Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (661)

Search Parameters:
Keywords = neurofuzzy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6850 KiB  
Article
Optimizing Energy Consumption in Public Institutions Using AI-Based Load Shifting and Renewable Integration
by Otilia Elena Dragomir, Florin Dragomir and Marius Păun
J. Sens. Actuator Netw. 2025, 14(4), 74; https://doi.org/10.3390/jsan14040074 - 15 Jul 2025
Viewed by 101
Abstract
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption [...] Read more.
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption in public institutions by scheduling electrical appliances during periods of surplus PV energy production. The proposed solution employs a hybrid neuro-fuzzy approach combined with scheduling techniques to intelligently shift loads and maximize the use of locally generated green energy. This enables appliances, particularly schedulable and schedulable non-interruptible ones, to operate during peak PV production hours, thereby minimizing reliance on the national grid and improving overall energy efficiency. This directly reduces the cost of electricity consumption from the national grid. Furthermore, a comprehensive power quality analysis covering variables including harmonic distortion and voltage stability is proposed. The results indicate that while photovoltaic systems, being switching devices, can introduce some harmonic distortion, particularly during peak inverter operation or transient operating regimes, and flicker can exceed standard limits during certain periods, the overall voltage quality is maintained if proper inverter controls and grid parameters are adhered to. The system also demonstrates potential for scalability and integration with energy storage systems for enhanced future performance. Full article
(This article belongs to the Section Network Services and Applications)
Show Figures

Figure 1

34 pages, 1456 KiB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 53
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
18 pages, 1061 KiB  
Article
Design of Clofazimine-Loaded Lipid Nanoparticles Using Smart Pharmaceutical Technology Approaches
by Helena Rouco, Nicola Filippo Virzì, Carolina Menéndez-Rodríguez, Carmen Potel, Patricia Diaz-Rodriguez and Mariana Landin
Pharmaceutics 2025, 17(7), 873; https://doi.org/10.3390/pharmaceutics17070873 - 2 Jul 2025
Viewed by 338
Abstract
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the [...] Read more.
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the development of nanoparticle-based formulations is challenging. In the present work, a combination of smart pharmaceutical technology approaches was proposed to develop CFZ-loaded NLCs, taking advantage of previous knowledge on NLCs screening. Methods: A design space previously established using Artificial Intelligence (AI) tools was applied to develop CFZ-loaded NLC formulations. After formulation characterization, Neurofuzzy Logic (NFL) and in silico docking simulations were employed to enhance the understanding of lipid nanocarriers. Then, the performance of formulations designed following NFL guidelines was characterized in terms of biocompatibility, using murine fibroblasts, and antimicrobial activity against several strains of Staphylococcus aureus. Results: The followed approach enabled CFZ-loaded NLC formulations with optimal properties, including small size and high antimicrobial payload. NFL was useful to investigate the existing interactions between NLC components and homogenization conditions, that influence CFZ-loaded NLCs’ final properties. Also, in silico docking simulations were successfully applied to examine interactions and affinity between the drug and the lipid matrix components. Finally, the designed CFZ-loaded formulations demonstrated suitable biocompatibility, together with antimicrobial activity. Conclusions: The implementation of smart strategies during nanoparticle-based therapeutics development, such as those described in this manuscript, would enable the more efficient design of new systems for suitable antimicrobial delivery. Full article
Show Figures

