Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = neuromyelitis optica spectrum disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1568 KiB  
Article
Early Predictors of Outcome in Pediatric Acquired Demyelinating Syndromes: A Retrospective Study Stratified by Final Diagnosis
by Emanuela Claudia Turco, Martina Gnazzo, Sara Giordani, Giulia Pisanò, Valentina Baldini, Elena Giroldini, Benedetta Piccolo, Cosimo Neglia, Susanna Esposito and Maria Carmela Pera
Children 2025, 12(8), 975; https://doi.org/10.3390/children12080975 - 24 Jul 2025
Viewed by 238
Abstract
Background/Objectives: Pediatric acquired demyelinating syndromes (ADSs) encompass a heterogeneous group of disorders, including multiple sclerosis (MS), MOG antibody-associated disease (MOGAD), and neuromyelitis optica spectrum disorder (NMOSD), with distinct clinical trajectories and prognoses. While analyzed collectively at baseline to reflect real-world diagnostic uncertainty, [...] Read more.
Background/Objectives: Pediatric acquired demyelinating syndromes (ADSs) encompass a heterogeneous group of disorders, including multiple sclerosis (MS), MOG antibody-associated disease (MOGAD), and neuromyelitis optica spectrum disorder (NMOSD), with distinct clinical trajectories and prognoses. While analyzed collectively at baseline to reflect real-world diagnostic uncertainty, outcome predictors were also examined according to final diagnosis. Identifying early predictors is crucial for optimizing long-term outcomes. Methods: We retrospectively analyzed 30 pediatric patients (mean onset age: 11.3 years) with ADSs. Clinical, radiological, CSF, antibody, and neurophysiological data were collected and analyzed alongside treatment strategies. Outcomes—EDSS scores, neuroradiological changes, and clinical status—were evaluated over a 3-year period. Results: Final diagnoses included MOGAD (36.6%), MS (33.3%), NMOSD (6.6%), ADEM (10%), and other ADSs (13.3%). At onset, ≥3 brain lesions were present in 76.7% of patients. Disease-modifying therapies (DMTs) were used in 37% and acute immunotherapy in 90%. EDSS progression was significantly associated with DMT use at multiple timepoints, with additional predictors including MRI lesion type, CSF findings, antibody status, and evoked potentials. At 3 years, neurocognitive function predicted clinical outcome. Conclusions: Early immunotherapy and baseline instrumental findings are key predictors of outcome in pediatric ADSs. MOGAD showed a more favorable course, while MS and NMOSD were associated with greater long-term disability. A comprehensive, early diagnostic approach is essential for improving prognosis. Full article
(This article belongs to the Special Issue Recent Advances in Pediatric-Onset Multiple Sclerosis)
Show Figures

Figure 1

8 pages, 1643 KiB  
Case Report
Neuromyelitis Optica Diagnosis in Two Elderly Patients with Systematic Lupus Erythematosus: A Case Series
by Kyriaki Astara, Maria Lypiridou, Konstantinos Kalafatakis, Georgios Nikolaou and Georgios Stouraitis
Reports 2025, 8(3), 110; https://doi.org/10.3390/reports8030110 - 16 Jul 2025
Viewed by 345
Abstract
Background and Clinical Significance: Neuromyelitis optica (NMO) is a chronic demyelinating inflammatory disease of the central nervous system (CNS), mediated by autoantibodies against aquaporin-4 (AQ4) receptors. In the spectrum of NMO, other autoimmune diseases also coexist, though their association with systemic lupus erythematosus [...] Read more.
Background and Clinical Significance: Neuromyelitis optica (NMO) is a chronic demyelinating inflammatory disease of the central nervous system (CNS), mediated by autoantibodies against aquaporin-4 (AQ4) receptors. In the spectrum of NMO, other autoimmune diseases also coexist, though their association with systemic lupus erythematosus (SLE) is rare. Case Presentation: We present two cases of patients in their 70s who were diagnosed with NMO in the context of SLE. The first case concerns a 78-year-old woman with drug-induced SLE and thoracic myelitis who developed T4-level incomplete paraplegia over three weeks. The second case involves a 71-year-old woman with a history of SLE and myasthenia gravis, presenting with cervical myelitis with progressive worsening of walking and C4-level paraparesis over two months. In both cases, elevated serum anti-AQ4 titers were detected, establishing the diagnosis of NMO and differentiation from an atypical manifestation of SLE-related myelitis. High doses of intravenous corticosteroids with gradual tapering, along with cyclophosphamide, followed by rituximab, were administered in both patients. The first patient showed a poor response, while the second showed improvement. Conclusions: The coexistence of NMO with SLE is rare, but the occurrence of myelitis in patients with connective tissue diseases should raise the suspicion of NMO, especially in elderly women and several years after the diagnosis of SLE. Time to treatment is critical, as delays in treating NMO can result in cumulative and disabling damage. Full article
(This article belongs to the Section Allergy/Immunology)
Show Figures

