Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = neurokinin B receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 11865 KB  
Review
The Involvement of the Peptidergic Systems in Breast Cancer Development
by Manuel L. Sánchez, Prema Robinson, Zal Italia, Tan Hoang, Miguel Muñoz and Rafael Coveñas
Cancers 2025, 17(22), 3662; https://doi.org/10.3390/cancers17223662 - 14 Nov 2025
Viewed by 913
Abstract
The current known data on the involvement of the peptidergic systems in breast cancer progression is overwhelmingly vast. Peptidergic systems are useful tools for imaging, diagnosis, prognosis and treatment of breast cancer. These systems play a crucial role in both basic and clinical [...] Read more.
The current known data on the involvement of the peptidergic systems in breast cancer progression is overwhelmingly vast. Peptidergic systems are useful tools for imaging, diagnosis, prognosis and treatment of breast cancer. These systems play a crucial role in both basic and clinical breast cancer research by enabling the exploration of novel molecular mechanisms, signaling pathways, and the development of effective drug design strategies. Breast cancer cells overexpress peptide receptors; at the same time they are known to interact with peptides that (a) exert an oncogenic action (adrenomedullin 2, endothelin, gastrin-releasing peptide, neurokinin A, neuromedin, neuropeptide Y, neurotensin, substance P, vasoactive intestinal peptide), (b) exert an anticancer action (angiotensin (1–7), ghrelin, peptide YY) or (c) exert dual oncogenic and anticancer effects (adrenomedullin, angiotensin II, bradykinin, corticotropin-releasing factor, β-endorphin, glucagon-like peptide 1, gonadotropin-releasing hormone, kisspeptin, methionine-enkephalin, oxytocin). This indicates that peptides, as well as peptide receptor agonists and antagonists, may serve as antitumor agents due to their diverse actions against breast cancer development, including the inhibition of cell proliferation, migration and invasion, induction of apoptosis, and anti-angiogenesis. Multiple strategies have been developed to combat breast cancer, including peptide receptor silencing; antibodies conjugated to specific signaling proteins; antibodies targeting specific peptide receptors or oncogenic peptides; and the use of peptides or peptide receptor agonists/antagonists loaded with antitumor cargo. Future lines of research are suggested in breast cancer using promising anti-breast-cancer peptide receptor antagonists (HOE-140, exendin (9–39), bosentan, macitentan, PD168,368, CGP71,683A, SR48,692, aprepitant) or agonists (FR190,997, semaglutide, exendin 4, goserelin) mentioned in this review. Peptidergic systems have tremendous anti-breast-cancer clinical potential which must be exploited and developed. Taken together, the available data highlight the enormous promise of translational research into breast cancer and peptidergic systems for the development of effective treatments. A full understanding of the roles played by the peptidergic systems in breast cancer will serve to improve diagnosis and treatment. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies, 2nd Edition)
Show Figures