Figure 1

40 pages, 3694 KiB  
Article
AI-Enhanced MPPT Control for Grid-Connected Photovoltaic Systems Using ANFIS-PSO Optimization
by Mahmood Yaseen Mohammed Aldulaimi and Mesut Çevik
Electronics 2025, 14(13), 2649; https://doi.org/10.3390/electronics14132649 - 30 Jun 2025
Viewed by 386
Abstract
This paper presents an adaptive Maximum Power Point Tracking (MPPT) strategy for grid-connected photovoltaic (PV) systems that uses an Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized by Particle Swarm Optimization (PSO) to enhance energy extraction efficiency under diverse environmental conditions. The proposed ANFIS-PSO-based MPPT [...] Read more.
This paper presents an adaptive Maximum Power Point Tracking (MPPT) strategy for grid-connected photovoltaic (PV) systems that uses an Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized by Particle Swarm Optimization (PSO) to enhance energy extraction efficiency under diverse environmental conditions. The proposed ANFIS-PSO-based MPPT controller performs dynamic adjustment Pulse Width Modulation (PWM) switching to minimize Total Harmonic Distortion (THD); this will ensure rapid convergence to the maximum power point (MPP). Unlike conventional Perturb and Observe (P&O) and Incremental Conductance (INC) methods, which struggle with tracking delays and local maxima in partial shading scenarios, the proposed approach efficiently identifies the Global Maximum Power Point (GMPP), improving energy harvesting capabilities. Simulation results in MATLAB/Simulink R2023a demonstrate that under stable irradiance conditions (1000 W/m2, 25 °C), the controller was able to achieve an MPPT efficiency of 99.2%, with THD reduced to 2.1%, ensuring grid compliance with IEEE 519 standards. In dynamic irradiance conditions, where sunlight varies linearly between 200 W/m2 and 1000 W/m2, the controller maintains an MPPT efficiency of 98.7%, with a response time of less than 200 ms, outperforming traditional MPPT algorithms. In the partial shading case, the proposed method effectively avoids local power maxima and successfully tracks the Global Maximum Power Point (GMPP), resulting in a power output of 138 W. In contrast, conventional techniques such as P&O and INC typically fail to escape local maxima under similar conditions, leading to significantly lower power output, often falling well below the true GMPP. This performance disparity underscores the superior tracking capability of the proposed ANFIS-PSO approach in complex irradiance scenarios, where traditional algorithms exhibit substantial energy loss due to their limited global search behavior. The novelty of this work lies in the integration of ANFIS with PSO optimization, enabling an intelligent self-adaptive MPPT strategy that enhances both tracking speed and accuracy while maintaining low computational complexity. This hybrid approach ensures real-time adaptation to environmental fluctuations, making it an optimal solution for grid-connected PV systems requiring high power quality and stability. The proposed controller significantly improves energy harvesting efficiency, minimizes grid disturbances, and enhances overall system robustness, demonstrating its potential for next-generation smart PV systems. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

42 pages, 5637 KiB  
Review
Research Progress on Process Optimization of Metal Materials in Wire Electrical Discharge Machining
by Xinfeng Zhao, Binghui Dong, Shengwen Dong and Wuyi Ming
Metals 2025, 15(7), 706; https://doi.org/10.3390/met15070706 - 25 Jun 2025
Viewed by 473
Abstract
Wire electrical discharge machining (WEDM), as a significant branch of non-traditional machining technologies, is widely applied in fields such as mold manufacturing and aerospace due to its high-precision machining capabilities for hard and complex materials. This paper systematically reviews the research progress in [...] Read more.
Wire electrical discharge machining (WEDM), as a significant branch of non-traditional machining technologies, is widely applied in fields such as mold manufacturing and aerospace due to its high-precision machining capabilities for hard and complex materials. This paper systematically reviews the research progress in WEDM process optimization from two main perspectives: traditional optimization methods and artificial intelligence (AI) techniques. Firstly, it discusses in detail the applications and limitations of traditional optimization methods—such as statistical approaches (Taguchi method and response surface methodology), Adaptive Neuro-Fuzzy Inference Systems, and regression analysis—in parameter control, surface quality improvement, and material removal-rate optimization for cutting metal materials in WEDM. Subsequently, this paper reviews AI-based approaches, traditional machine-learning methods (e.g., neural networks, support vector machines, and random forests), and deep-learning models (e.g., convolutional neural networks and deep neural networks) in aspects such as state recognition, process prediction, multi-objective optimization, and intelligent control. The review systematically compares the advantages and disadvantages of traditional methods and AI models in terms of nonlinear modeling capabilities, adaptability, and generalization. It highlights that the integration of AI by optimization algorithms (such as Genetic Algorithms, particle swarm optimization, and manta ray foraging optimization) offers an effective path toward the intelligent evolution of WEDM processes. Finally, this investigation looks ahead to the key application scenarios and development trends of AI techniques in the WEDM field for cutting metal materials. Full article
Show Figures