Figure 1

22 pages, 3218 KiB  
Article
Dynamic Handwriting Features for Cognitive Assessment in Inflammatory Demyelinating Diseases: A Machine Learning Study
by Jiali Yang, Chaowei Yuan, Yiqiao Chai, Yukun Song, Shuning Zhang, Junhui Li, Mingying Lan and Li Gao
Appl. Sci. 2025, 15(11), 6257; https://doi.org/10.3390/app15116257 - 2 Jun 2025
Viewed by 507
Abstract
Cognitive impairment is common but often overlooked in patients with inflammatory demyelinating diseases such as multiple sclerosis and neuromyelitis optica spectrum disorder. The conventional assessments may fail to detect subtle deficits and require substantial time and expertise. We collected neuropsychological scores and real-time [...] Read more.
Cognitive impairment is common but often overlooked in patients with inflammatory demyelinating diseases such as multiple sclerosis and neuromyelitis optica spectrum disorder. The conventional assessments may fail to detect subtle deficits and require substantial time and expertise. We collected neuropsychological scores and real-time handwriting data across nine drawing tasks and tasks from the Symbol Digit Modalities Test in 93 patients. Temporal, pressure, and kinematic features were extracted, and machine learning classifiers were trained using five-fold cross-validation with bootstrap confidence intervals. The response timing and pen pressure metrics correlated significantly with global cognitive scores (|r| = 0.30–0.37, p < 0.01). A support vector machine using eight selected features achieved an area under the receiver-operating characteristic curve (AUC) of 0.910, and a streamlined five-feature variant maintained an equivalent performance (AUC = 0.921) while reducing the assessment time by 35%. These results indicate that digital handwriting metrics can complement the standard screening by capturing fine motor and temporal characteristics overlooked in conventional testing. Validation in larger, disease-balanced, and longitudinal cohorts is needed to confirm their clinical utility. Full article
Show Figures

