of PEMFCs. To tackle the problem of low prediction accuracy, this study proposes a novel TriESN that builds upon the classical ESN. The proposed enhancement method seeks to refine the ESN architecture by reducing the impact of surrounding neurons and sub-reservoirs on active neurons, thus realizing partial decoupling of the ESN. On this basis of decoupling, the method takes into account the multi-timescale aging characteristics of PEMFCs to achieve precise prediction of remaining useful life. Overall, combining CEEMD-VMD with the TriESN strengthens feature depiction, fosters sparsity, diminishes the likelihood of overfitting, and augments the network’s capacity for generalization. It has been shown that the TriESN markedly improved the accuracy of long-term PEMFC degradation predictions in three different dynamic contexts. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

15 pages, 2455 KiB  
Article
Paeoniflorin Improves Stroke by Modulating the ESR1 Pathway: Data Mining and Validation Based on Network Approaches
by Zhenshan Sun, Junjie Peng, Jiangbangrui Chu, Zhengyi Wang, Kefan Hu, Zhanpeng Feng, Mingfeng Zhou, Xingqin Wang, Songtao Qi, Zhu Zhang and Ken Kin Lam Yung
Pharmaceuticals 2025, 18(7), 933; https://doi.org/10.3390/ph18070933 - 20 Jun 2025
Viewed by 488
Abstract
Aim of the study: Traditional Chinese herbs have a unique therapeutic effect on stroke and numerous successful clinical cases. However, these clinical cases are highly dispersed, creating challenges for translational research. This study employs a new paradigm to identify treatment patterns and the [...] Read more.
Aim of the study: Traditional Chinese herbs have a unique therapeutic effect on stroke and numerous successful clinical cases. However, these clinical cases are highly dispersed, creating challenges for translational research. This study employs a new paradigm to identify treatment patterns and the active compound interactions contained within these clinical cases, with experimental validation after target screening. Methods and Materials: Stroke-related targets were identified through GEO, DisGeNET, and Genecards. Active ingredients were extracted from BATMAN-TCM 2.0. All herbs and diseases were confirmed by the Pharmacopoeia of the People’s Republic of China (2020 edition) and Medical Subject Heading (MeSH). All networks in this study were constructed by Cytoscape, and data analysis was done by Python. All formulations and herbs were retrieved from the literature review. For the molecular docking process, Autodock was applied as the docking platform, and all the protein structures were downloaded from PDB. For experimental validation after target screening, HT22 cells were incubated with glucose-free DMEM and placed in an anaerobic chamber for 2 h. Subsequently, HT22 cells were reoxygenated for 24 h. Estrogen Receptor 1 (ESR1) protein levels were measured in vitro. Results: seven materials, including Angelicae Sinensis Radix, Pheretima, Chuanxiong Rhizoma, Persicae Semen, Astragali Radix, Carthami Flos, and Radix Paeoniae Rubra, were identified as the core herbs for the treatment of stroke. The targets of the stroke mechanism were screened, and the herbs-compound-target network was constructed. Among them, paeoniflorin (PF) was identified as the core active compound, and its interaction with ESR1 was verified by molecular docking as the key interaction for the treatment of stroke. In vitro experiments showed that PF inhibited cell apoptosis under hypoxia by increasing the expression of ESR1 compared with the oxygen-glucose deprivation-reperfusion (OGD/R) model group. Western showed that PF (100 μM, 200 μM) can significantly increase the decreased ESR1 protein level caused by the OGD/R model. Conclusions: seven key herbs were screened. Further bioinformatics and network pharmacology studies suggested that PF is expected to become a new active compound for the treatment of stroke. In vitro validation further demonstrated that PF enhanced neuronal survival and ESR1 expression under ischemic conditions, supporting its therapeutic candidacy. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 3140 KiB  
Article
Human Stem Cell-Derived Neural Organoids for the Discovery of Antiseizure Agents
by Hamed Salmanzadeh and Robert F. Halliwell
Receptors 2025, 4(3), 12; https://doi.org/10.3390/receptors4030012 - 20 Jun 2025
Viewed by 655
Abstract
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, [...] Read more.
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, recorded the development of neurophysiological activity using multielectrode arrays (MEAs) and characterized the neuropharmacology of synaptic signaling over 8 months in vitro. In addition, we investigated the ability of these organoids to display epileptiform activity in response to a convulsant agent and the effects of antiseizure medicines to inhibit this abnormal activity. Results: Single and bursts of action potentials from individual neurons and network bursts were recorded on the MEA plates and significantly increased and became more complex from week 7 to week 30, consistent with neural network formation. Neural spiking was reduced by the Na channel blocker tetrodotoxin but increased by the inhibitor of KV7 potassium channels XE991, confirming the involvement of voltage-gated sodium and potassium channels in action potential activity. The GABA antagonists bicuculline and picrotoxin each increased the spike rate, consistent with inhibitory synaptic signaling. In contrast, the glutamate receptor antagonist kynurenic acid inhibited the spike rate, consistent with excitatory synaptic transmission in the organoids. The convulsant 4-aminopyridine increased spiking, bursts and synchronized firing, consistent with epileptiform activity in vitro. The anticonvulsants carbamazepine, ethosuximide and diazepam each inhibited this epileptiform neural activity. Conclusions: Together, our data demonstrate that neural organoids form inhibitory and excitatory synaptic circuits, generate epileptiform activity in response to a convulsant agent and detect the antiseizure properties of diverse antiepileptic drugs, supporting their value in drug discovery. Full article
Show Figures