Figure 1

23 pages, 3811 KiB  
Article
Impact of Acidic Pretreatment on Biomethane Yield from Xyris capensis: Experimental and In-Depth Data-Driven Insight
by Kehinde O. Olatunji, Oluwatobi Adeleke, Tien-Chien Jen and Daniel M. Madyira
Processes 2025, 13(7), 1997; https://doi.org/10.3390/pr13071997 - 24 Jun 2025
Viewed by 283
Abstract
This study presents an experimental and comprehensive data-driven framework to gain deeper insights into the effect of acidic pretreatment in enhancing the biomethane yield of Xyris capensis. The experimental workflow involves subjecting the Xyris capensis to different concentrations of HCl, exposure times, [...] Read more.
This study presents an experimental and comprehensive data-driven framework to gain deeper insights into the effect of acidic pretreatment in enhancing the biomethane yield of Xyris capensis. The experimental workflow involves subjecting the Xyris capensis to different concentrations of HCl, exposure times, and digestion retention time in mesophilic anaerobic conditions. Key insights were gained from the experimental dataset through correlation mapping, feature importance assessment (FIA) using the Gini importance (GI) metric of the decision tree regressor, dimensionality reduction using Principal Component Analysis (PCA), and operational cluster analysis using k-means clustering. Furthermore, different clustering techniques were tested with an Adaptive Neuro-Fuzzy Inference System (ANFIS) tuned with particle swarm optimization (ANFIS-PSO) for biomethane yield prediction. The experimental results showed that HCl pretreatment increased the biomethane yield by 62–150% compared to the untreated substrate. The correlation analysis and FIA further revealed exposure time and acid concentration as the dominant variables driving biomethane production, with GI values of 0.5788 and 0.3771, respectively. The PCA reduced the complexity of the digestion parameters by capturing over 80% of the variance in the principal components. Three distinct operational clusters, which are influenced by the pretreatment condition and digestion set-up, were identified by the k-means cluster analysis. In testing, a Gaussian-based Grid-Partitioning (GP)-clustered ANFIS-PSO model outperformed others with RMSE, MAE, and MAPE values of 5.3783, 3.1584, and 10.126, respectively. This study provides a robust framework of experimental and computational data-driven methods for optimizing the biomethane production, thus contributing significantly to sustainable and eco-friendly energy alternatives. Full article
(This article belongs to the Special Issue Biogas Technologies: Converting Waste to Energy)
Show Figures

Figure 1

19 pages, 5924 KiB  
Article
Development of a Secured IoT-Based Flood Monitoring and Forecasting System Using Genetic-Algorithm-Based Neuro-Fuzzy Network
by Hero Rafael Castillo Arante, Edwin Sybingco, Maria Antonette Roque, Leonard Ambata, Alvin Chua and Alvin Neil Gutierrez
Sensors 2025, 25(13), 3885; https://doi.org/10.3390/s25133885 - 22 Jun 2025
Viewed by 603
Abstract
The paper aims to provide a flood prediction system in the Philippines to increase flood awareness, which may help reduce property damage and save lives. Real-time flood status can significantly increase community awareness and preparedness. A flood model will simulate the flood level [...] Read more.
The paper aims to provide a flood prediction system in the Philippines to increase flood awareness, which may help reduce property damage and save lives. Real-time flood status can significantly increase community awareness and preparedness. A flood model will simulate the flood level with secured data flow from the sensor to the cloud. The algorithms embedded in the flood predicting model include fuzzy logic, LSTM neural network, and genetic algorithm. The project used the Infineon security module (Infineon Technologies Philippines Inc., Metro Manila, Philippines) to create a secure connection from the setup to the AWS. All data transmitted were encrypted when being sent to AWS IoT Core, Timestream, and Grafana. After training and testing, the neuro-fuzzy LSTM network with genetic algorithm solution showed improved flood prediction accuracy of 92.91% compared to the ADAM solver that predicts every 2 h using an 0.02 initial learning rate, 1000 LSTM hidden layers, and 1000 epochs. The best solution predicts a flood every 3 h using an ADAM solver, a 0.01 initial learning rate, and 244 LSTM hidden layers for 158 epochs. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