Figure 1

21 pages, 1248 KiB  
Review
The Molecular and Cellular Basis of Physiological Changes in Pregnancy and Its Implications in Neurologic and Ophthalmic Pathologies
by Yi-Ting Chiang, Jie-Hong Chen and Kuo-Hu Chen
Int. J. Mol. Sci. 2025, 26(11), 5220; https://doi.org/10.3390/ijms26115220 - 29 May 2025
Viewed by 1288
Abstract
Pregnancy orchestrates profound neurological, hormonal, and anatomical transformations in the maternal brain, preparing it for caregiving and infant bonding. Neuroimaging reveals structural changes such as gray matter reductions and white matter reorganization during pregnancy, followed by partial recovery postpartum. These adaptations are modulated [...] Read more.
Pregnancy orchestrates profound neurological, hormonal, and anatomical transformations in the maternal brain, preparing it for caregiving and infant bonding. Neuroimaging reveals structural changes such as gray matter reductions and white matter reorganization during pregnancy, followed by partial recovery postpartum. These adaptations are modulated by fluctuating levels of estradiol, progesterone, prolactin, and oxytocin, which coordinate neuroplasticity and behavioral readiness. At the molecular and cellular levels, pregnancy hormones drive synaptic remodeling, neurogenesis, and glial activity. Together, these changes support maternal motivation, attachment, and responsiveness, highlighting the maternal brain’s dynamic plasticity across gestation and the postpartum period. Also, pregnancy induces profound physiological changes, particularly in vascular, hormonal, and neurologic systems, to support maternal and fetal health. While these adaptations are essential, they can predispose pregnant individuals to various neurologic and ophthalmic pathologies. This review explores how pregnancy-related changes—including hypercoagulability, pituitary enlargement, hormonal fluctuations, and immunological modulation—contribute to conditions such as stroke, idiopathic intracranial hypertension, preeclampsia-associated visual disturbances, and demyelinating disorders like neuromyelitis optica spectrum disorder and multiple sclerosis. Additionally, ocular manifestations of systemic diseases like diabetic retinopathy and thyroid orbitopathy are discussed. Understanding these complex interactions is critical for prompt recognition, accurate diagnosis, and appropriate management of vision-threatening and neurologically significant complications during pregnancy. Nevertheless, many aspects of physiological and pathological changes during and after pregnancy remain unknown and warrant further investigation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 1073 KiB  
Review
Fluid Biomarkers in Demyelinating Spectrum Disorders: Past, Present, and Prospects
by Anca-Maria Florea, Monica Neațu, Dimela-Gabriela Luca, Eugenia Irene Davidescu and Bogdan-Ovidiu Popescu
Int. J. Mol. Sci. 2025, 26(9), 4455; https://doi.org/10.3390/ijms26094455 - 7 May 2025
Cited by 1 | Viewed by 848
Abstract
The diagnostic algorithm for the demyelinating disorders of the central nervous system remains a work in progress, with the search for the ideal biomarkers ongoing. The so-called “ideal” biomarker should ensure the accurate differentiation between the most common demyelinating pathologies of the CNS [...] Read more.
The diagnostic algorithm for the demyelinating disorders of the central nervous system remains a work in progress, with the search for the ideal biomarkers ongoing. The so-called “ideal” biomarker should ensure the accurate differentiation between the most common demyelinating pathologies of the CNS and between the subtypes of the same pathology (for example, the conversion from relapsing–remitting multiple sclerosis to the secondary progressive phenotype). Advances in technology facilitated this research and in the following sections we will comprehensively review most of these, outlining the past, present, and prospects and the impact they had on both diagnosis and therapeutic approach. Full article
Show Figures

Figure 1

13 pages, 1280 KiB  
Article
CD4-Positive T-Cell Responses to MOG Peptides in MOG Antibody-Associated Disease
by Hirohiko Ono, Tatsuro Misu, Chihiro Namatame, Yuki Matsumoto, Yoshiki Takai, Shuhei Nishiyama, Hiroshi Kuroda, Toshiyuki Takahashi, Ichiro Nakashima, Kazuo Fujihara and Masashi Aoki
Int. J. Mol. Sci. 2025, 26(8), 3606; https://doi.org/10.3390/ijms26083606 - 11 Apr 2025
Viewed by 944
Abstract
To clarify T-cell responses in myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD), we cultured the peripheral blood mononuclear cells of 24 patients with MOGAD and 20 with aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorders (NMOSD), and those of 17 healthy controls (HCs), in [...] Read more.
To clarify T-cell responses in myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD), we cultured the peripheral blood mononuclear cells of 24 patients with MOGAD and 20 with aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorders (NMOSD), and those of 17 healthy controls (HCs), in the presence of fourteen MOG peptides covering the full-length MOG, five AQP4 peptides, two myelin basic protein peptides, or two proteolipid protein peptides. Then, we measured T-cell activation markers, such as cell surface CD69 and the intracellular production of granulocyte–macrophage colony-stimulating factor (GM-CSF) and interferon-γ in CD4-positive T-cells, with a flow cytometer. The expression of CD69 in response to MOG p16–40 and MOG p181–205 was significantly higher (Stimulation Index > 2) in MOGAD than in HCs. Also, CD69 for AQP4 p21–40, AQP4 p211–230, and MOG p166–190 were significantly increased in NMOSD than in HCs. Intracellular GM-CSF production responding to MOG p16–40 was significantly higher in MOGAD than in HCs (p < 0.05), although intracellular interferon-γ was not elevated. None of the responses to the other peptides were different between the groups. The present study showed subtle CD4-positive T-cell activation elicited by some MOG peptides alone in patients with MOGAD. Further studies of cytokines or other stimulation and alternative assay markers and metrics are needed to delineate the immunopathological roles of T-cells in MOGAD. Full article
Show Figures