Figure 1

14 pages, 3820 KB  
Article
The Biological Properties of the FAS and TACR3 Genes and the Association of Single-Nucleotide Polymorphisms with Milk Quality Traits in Gannan Yak
by Tong Wang, Xiaoming Ma, Chaofan Ma, Qinran Yu, Chunnian Liang and Ping Yan
Foods 2025, 14(9), 1575; https://doi.org/10.3390/foods14091575 - 30 Apr 2025
Viewed by 851
Abstract
Fatty acid synthase (FAS) is a fundamental metabolic enzyme that catalyzes the synthesis of endogenous fatty acids; TACR3, also known as tachykinin receptor 3 or NK3R, is an important G-protein-coupled receptor that is primarily responsible for responding to neuropeptides such as [...] Read more.
Fatty acid synthase (FAS) is a fundamental metabolic enzyme that catalyzes the synthesis of endogenous fatty acids; TACR3, also known as tachykinin receptor 3 or NK3R, is an important G-protein-coupled receptor that is primarily responsible for responding to neuropeptides such as neurokinin B (NKB) and plays a crucial role in embryonic development, organ formation, and cell differentiation. This study aimed to explore the association between the single-nucleotide polymorphisms (SNPs) of the FAS and TACR3 genes and the milk quality of Gannan yak and to determine them as potential molecular marker loci for the milk quality of yaks. The genotyping of 162 Gannan yaks was performed using liquid-phase chip technology. Association analyses were conducted between the obtained SNP loci genotypes and milk composition traits, including milk protein, casein, non-fat solids, and acidity. Comparative sequence analysis of two genes (FAS and TACR3) across multiple species revealed that the yak FAS gene exhibited the highest homology with Bos taurus and Bos indicus, while the yak TACR3 gene showed the greatest sequence similarity to Bos taurus. Hardy–Weinberg equilibrium tests were performed on four SNP loci, and the equilibrium indices of the four loci were 0.799, 0.368, 0.689, and 0.948 (p > 0.05), indicating that all of these loci are in Hardy–Weinberg equilibrium state. g.13,276T>C (FAS) was significantly correlated with lactose content traits (p < 0.05); g.74,382C>G (FAS) was significantly correlated with casein, protein, total solids, non-fat solids, and acidity traits (p < 0.05); g.40,529A>G (TACR3) was significantly correlated with protein, non-fat solids, citric acid, and acidity traits (p < 0.05). The influence of g.40,555C>T (TACR3) on these traits did not reach a significant level (p > 0.05). This study suggests that two genes can serve as potential candidate genes affecting the quality of Gannan yak milk, providing reference genes for improving the quality of Gannan yak milk. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

19 pages, 2016 KB  
Article
Effects of Integrated Extracts of Trigonella foenum-graecum and Asparagus racemosus on Hot Flash-like Symptoms in Ovariectomized Rats
by Fusun Erten, Besir Er, Ramazan Ozmen, Muhammed Tokmak, Ebru Gokdere, Cemal Orhan, Abhijeet A. Morde, Muralidhara Padigaru and Kazim Sahin
Antioxidants 2025, 14(3), 355; https://doi.org/10.3390/antiox14030355 - 18 Mar 2025
Cited by 2 | Viewed by 3533
Abstract
Vasomotor symptoms, such as hot flashes (HFs), commonly affect women during menopause, leading to a reduced quality of life. The current study evaluates the combined effect of active components Asparagus racemosus (AR) and Trigonella foenum-graecum (TFG) in a single oral formulation (IAT) for [...] Read more.
Vasomotor symptoms, such as hot flashes (HFs), commonly affect women during menopause, leading to a reduced quality of life. The current study evaluates the combined effect of active components Asparagus racemosus (AR) and Trigonella foenum-graecum (TFG) in a single oral formulation (IAT) for alleviating menopausal symptoms in ovariectomized rats. Following bilateral ovariectomy, the animals were randomly assigned to nine groups: (1) Control, (2) Ovariectomy (OVX), (3) OVX+TA1 (TA: Combination of Trigonella and Asparagus; TFG 30 mg/kg + AR 30 mg/kg), (4) OVX+TA2 (TFG 30 mg/kg + AR 15 mg/kg), (5) OVX+TA3 (TFG 15 mg/kg + AR 30 mg/kg), (6) OVX+TA4 (TFG 40 mg/kg + AR 30 mg/kg), (7) OVX+TA5 (TFG 30 mg/kg + AR 40 mg/kg), (8) OVX+IAT1 (IAT: Integrated Asparagus and Trigonella; TFG+AR integrated extract, 30 mg/kg), and (9) OVX+IAT2 (TFG+AR integrated extract, 60 mg/kg). On the 8th day of treatment, tail and skin temperatures were recorded every 30 min for 24 h. Ovariectomized rats exhibited menopausal symptoms, such as hormonal imbalances and elevated skin temperature. Administration of AR, TFG, and IAT significantly decreased serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and cortisol while increasing estradiol, progesterone, and dopamine (p < 0.0001), effectively alleviating hot flash-like symptoms. Additionally, they mitigated ovariectomy-induced oxidative stress by lowering malondialdehyde (MDA) levels and restoring antioxidant enzyme activity. Ovariectomized rats exhibited increased expression of a proto-oncogene (c-FOS), gonadotropin-releasing hormone (GnRH), Kisspeptin, Neurokinin B (NKB), and Transient receptor potential vanilloid 1 (TRPV1), along with reduced expressing brain-derived neurotrophic factor (BDNF) levels, which were reversed by treatment, especially with the IAT2 combination. The AR and TFG combination, particularly in IAT formulations, showed strong potential in alleviating menopausal symptoms in ovariectomized rats. These findings suggest that the combination of AR and TFG extracts could be a natural alternative for managing postmenopausal symptoms by restoring reproductive hormone levels, regulating lipid profiles, and enhancing antioxidant defense systems. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