Figure 1

35 pages, 2933 KiB  
Review
NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting
by Mohd Adnan, Arif Jamal Siddiqui, Fevzi Bardakci, Malvi Surti, Riadh Badraoui and Mitesh Patel
Pharmaceuticals 2025, 18(6), 921; https://doi.org/10.3390/ph18060921 - 19 Jun 2025
Viewed by 683
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by the pathological accumulation of amyloid-β plaques and tau neurofibrillary tangles, both of which disrupt neuronal communication and function. Emerging evidence highlights the role of extracellular vesicles (EVs) as key mediators of intercellular communication, [...] Read more.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by the pathological accumulation of amyloid-β plaques and tau neurofibrillary tangles, both of which disrupt neuronal communication and function. Emerging evidence highlights the role of extracellular vesicles (EVs) as key mediators of intercellular communication, particularly in the propagation of pathological proteins in AD. Among the regulatory factors influencing EV composition and function, neuraminidase 1 (NEU1), a lysosomal sialidase responsible for desialylating glycoproteins has gained attention for its involvement in EV glycosylation. This review explores the role of NEU1 in modulating EV glycosylation, with particular emphasis on its influence on immune modulation and intracellular trafficking pathways and the subsequent impact on intercellular signaling and neurodegenerative progression. Altered NEU1 activity has been associated with abnormal glycan profiles on EVs, which may facilitate the enhanced spread of amyloid-β and tau proteins across neural networks. By regulating glycosylation, NEU1 influences EV stability, targeting and uptake by recipient cells, primarily through the desialylation of surface glycoproteins and glycolipids, which alters the EV charge, recognition and receptor-mediated interactions. Targeting NEU1 offers a promising therapeutic avenue to restore EV homeostasis and reduces pathological protein dissemination. However, challenges persist in developing selective NEU1 inhibitors and effective delivery methods to the brain. Furthermore, altered EV glycosylation patterns may serve as potential biomarkers for early AD diagnosis and monitoring. Overall, this review highlights the importance of NEU1 in AD pathogenesis and advocates for deeper investigation into its regulatory functions, with the aim of advancing therapeutic strategies and biomarker development for AD and related neurological disabilities. Full article
(This article belongs to the Special Issue Pharmacotherapy for Alzheimer’s Disease)
Show Figures

Graphical abstract

17 pages, 1642 KiB  
Review
Ankyrin-G and Its Binding Partners in Neurons: Orchestrating the Molecular Structure of the Axon Initial Segment
by Xiaowei Zhu, Yanyan Yu, Zhuqian Jiang, Yoshinori Otani and Masashi Fujitani
Biomolecules 2025, 15(6), 901; https://doi.org/10.3390/biom15060901 - 19 Jun 2025
Viewed by 825
Abstract
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules [...] Read more.
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules (CAMs), and cytoskeletal components at this critical neuronal domain. Recent proteomic analyses have revealed a complex network of proteins in the AIS, emphasizing Ankyrin-G’s central role in its molecular architecture. This review discusses new findings in the study of AIS-associated proteins. It explains how Ankyrin-G and its binding partners (such as ion channels, CAMs, spectrins, actin, and microtubule-associated proteins including end-binding protein 3, tripartite motif-containing protein 46, and calmodulin-regulated spectrin-associated protein 2) organize their structure. Understanding the dynamic regulation and molecular interactions within the AIS offers insights into neuronal excitability and reveals potential therapeutic targets for axonal dysfunction–related diseases. Through these dynamic interactions, Ankyrin-G ensures the proper alignment and dense clustering of key channel complexes, thereby maintaining the AIS’s distinctive molecular and functional identity. By further unraveling the complexity of Ankyrin-G’s interactome, our understanding of AIS formation, maintenance, and plasticity will be considerably enhanced, contributing to the elucidation of the pathogenesis of neurological and neuropsychiatric disorders. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Neurodevelopment)
Show Figures