Figure 1

21 pages, 1045 KiB  
Review
Microglia/Macrophages in Autoimmune Demyelinating Encephalomyelitis (Multiple Sclerosis/Neuromyelitis Optica)
by Ryo Yamasaki
Int. J. Mol. Sci. 2025, 26(8), 3585; https://doi.org/10.3390/ijms26083585 - 10 Apr 2025
Cited by 1 | Viewed by 1164
Abstract
Microglia and macrophages are critical mediators of immune responses in the central nervous system. Their roles range from homeostatic maintenance to the pathogenesis of autoimmune demyelinating diseases such as multiple sclerosis and neuromyelitis optica spectrum disorder. This review explores the origins of microglia [...] Read more.
Microglia and macrophages are critical mediators of immune responses in the central nervous system. Their roles range from homeostatic maintenance to the pathogenesis of autoimmune demyelinating diseases such as multiple sclerosis and neuromyelitis optica spectrum disorder. This review explores the origins of microglia and macrophages, as well as their mechanisms of activation, interactions with other neural cells, and contributions to disease progression and repair processes. It also highlights the translational relevance of insights gained from animal models and the therapeutic potential of targeting microglial and macrophage activity in multiple sclerosis and neuromyelitis optica spectrum disorder. Full article
(This article belongs to the Special Issue Physiological Functions and Pathological Effects of Microglia)
Show Figures

Figure 1

19 pages, 1537 KiB  
Review
Repulsive Guidance Molecule-A as a Therapeutic Target Across Neurological Disorders: An Update
by Vasilis-Spyridon Tseriotis, Andreas Liampas, Irene Zacharo Lazaridou, Sofia Karachrysafi, George D. Vavougios, Georgios M. Hadjigeorgiou, Theodora Papamitsou, Dimitrios Kouvelas, Marianthi Arnaoutoglou, Chryssa Pourzitaki and Theodoros Mavridis
Int. J. Mol. Sci. 2025, 26(7), 3221; https://doi.org/10.3390/ijms26073221 - 30 Mar 2025
Cited by 5 | Viewed by 1875
Abstract
Repulsive guidance molecule-a (RGMa) has emerged as a significant therapeutic target in a variety of neurological disorders, including neurodegenerative diseases and acute conditions. This review comprehensively examines the multifaceted role of RGMa in central nervous system (CNS) pathologies such as Alzheimer’s disease, Parkinson’s [...] Read more.
Repulsive guidance molecule-a (RGMa) has emerged as a significant therapeutic target in a variety of neurological disorders, including neurodegenerative diseases and acute conditions. This review comprehensively examines the multifaceted role of RGMa in central nervous system (CNS) pathologies such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, neuromyelitis optica spectrum disorder, spinal cord injury, stroke, vascular dementia, auditory neuropathy, and epilepsy. The mechanisms through which RGMa contributes to neuroinflammation, neuronal degeneration, and impaired axonal regeneration are herein discussed. Evidence from preclinical studies associate RGMa overexpression with negative outcomes, such as increased neuroinflammation and synaptic loss, while RGMa inhibition, particularly the use of agents like elezanumab, has shown promise in enhancing neuronal survival and functional recovery. RGMa’s responses concerning immunomodulation and neurogenesis highlight its potential as a therapeutic avenue. We emphasize RGMa’s critical role in CNS pathology and its potential to pave the way for innovative treatment strategies in neurological disorders. While preclinical findings are encouraging so far, further clinical trials are needed to validate the safety and efficacy of RGMa-targeted therapies. Full article
Show Figures