12 pages, 522 KB  
Review
A New Hope for Woman with Vasomotor Symptoms: Neurokinin B Antagonists
by Blazej Meczekalski, Anna Kostrzak, Christian Unogu, Stefania Bochynska, Marzena Maciejewska-Jeske, Gregory Bala and Anna Szeliga
J. Clin. Med. 2025, 14(5), 1438; https://doi.org/10.3390/jcm14051438 - 21 Feb 2025
Cited by 4 | Viewed by 6791
Abstract
KNDy (kisspeptine, neurokinin B, dynorphin) neurons, located in the hypothalamus, play a crucial role in the development of vasomotor symptoms (VSM) in menopausal women. Estrogen withdrawal during menopause leads to the hyperactivation of kisspeptin and neurokinin B (NKB) secretion, contributing to the onset [...] Read more.
KNDy (kisspeptine, neurokinin B, dynorphin) neurons, located in the hypothalamus, play a crucial role in the development of vasomotor symptoms (VSM) in menopausal women. Estrogen withdrawal during menopause leads to the hyperactivation of kisspeptin and neurokinin B (NKB) secretion, contributing to the onset of these symptoms. The identification of NKB/neurokinin B receptor (NK3R) signaling as a key mechanism in menopausal hot flashes has driven the development of NK3R antagonists. These antagonists restore the disrupted balance in KNDy neuron activity caused by estrogen deficiency, thereby reducing the frequency and severity of VMS. In 2023, the FDA approved fezolinetant, the first selective NK3R antagonist, for the treatment of moderate to severe VMS associated with menopause. Additionally, elinzanetant, a dual neurokinin-1 and neurokinin-3 receptor antagonist, has demonstrated promising results. The approval application for elinzanetant was supported by positive findings from the OASIS 1, 2, and 3 Phase III clinical studies. The dual antagonism of NK-1 and NK-3 receptors enhances its efficacy by alleviating menopause-related sleep disturbances and modulating peripheral vasodilatation. In this regard, elinzanetant represents a promising non-hormonal treatment that targets the underlying causes of VMS through NK-1 and NK-3 receptor pathways. The development of neurokinin B antagonist for VMS treatment exemplifies the impact of advanced pharmacological research on gynecological endocrinology. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