Figure 1

17 pages, 2381 KiB  
Review
The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction
by Sushama Jadhav, Shreeya Nair and Vijay Nema
Neuroglia 2025, 6(2), 23; https://doi.org/10.3390/neuroglia6020023 - 9 Jun 2025
Viewed by 737
Abstract
HIV, primarily targeting CD4 cells, infiltrates the CNS through various mechanisms, including chemokine-mediated signaling and blood–brain barrier disruption, leading to neuroinflammation and neuronal dysfunction. Viral proteins such as gp120, Tat, and Vpr directly induce neurotoxicity, oxidative stress, and mitochondrial dysfunction, exacerbating cognitive deficits [...] Read more.
HIV, primarily targeting CD4 cells, infiltrates the CNS through various mechanisms, including chemokine-mediated signaling and blood–brain barrier disruption, leading to neuroinflammation and neuronal dysfunction. Viral proteins such as gp120, Tat, and Vpr directly induce neurotoxicity, oxidative stress, and mitochondrial dysfunction, exacerbating cognitive deficits and motor impairments observed in HIV-associated neurocognitive disorders (HANDs). Host genetic factors, including CCR5 mutations and HLA alleles, influence susceptibility to HIV-related neurologic complications, shaping disease progression and treatment responses. Advanced molecular and bioinformatics techniques, from genome sequencing to structural modeling and network analysis, provide insights into viral pathogenesis and identify potential therapeutic targets. These findings underscore the future potential of precision medicine approaches tailored to individual genetic profiles to mitigate neurologic complications and improve outcomes in HIV-infected populations. This comprehensive review explores the intricate interplay between HIV infection and neurogenetics, focusing on how the virus impacts the central nervous system (CNS) and contributes to neurocognitive disorders. This report delves into how the virus influences genetic expression, neuroinflammation, and neurodegeneration, offering insights into molecular mechanisms behind HAND. Full article
Show Figures

Figure 1

18 pages, 688 KiB  
Review
Psychiatric Implications of Genetic Variations in Oligodendrocytes: Insights from hiPSC Models
by Martina D’Angelo, Valeria Di Stefano, Ilaria Pullano, Francesco Monaco and Luca Steardo
Life 2025, 15(6), 921; https://doi.org/10.3390/life15060921 - 6 Jun 2025
Viewed by 764
Abstract
Oligodendrocyte precursor cells (OPCs) are a dynamic and heterogeneous population of glial cells essential for brain development and myelination. Beyond their well-established role in oligodendrogenesis, emerging evidence suggests that OPCs contribute to synaptic regulation, neuronal communication, and brain plasticity. Recent studies have increasingly [...] Read more.
Oligodendrocyte precursor cells (OPCs) are a dynamic and heterogeneous population of glial cells essential for brain development and myelination. Beyond their well-established role in oligodendrogenesis, emerging evidence suggests that OPCs contribute to synaptic regulation, neuronal communication, and brain plasticity. Recent studies have increasingly implicated OPC dysfunction in the pathophysiology of psychiatric disorders, particularly schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). This narrative review integrates clinical, genetic, transcriptomic, and histological findings to examine the role of OPC alterations in mental illnesses. In SCZ, OPC abnormalities predominantly affect myelination, but recent data also suggest deficits in non-canonical functions, including neuron–OPC communication. Findings in BD largely mirror those in SCZ, implying shared OPC-related mechanisms across these disorders. In contrast, OPC involvement in MDD appears more complex, with evidence supporting both myelination deficits and non-canonical dysfunctions, such as impaired neuro–glial interactions and perineuronal network alterations. The developmental timing of OPC dysfunction may represent a common denominator underlying psychiatric disorders, as early-life stress and neurodevelopmental disturbances have been linked to OPC impairments. Moreover, given the shared developmental origins of OPCs and parvalbumin-positive interneurons, disruptions in their mutual interactions may contribute to broader neural network dysregulation. Despite these insights, the field remains in its infancy. Future studies integrating independent human cohorts with robust preclinical models are needed to clarify the extent of OPC involvement in psychiatric pathophysiology. Understanding OPC dysfunction may reveal novel biomarkers and open new avenues for individualized therapeutic interventions and preventive strategies in mental health. Full article
(This article belongs to the Special Issue What Is New in Psychiatry and Psychopharmacology—2nd Edition)
Show Figures

Figure 1

Back to TopTop