Figure 1

10 pages, 7275 KiB  
Case Report
Confusing Onset of MOGAD in the Form of Focal Seizures
by Małgorzata Jączak-Goździak and Barbara Steinborn
Neurol. Int. 2025, 17(3), 37; https://doi.org/10.3390/neurolint17030037 - 27 Feb 2025
Viewed by 947
Abstract
MOGAD is a demyelinating syndrome with the presence of antibodies against myelin oligodendrocyte glycoprotein, which is, next to multiple sclerosis and the neuromyelitis optica spectrum, one of the manifestations of the demyelinating process, more common in the pediatric population. MOGAD can take a [...] Read more.
MOGAD is a demyelinating syndrome with the presence of antibodies against myelin oligodendrocyte glycoprotein, which is, next to multiple sclerosis and the neuromyelitis optica spectrum, one of the manifestations of the demyelinating process, more common in the pediatric population. MOGAD can take a variety of clinical forms: acute disseminated encephalomyelitis (ADEM), retrobulbar optic neuritis, often binocular (ON), transverse myelitis (TM), or NMOSD-like course (neuromyelitis optica spectrum disorders), less often encephalopathy. The course may be monophasic (40–50%) or polyphasic (50–60%), especially with persistently positive anti-MOG antibodies. Very rarely, the first manifestation of the disease, preceding the typical symptoms of MOGAD by 8 to 48 months, is focal seizures with secondary generalization, without typical demyelinating changes on MRI of the head. The paper presents a case of a 17-year-old patient whose first symptoms of MOGAD were focal epileptic seizures in the form of turning the head to the right with the elevation of the left upper limb and salivation. Seizures occurred after surgical excision of a tumor of the right adrenal gland (ganglioneuroblastoma). Then, despite a normal MRI of the head and the exclusion of onconeural antibodies in the serum and cerebrospinal fluid after intravenous treatment, a paraneoplastic syndrome was suspected. After intravenous steroid treatment and immunoglobulins, eight plasmapheresis treatments, and the initiation of antiepileptic treatment, the seizures disappeared, and no other neurological symptoms occurred for nine months. Only subsequent relapses of the disease with typical radiological and clinical picture (ADEM, MDEM, recurrent ON) allowed for proper diagnosis and treatment of the patient both during relapses and by initiating supportive treatment. The patient’s case allows us to analyze the multi-phase, clinically diverse course of MOGAD and, above all, indicates the need to expand the diagnosis of epilepsy towards demyelinating diseases: determination of anti-MOG and anti-AQP4 antibodies. Full article
Show Figures

Figure 1

13 pages, 1975 KiB  
Article
Novel Automated Chemiluminescent Immunoassay for the Detection of Autoantibodies Against Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders
by Nozomi Yamazaki, Toshiyuki Takahashi, Tatsuro Misu and Yukihiro Nishikawa
Diagnostics 2025, 15(3), 298; https://doi.org/10.3390/diagnostics15030298 - 27 Jan 2025
Viewed by 1416
Abstract
Background/Objectives: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-related neurological disease that primarily affects the optic nerve and spinal cord. According to current international consensus guidelines for NMOSD, confirming the presence of aquaporin-4 immunoglobulin G antibody (AQP4-IgG) is one of the most [...] Read more.
Background/Objectives: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-related neurological disease that primarily affects the optic nerve and spinal cord. According to current international consensus guidelines for NMOSD, confirming the presence of aquaporin-4 immunoglobulin G antibody (AQP4-IgG) is one of the most important diagnostic criteria because AQP4-IgG is a significant diagnostic biomarker of NMOSD. Several assays are currently available for detecting AQP4-IgG, including cell-based assays (CBAs) and enzyme-linked immunosorbent assays (ELISAs). However, each assay has certain disadvantages, including insufficient sensitivity and specificity, the need for sophisticated techniques, and semi-quantitative results. Methods: We developed a fully automated chemiluminescent enzyme immunoassay (CLEIA) to detect AQP4-IgG (AQP4-CLEIA). This assay utilizes the recombinant antigen purified from the newly generated AQP4-M23 stably expressing Chinese hamster ovary cell line and an anti-AQP4 monoclonal antibody as a calibrator. Results: In analytical performance studies, the assay demonstrates good precision and linearity over the entire measurement range. Moreover, this assay showed no high-dose hook effect and interference from endogenous substances. In clinical validation studies, patients with AQP4-IgG positive NMOSD, multiple sclerosis, or myelin oligodendrocyte glycoprotein antibody-associated disorder and healthy individuals were tested. A cutoff value of 10.0 U/mL was determined by receiver operating characteristic curves based on the results of a microscopic live CBA. The sensitivity and specificity for AQP4-IgG-positive NMOSD were 97.0% and 100.0%, respectively, at the cutoff value. Conclusions: The results suggest that AQP4-CLEIA is a convenient automated method for measuring AQP4-IgG titers in hospitals and clinical laboratories, offering an effective alternative to the gold-standard CBA. Full article
(This article belongs to the Special Issue Diagnostic Challenges in Neuroimmunology)
Show Figures