25 pages, 2438 KB  
Review
Radiotherapy Plus the Neurokinin-1 Receptor Antagonist Aprepitant: A Potent Therapeutic Strategy for the Treatment of Diffuse Intrinsic Pontine Glioma
by Miguel Muñoz and Marisa Rosso
Cancers 2025, 17(3), 520; https://doi.org/10.3390/cancers17030520 - 4 Feb 2025
Cited by 3 | Viewed by 2888
Abstract
Background: Diffuse intrinsic pontine glioma (DIPG) is a devastating childhood brainstem tumor. The median survival of DIPG is 16–24 months independent of the treatment received. Therefore, new therapeutic strategies against DIPG are urgently needed. Substance P (SP) peptide, through the neurokinin neurokinin-1 [...] Read more.
Background: Diffuse intrinsic pontine glioma (DIPG) is a devastating childhood brainstem tumor. The median survival of DIPG is 16–24 months independent of the treatment received. Therefore, new therapeutic strategies against DIPG are urgently needed. Substance P (SP) peptide, through the neurokinin neurokinin-1 receptor (NK-1R), is involved in glioma progression. It induces glioma cell proliferation by activating MAPKs (p38 MAPK, ERK1/2, and JNK), c-Myc, AP-1, and NF-κB and induces antiapoptotic effects via PI3K/Akt/mTOR in glioma cells. SP favors glycogen breakdown that is essential for glycolysis. The SP/NK-1R system also regulates the migration and invasion of glioma cells, stimulates angiogenesis, and triggers inflammation which contributes to glioma progression. Moreover, all glioma cells express NK-1R, and NK-1R is essential for the viability of glioma cells and not of normal cells. In contrast, in glioma, NK-1R antagonists, such as the drug aprepitant, penetrate the brain and reach therapeutic concentrations, thereby inhibiting mitogenesis, inducing apoptosis, and inhibiting the breakdown of glycogen in glioma cells. In addition, they inhibit angiogenesis and exert antimetastatic and anti-inflammatory effects. The combination of radiotherapy with NK-1R antagonists produces radiosensitization and radioneuroprotection, reduces both peritumoral- and radiation-induced inflammation, and also provides antinausea and antivomiting effects. Objective: This review updates the involvement of the SP/NK-1R system in glioma promotion and progression and the potential clinical application of NK-1R antagonist drugs in DIPG therapy. Conclusions: NK-1R plays a crucial role in glioma progression and NK-1R antagonists such as aprepitant could be used in combination with radiotherapy as a potent therapeutic strategy for the treatment of patients with DIPG. Full article
(This article belongs to the Special Issue Outcomes in Glioblastoma Patients: From Diagnosis to Palliation)
Show Figures

Figure 1

41 pages, 6706 KB  
Review
Current Insights in Prolactin Signaling and Ovulatory Function
by Dariusz Szukiewicz
Int. J. Mol. Sci. 2024, 25(4), 1976; https://doi.org/10.3390/ijms25041976 - 6 Feb 2024
Cited by 27 | Viewed by 18562
Abstract
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, [...] Read more.
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic–pituitary–ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic–pituitary–gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 588 KB  
Article
Placental mRNA Expression of Neurokinin B Is Increased in PCOS Pregnancies with Female Offspring
by Georgios K. Markantes, Evangelia Panagodimou, Vasiliki Koika, Irene Mamali, Apostolos Kaponis, George Adonakis and Neoklis A. Georgopoulos
Biomedicines 2024, 12(2), 334; https://doi.org/10.3390/biomedicines12020334 - 1 Feb 2024
Cited by 1 | Viewed by 2258
Abstract
Current research suggests that polycystic ovary syndrome (PCOS) might originate in utero and implicates the placenta in its pathogenesis. Kisspeptin (KISS1) and neurokinin B (NKB) are produced by the placenta in high amounts, and they have been implicated in several pregnancy complications associated [...] Read more.
Current research suggests that polycystic ovary syndrome (PCOS) might originate in utero and implicates the placenta in its pathogenesis. Kisspeptin (KISS1) and neurokinin B (NKB) are produced by the placenta in high amounts, and they have been implicated in several pregnancy complications associated with placental dysfunction. However, their placental expression has not been studied in PCOS. We isolated mRNA after delivery from the placentae of 31 PCOS and 37 control women with term, uncomplicated, singleton pregnancies. The expression of KISS1, NKB, and neurokinin receptors 1, 2, and 3 was analyzed with real-time polymerase chain reaction, using β-actin as the reference gene. Maternal serum and umbilical cord levels of total testosterone, sex hormone-binding globulin (SHBG), free androgen index (FAI), androstenedione, dehydroepiandrosterone sulfate (DHEAS), Anti-Mullerian hormone (AMH), and estradiol were also assessed. NKB placental mRNA expression was higher in PCOS women versus controls in pregnancies with female offspring. NKB expression depended on fetal gender, being higher in pregnancies with male fetuses, regardless of PCOS. NKB was positively correlated with umbilical cord FAI and AMH, and KISS1 was positively correlated with cord testosterone and FAI; there was also a strong positive correlation between NKB and KISS1 expression. Women with PCOS had higher serum AMH and FAI and lower SHBG than controls. Our findings indicate that NKB might be involved in the PCOS-related placental dysfunction and warrant further investigation. Studies assessing the placental expression of NKB should take fetal gender into consideration. Full article
(This article belongs to the Special Issue Molecular Research on Polycystic Ovary Syndrome (PCOS) 2.0)
Show Figures