Figure 1

14 pages, 6634 KiB  
Review
Trigeminal Pontine Sign: From Imaging to Diseases Beyond Trigeminal Neuralgia
by Marialuisa Zedde and Rosario Pascarella
Diseases 2024, 12(12), 327; https://doi.org/10.3390/diseases12120327 - 12 Dec 2024
Cited by 1 | Viewed by 2717
Abstract
The so-called trigeminal pontine sign has been described as a marker of different diseases, from multiple sclerosis to herpetic infections. First, it has been proposed as linear hyperintensity in the pons on the Magnetic Resonance Imaging (MRI) of patients with multiple sclerosis and [...] Read more.
The so-called trigeminal pontine sign has been described as a marker of different diseases, from multiple sclerosis to herpetic infections. First, it has been proposed as linear hyperintensity in the pons on the Magnetic Resonance Imaging (MRI) of patients with multiple sclerosis and trigeminal neuralgia. After these descriptions, it has been reported as incidental findings in the same patients and in patients with HSV or VZV infections. In addition, patients with neuromyelitis optica spectrum disorders (NMOSD) have been more rarely described with this neuroradiological sign. In this review, the main anatomical and neuroradiological issues underlying the trigeminal pontine sign are described, together with the limitations of the published studies from the clinical and neuroimaging point of view. Finally, the association with different diseases is detailed. Full article
Show Figures

Figure 1

26 pages, 1528 KiB  
Review
Blood–Brain Barrier Disruption in Neuroimmunological Disease
by Fumitaka Shimizu and Masayuki Nakamori
Int. J. Mol. Sci. 2024, 25(19), 10625; https://doi.org/10.3390/ijms251910625 - 2 Oct 2024
Cited by 14 | Viewed by 5062
Abstract
The blood–brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis [...] Read more.
The blood–brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert–Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage. Full article
(This article belongs to the Special Issue New Advance in Neuroinflammation)
Show Figures

Figure 1

17 pages, 1841 KiB  
Review
Vitamin D in Primary Sjogren’s Syndrome (pSS) and the Identification of Novel Single-Nucleotide Polymorphisms Involved in the Development of pSS-Associated Diseases
by Siarhei A. Dabravolski, Alexey V. Churov, Irina A. Starodubtseva, Dmitry F. Beloyartsev, Tatiana I. Kovyanova, Vasily N. Sukhorukov and Nikolay A. Orekhov
Diagnostics 2024, 14(18), 2035; https://doi.org/10.3390/diagnostics14182035 - 13 Sep 2024
Cited by 4 | Viewed by 2696
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. [...] Read more.
Sjögren’s syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. SS predominantly affects women, with a strong genetic component linked to sex chromosomes. Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with primary SS (pSS), revealing insights into its pathogenesis. The adaptive and innate immune systems are crucial to SS’s development, with viral infections implicated as environmental triggers that exacerbate autoimmune responses in genetically susceptible individuals. Moreover, recent research has highlighted the role of vitamin D in modulating immune responses in pSS patients, suggesting its potential therapeutic implications. In this review, we focus on the recently identified SNPs in genes like OAS1, NUDT15, LINC00243, TNXB, and THBS1, which have been associated with increased risks of developing more severe symptoms and other diseases such as fatigue, lymphoma, neuromyelitis optica spectrum disorder (NMOSD), dry eye syndrome (DES), and adverse drug reactions. Future studies should focus on larger, multi-ethnic cohorts with standardised protocols to validate findings and identify new associations. Integrating genetic testing into clinical practise holds promise for improving SS management and treatment strategies, enabling personalised interventions based on comprehensive genetic profiles. By focusing on specific SNPs, vitamin D, and their implications, future research can lead to more effective and personalised approaches for managing pSS and its complications. Full article
Show Figures