Figure 1

17 pages, 2512 KB  
Review
Inflammation and Organ Injury the Role of Substance P and Its Receptors
by Zhixing Zhu and Madhav Bhatia
Int. J. Mol. Sci. 2023, 24(7), 6140; https://doi.org/10.3390/ijms24076140 - 24 Mar 2023
Cited by 15 | Viewed by 5708
Abstract
Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide [...] Read more.
Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide with a robust effect on inflammation. The proinflammatory effects of SP are achieved by activating its functional receptors, namely the neurokinin 1 receptor (NK1R) receptor and mas-related G protein-coupled receptors X member 2 (MRGPRX2) and its murine homolog MRGPRB2. Upon activation, the receptors further signal to several cellular signaling pathways involved in the onset, development, and progression of inflammation. Therefore, excessive SP–NK1R or SP–MRGPRX2/B2 signals have been implicated in the pathogenesis of inflammation-associated organ injury. In this review, we summarize our current knowledge of SP and its receptors and the emerging roles of the SP–NK1R system and the SP–MRGPRX2/B2 system in inflammation and injury in multiple organs resulting from different pathologies. We also briefly discuss the prospect of developing a therapeutic strategy for inflammatory organ injury by disrupting the proinflammatory actions of SP via pharmacological intervention. Full article
(This article belongs to the Collection Feature Papers in Molecular Immunology)
Show Figures

Figure 1

63 pages, 12139 KB  
Review
Peptidergic Systems and Cancer: Focus on Tachykinin and Calcitonin/Calcitonin Gene-Related Peptide Families
by Manuel Lisardo Sánchez, Francisco D. Rodríguez and Rafael Coveñas
Cancers 2023, 15(6), 1694; https://doi.org/10.3390/cancers15061694 - 9 Mar 2023
Cited by 13 | Viewed by 6668
Abstract
The roles played by the peptides belonging to the tachykinin (neurokinin A and B) and calcitonin/calcitonin gene-related peptide (adrenomedullin, adrenomedullin 2, amylin, and calcitonin gene-related peptide (CGRP)) peptide families in cancer development are reviewed. The structure and dynamics of the neurokinin (NK)-2, NK-3, [...] Read more.
The roles played by the peptides belonging to the tachykinin (neurokinin A and B) and calcitonin/calcitonin gene-related peptide (adrenomedullin, adrenomedullin 2, amylin, and calcitonin gene-related peptide (CGRP)) peptide families in cancer development are reviewed. The structure and dynamics of the neurokinin (NK)-2, NK-3, and CGRP receptors are studied together with the intracellular signaling pathways in which they are involved. These peptides play an important role in many cancers, such as breast cancer, colorectal cancer, glioma, lung cancer, neuroblastoma, oral squamous cell carcinoma, phaeochromocytoma, leukemia, bladder cancer, endometrial cancer, Ewing sarcoma, gastric cancer, liver cancer, melanoma, osteosarcoma, ovarian cancer, pancreatic cancer, prostate cancer, renal carcinoma, and thyroid cancer. These peptides are involved in tumor cell proliferation, migration, metastasis, angiogenesis, and lymphangiogenesis. Several antitumor therapeutic strategies, including peptide receptor antagonists, are discussed. The main research lines to be developed in the future are mentioned. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Spain)
Show Figures

Figure 1

9 pages, 826 KB  
Review
Neurokinin-1 Receptor Antagonists as a Potential Novel Therapeutic Option for Osteosarcoma Patients
by Prema Robinson, Marisa Rosso and Miguel Muñoz
J. Clin. Med. 2023, 12(6), 2135; https://doi.org/10.3390/jcm12062135 - 9 Mar 2023
Cited by 9 | Viewed by 3488
Abstract
Osteosarcoma is a bone tumor predominantly affecting children and adolescents with high malignant potential. It is a cause of serious public health challenges due to its high morbidity rates and metastatic potential. Metastasis in osteosarcoma may manifest either during treatment of the primary [...] Read more.
Osteosarcoma is a bone tumor predominantly affecting children and adolescents with high malignant potential. It is a cause of serious public health challenges due to its high morbidity rates and metastatic potential. Metastasis in osteosarcoma may manifest either during treatment of the primary tumor, shortly after treatment, or a long time after the end of the treatment. So far, there are no therapeutics that can prevent or treat osteosarcoma metastasis. The peptide substance P (SP) and its high-affinity receptor, Neurokinin-1 (NK-1R), are known to positively correlate with osteosarcoma progression. Osteosarcoma cells overexpress NK-1R. SP is known to elicit the proliferation of osteosarcoma cells and induce angiogenesis and migration, leading to the invasion and metastasis of tumor cells. In contrast, NK-1R antagonists, such as aprepitant, inhibit the proliferation and induce the apoptosis of osteosarcoma cells. Aprepitant is also known to inhibit the migration of osteosarcoma cells, as well as reduce the expression levels and activities of transcriptional regulators of metastasis-related genes such as matrix metalloproteinases (MMP-2 and MMP-9), vascular endothelial growth factor (VEGF), and nuclear factor kappa B (NF-κB). These preceding studies highlighted the antimetastatic role of aprepitant in osteosarcoma Moreover, combination therapy consisting of chemotherapy and NK-1R antagonist increases the chemosensitization of osteosarcoma cells. Interestingly, this combination therapy in vitro and in vivo decreases the severe side-effects of chemotherapy and produces neuroprotection, hepatoprotection, nephroprotection, and cardioprotection. In this review, we provide an update on existing data and suggest the need to repurpose aprepitant for use as an antitumor drug for treatment of osteosarcoma, and they suggest the need for phase I and II clinical trials for assessment of its safety/efficacy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

14 pages, 3581 KB  
Article
Substance P and Glucagon-like Peptide-17-36 Amide Mediate Anorexic Responses to Trichothecene Deoxynivalenol and Its Congeners
by Hui Jia, Zihui Qin, Ben Wei, Xinyi Guo, Huiping Xiao, Huayue Zhang, Zelin Li, Qinghua Wu, Ruibo Zheng and Wenda Wu
Toxins 2022, 14(12), 885; https://doi.org/10.3390/toxins14120885 - 18 Dec 2022
Cited by 5 | Viewed by 2524
Abstract
Type B trichothecenes commonly contaminate cereal grains and include five structurally related congeners: deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), and nivalenol (NIV). These toxins are known to have negative effects on human and animal health, particularly affecting food intake. However, [...] Read more.
Type B trichothecenes commonly contaminate cereal grains and include five structurally related congeners: deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), and nivalenol (NIV). These toxins are known to have negative effects on human and animal health, particularly affecting food intake. However, the pathophysiological basis for anorexic effect is not fully clarified. The purpose of this study is to explore the potential roles of the brain-gut peptides substance P (SP) and glucagon-like peptide-17-36 amide (GLP-1) in anorexic responses induced by type B trichothecenes following both intraperitoneal (IP) and oral administration. SP and GLP-1 were elevated at 1 or 2 h and returned to basal levels at 6 h following exposure to DON and both ADONs. FX induced the production of both brain gut peptides with initial time at 1 or 2 h and duration > 6 h. Similar to FX, exposing IP to NIV caused elevations of SP and GLP-1 at 1 h and lasted more than 6 h, whereas oral exposure to NIV only increased both brain gut peptides at 2 h. The neurokinin-1 receptor (NK-1R) antagonist Emend® dose-dependently attenuated both SP- and DON-induced anorexic responses. Pretreatment with the GLP-1 receptor (GLP-1R) antagonist Exending9-39 induced a dose-dependent attenuation of both GLP-1- and DON-induced anorexic responses. To summarize, the results suggest that both SP and GLP-1 play important roles in anorexia induction by type B trichothecenes. Full article
(This article belongs to the Special Issue Remediation Strategies for Mycotoxin in Animal Feed)
Show Figures