Figure 1

22 pages, 1951 KiB  
Systematic Review
The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis
by Aysa Shaygannejad, Nazanin Rafiei, Saeed Vaheb, Mohammad Yazdan Panah, Vahid Shaygannejad and Omid Mirmosayyeb
Medicina 2024, 60(7), 1050; https://doi.org/10.3390/medicina60071050 - 26 Jun 2024
Cited by 6 | Viewed by 4697
Abstract
There is debate on the role of glial fibrillary acidic protein (GFAP) as a reliable biomarker in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), and its potential to reflect disease progression. This review aimed to investigate the role of GFAP in [...] Read more.
There is debate on the role of glial fibrillary acidic protein (GFAP) as a reliable biomarker in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), and its potential to reflect disease progression. This review aimed to investigate the role of GFAP in MS and NMOSD. A systematic search of electronic databases, including PubMed, Embase, Scopus, and Web of Sciences, was conducted up to 20 December 2023 to identify studies that measured GFAP levels in people with MS (PwMS) and people with NMOSD (PwNMOSD). R software version 4.3.3. with the random-effect model was used to pool the effect size with its 95% confidence interval (CI). Of 4109 studies, 49 studies met our inclusion criteria encompassing 3491 PwMS, 849 PwNMOSD, and 1046 healthy controls (HCs). The analyses indicated that the cerebrospinal fluid level of GFAP (cGFAP) and serum level of GFAP (sGFAP) were significantly higher in PwMS than HCs (SMD = 0.7, 95% CI: 0.54 to 0.86, p < 0.001, I2 = 29%, and SMD = 0.54, 95% CI: 0.1 to 0.99, p = 0.02, I2 = 90%, respectively). The sGFAP was significantly higher in PwNMOSD than in HCs (SMD = 0.9, 95% CI: 0.73 to 1.07, p < 0.001, I2 = 10%). Among PwMS, the Expanded Disability Status Scale (EDSS) exhibited significant correlations with cGFAP (r = 0.43, 95% CI: 0.26 to 0.59, p < 0.001, I2 = 91%) and sGFAP (r = 0.36, 95% CI: 0.23 to 0.49, p < 0.001, I2 = 78%). Regarding that GFAP is increased in MS and NMOSD and has correlations with disease features, it can be a potential biomarker in MS and NMOSD and indicate the disease progression and disability in these disorders. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

13 pages, 268 KiB  
Perspective
Development Perspectives for Curative Technologies in Primary Demyelinating Disorders of the Central Nervous System with Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD) at the Forefront
by János György Pitter, László Nagy, Balázs Nagy and Rok Hren
J. Pers. Med. 2024, 14(6), 599; https://doi.org/10.3390/jpm14060599 - 4 Jun 2024
Cited by 1 | Viewed by 1562
Abstract
Primary demyelinating disorders of the central nervous system (CNS) include multiple sclerosis and the orphan conditions neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein IgG-associated disease (MOGAD). Curative technologies under development aim to selectively block autoimmune reactions against specific autoantigens while preserving [...] Read more.
Primary demyelinating disorders of the central nervous system (CNS) include multiple sclerosis and the orphan conditions neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein IgG-associated disease (MOGAD). Curative technologies under development aim to selectively block autoimmune reactions against specific autoantigens while preserving the responsiveness of the immune system to other antigens. Our analysis focused on target patient selection for such developments, carefully considering the relevant clinical, regulatory, and market-related aspects. We found that the selection of patients with orphan conditions as target populations offers several advantages. Treatments for orphan conditions are associated with limited production capacity, qualify for regulatory incentives, and may require significantly shorter and lower-scale clinical programs. Furthermore, they may meet a higher acceptable cost-effectiveness threshold in order to compensate for the low numbers of patients to be treated. Finally, curative technologies targeting orphan indications could enter less competitive markets with lower risk of generic price erosion and would benefit from additional market protection measures available only for orphan products. These advantages position orphan conditions and subgroups as the most attractive target indications among primary demyelinating disorders of the CNS. The authors believe that after successful proof-of-principle demonstrations in orphan conditions, broader autoimmune patient populations may also benefit from the success of these pioneering developments. Full article
Back to TopTop