Figure 1

26 pages, 4765 KB  
Article
Deletion of Growth Hormone Secretagogue Receptor in Kisspeptin Neurons in Female Mice Blocks Diet-Induced Obesity
by Kristie Conde, Danielle Kulyk, Allison Vanschaik, Sierra Daisey, Catherine Rojas, Kimberly Wiersielis, Ali Yasrebi, Thomas J. Degroat, Yuxiang Sun and Troy A. Roepke
Biomolecules 2022, 12(10), 1370; https://doi.org/10.3390/biom12101370 - 25 Sep 2022
Cited by 4 | Viewed by 4061
Abstract
The gut peptide, ghrelin, mediates energy homeostasis and reproduction by acting through its receptor, growth hormone secretagogue receptor (GHSR), expressed in hypothalamic neurons in the arcuate (ARC). We have shown 17β-estradiol (E2) increases Ghsr expression in Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons, enhancing sensitivity to [...] Read more.
The gut peptide, ghrelin, mediates energy homeostasis and reproduction by acting through its receptor, growth hormone secretagogue receptor (GHSR), expressed in hypothalamic neurons in the arcuate (ARC). We have shown 17β-estradiol (E2) increases Ghsr expression in Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons, enhancing sensitivity to ghrelin. We hypothesized that E2-induced Ghsr expression augments KNDy sensitivity in a fasting state by elevating ghrelin to disrupt energy expenditure in females. We produced a Kiss1-GHSR knockout to determine the role of GHSR in ARC KNDy neurons. We found that changes in ARC gene expression with estradiol benzoate (EB) treatment were abrogated by the deletion of GHSR and ghrelin abolished these differences. We also observed changes in metabolism and fasting glucose levels. Additionally, knockouts were resistant to body weight gain on a high fat diet (HFD). Behaviorally, we found that knockouts on HFD exhibited reduced anxiety-like behavior. Furthermore, knockouts did not refeed to the same extent as controls after a 24 h fast. Finally, in response to cold stress, knockout females had elevated metabolic parameters compared to controls. These data indicate GHSR in Kiss1 neurons modulate ARC gene expression, metabolism, glucose homeostasis, behavior, and thermoregulation, illustrating a novel mechanism for E2 and ghrelin to control Kiss1 neurons. Full article
Show Figures

Figure 1

20 pages, 3340 KB  
Article
Functional Rescue of Inactivating Mutations of the Human Neurokinin 3 Receptor Using Pharmacological Chaperones
by Ross C. Anderson, Sharika Hanyroup, Yong Bhum Song, Zulfiah Mohamed-Moosa, Iman van den Bout, Alexis C. Schwulst, Ursula B. Kaiser, Robert P. Millar and Claire L. Newton
Int. J. Mol. Sci. 2022, 23(9), 4587; https://doi.org/10.3390/ijms23094587 - 21 Apr 2022
Cited by 5 | Viewed by 2643
Abstract
G protein-coupled receptors (GPCRs) facilitate the majority of signal transductions across cell membranes in humans, with numerous diseases attributed to inactivating GPCR mutations. Many of these mutations result in misfolding during nascent receptor synthesis in the endoplasmic reticulum (ER), resulting in intracellular retention [...] Read more.
G protein-coupled receptors (GPCRs) facilitate the majority of signal transductions across cell membranes in humans, with numerous diseases attributed to inactivating GPCR mutations. Many of these mutations result in misfolding during nascent receptor synthesis in the endoplasmic reticulum (ER), resulting in intracellular retention and degradation. Pharmacological chaperones (PCs) are cell-permeant small molecules that can interact with misfolded receptors in the ER and stabilise/rescue their folding to promote ER exit and trafficking to the cell membrane. The neurokinin 3 receptor (NK3R) plays a pivotal role in the hypothalamic–pituitary–gonadal reproductive axis. We sought to determine whether NK3R missense mutations result in a loss of cell surface receptor expression and, if so, whether a cell-permeant small molecule NK3R antagonist could be repurposed as a PC to restore function to these mutants. Quantitation of cell surface expression levels of seven mutant NK3Rs identified in hypogonadal patients indicated that five had severely impaired cell surface expression. A small molecule NK3R antagonist, M8, increased cell surface expression in four of these five and resulted in post-translational receptor processing in a manner analogous to the wild type. Importantly, there was a significant improvement in receptor activation in response to neurokinin B (NKB) for all four receptors following their rescue with M8. This demonstrates that M8 may have potential for therapeutic development in the treatment of hypogonadal patients harbouring NK3R mutations. The repurposing of existing small molecule GPCR modulators as PCs represents a novel and therapeutically viable option for the treatment of disorders attributed to mutations in GPCRs that cause intracellular retention. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

21 pages, 7075 KB  
Article
Discovery of a New CaMKII-Targeted Synthetic Lethal Therapy against Glioblastoma Stem-like Cells
by Jang Mi Han, Yu Jin Kim and Hye Jin Jung
Cancers 2022, 14(5), 1315; https://doi.org/10.3390/cancers14051315 - 4 Mar 2022
Cited by 16 | Viewed by 6167
Abstract
Glioblastoma stem-like cells (GSCs) drive tumor initiation, cancer invasion, immune evasion, and therapeutic resistance and are thus a key therapeutic target for improving treatment for glioblastoma multiforme (GBM). We previously identified calcium/calmodulin-dependent protein kinase II (CaMKII) as an emerging molecular target for eliminating [...] Read more.
Glioblastoma stem-like cells (GSCs) drive tumor initiation, cancer invasion, immune evasion, and therapeutic resistance and are thus a key therapeutic target for improving treatment for glioblastoma multiforme (GBM). We previously identified calcium/calmodulin-dependent protein kinase II (CaMKII) as an emerging molecular target for eliminating GSCs. In this study, we aim to explore a new CaMKII-targeted synthetic lethal therapy for GSCs. Through high-throughput drug combination screening using CaMKII inhibitors and a bioactive compound library in GSCs, neurokinin 1 receptor (NK1R) inhibitors such as SR 140333 and aprepitant are found to be potential anticancer agents that exhibit chemical synthetic lethal interactions with CaMKII inhibitors, including hydrazinobenzoylcurcumin (HBC), berbamine, and KN93. Combined treatment with NK1R and CaMKII inhibitors markedly suppresses the viability and neurosphere formation of U87MG- and U373MG-derived GSCs. In addition, the combination of HBC and NK1R inhibitors significantly inhibits U87MG GSC tumor growth in a chick embryo chorioallantoic membrane (CAM) model. Furthermore, the synthetic lethal interaction is validated using RNA interference of CaMKIIγ and NK1R. Notably, the synthetic lethal effects in GSCs are associated with the activation of caspase-mediated apoptosis by inducing p53 expression and reactive oxygen species generation, as well as the suppression of stemness marker expression by reducing nuclear factor-kappa B (NF-κB) activity. This follows the downregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling and a decrease in intracellular calcium concentration. Moreover, NK1R affects CaMKIIγ activation. These findings demonstrate that NK1R is a potential synthetic lethal partner of CaMKII that is involved in eradicating GSCs, and they suggest a new CaMKII-targeted combination therapy for treating GBM. Full article
(This article belongs to the Special Issue Recent Advances in Drug Therapy for Glioblastoma)
Show Figures

Figure 1

20 pages, 4180 KB  
Article
Novel Pituitary Actions of TAC4 Gene Products in Teleost
by Xuetao Shi, Cheng Ye, Xiangfeng Qin, Lingling Zhou, Chuanhui Xia, Tianyi Cai, Yunyi Xie, Zhan Yin and Guangfu Hu
Int. J. Mol. Sci. 2021, 22(23), 12893; https://doi.org/10.3390/ijms222312893 - 29 Nov 2021
Cited by 3 | Viewed by 3158
Abstract
Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp [...] Read more.
Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides (namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1 (UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to its weak agonistic actions on NKRs and pituitary genes regulation. Full article
(This article belongs to the Special Issue Hormones and Receptors in Sexual Reproduction)
Show Figures

Figure 1

Back to TopTop