19 pages, 3584 KiB  
Article
Adaptive Neuro-Fuzzy Optimization of Reservoir Operations Under Climate Variability in the Chao Phraya River Basin
by Luksanaree Maneechot, Jackson Hian-Wui Chang, Kai He, Maochuan Hu, Wan Abd Al Qadr Imad Wan-Mohtar, Zul Ilham, Carlos García Castro and Yong Jie Wong
Water 2025, 17(12), 1740; https://doi.org/10.3390/w17121740 - 9 Jun 2025
Viewed by 422
Abstract
Reservoir operations play a pivotal role in shaping the flow regime of the Chao Phraya River Basin (CPRB), where two major reservoirs exert substantial hydrological influence. Despite ongoing efforts to manage water resources effectively, current operational strategies often lack the adaptability required to [...] Read more.
Reservoir operations play a pivotal role in shaping the flow regime of the Chao Phraya River Basin (CPRB), where two major reservoirs exert substantial hydrological influence. Despite ongoing efforts to manage water resources effectively, current operational strategies often lack the adaptability required to address the compounded uncertainties of climate change and increasing water demands. This research addresses this critical gap by developing an optimization model for reservoir operation that explicitly incorporates climate variability. An Adaptive Neuro-Fuzzy Inference System (ANFIS) was employed using four fundamental inputs: reservoir inflow, storage, rainfall, and water demands. Daily resolution data from 2000 to 2012 were used, with 2005–2012 selected for training due to the inclusion of multiple extreme hydrological events, including the 2011 flood, which enriched the model’s learning capability. The period 2000–2004 was reserved for testing to independently assess model generalizability. Eight types of membership functions (MFs) were tested to determine the most suitable configuration, with the trapezoidal MF selected for its favorable performance. The optimized models achieved Nash-Sutcliffe efficiency (NSE) values of 0.43 and 0.47, R2 values of 0.59 and 0.50, and RMSE values of 77.64 and 89.32 for Bhumibol and Sirikit Dams, respectively. The model enables the evaluation of both dam operations and climate change impacts on downstream discharges. Key findings highlight the importance of adaptive reservoir management by identifying optimal water release timings and corresponding daily release-storage ratios. The proposed approach contributes a novel, data-driven framework that enhances decision-making for integrated water resources management under changing climatic conditions. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 3996 KiB  
Article
Global Maximum Power Point Tracking of Photovoltaic Systems Using Artificial Intelligence
by Rukhsar, Aidha Muhammad Ajmal and Yongheng Yang
Energies 2025, 18(12), 3036; https://doi.org/10.3390/en18123036 - 8 Jun 2025
Viewed by 437
Abstract
Recently, artificial intelligence (AI) has become a promising solution to the optimization of the energy harvesting and performance of photovoltaic (PV) systems. Traditional maximum power point tracking (MPPT) algorithms have several drawbacks on tracking the global maximum power point (GMPP) under partial shading [...] Read more.
Recently, artificial intelligence (AI) has become a promising solution to the optimization of the energy harvesting and performance of photovoltaic (PV) systems. Traditional maximum power point tracking (MPPT) algorithms have several drawbacks on tracking the global maximum power point (GMPP) under partial shading conditions (PSCs). To track the GMPP, AI enabled methods stand out over other traditional solutions in terms of faster tracking dynamics, lesser oscillation, higher efficiency. However, such AI-based MPPT methods differ significantly in various applications, and thus, a full picture of AI-based MPPT methods is of interest to further optimize the PV energy harvesting. In this paper, various AI-based global maximum power point tracking (GMPPT) techniques are then implemented and critically compared by highlighting the advantages and disadvantages of each technique under dynamic weather conditions. The comparison demonstrates that the hybrid AI techniques are more reliable, which offer higher efficiency and better dynamics to handle PSCs. According to the benchmarking, a modified particle swarm optimization (PSO) GMPPT algorithm is proposed, and the experimental results validate its ability to achieve GMPPT with faster dynamics and higher efficiency. This paper is intended to motivate engineers and researchers by offering valuable insights for the selection and implementation of GMPPT techniques and to explore the AI techniques to enhance the efficiency and reliability of PV systems by providing fresh perspectives on optimal AI-based GMPPT techniques. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

22 pages, 1657 KiB  
Article
Wind Power Prediction Using a Dynamic Neuro-Fuzzy Model
by George Kandilogiannakis, Paris Mastorocostas, Athanasios Voulodimos, Constantinos Hilas and Dimitrios Varsamis
Electronics 2025, 14(12), 2326; https://doi.org/10.3390/electronics14122326 - 6 Jun 2025
Viewed by 309
Abstract
A Dynamic Neuro-fuzzy Model (Dynamic Neuro-fuzzy Wind Predictor, DNFWP) is proposed for wind power prediction. The fuzzy rules in DNFWP consist of a typical antecedent part with static inputs, while the consequent part is a small three-layer neural network, incorporating unit feedback connections [...] Read more.
A Dynamic Neuro-fuzzy Model (Dynamic Neuro-fuzzy Wind Predictor, DNFWP) is proposed for wind power prediction. The fuzzy rules in DNFWP consist of a typical antecedent part with static inputs, while the consequent part is a small three-layer neural network, incorporating unit feedback connections at the outputs of the neurons of the hidden layer. The inclusion of internal feedback targets to capture the intrinsic temporal relations of the dataset, while maintaining the local modeling approach of traditional fuzzy models. Each rule in DNFWP represents a local model, and the fuzzy rules operate cooperatively through the defuzzification process. The fuzzy rule base is extracted employing the Fuzzy C-means clustering algorithm, and the consequent neural networks’ weights are tuned by the use of Dynamic Resilient Propagation. Two cases with datasets of different volumes are tested and the performance of DNFWP is very promising, according to the results attained using a series of metrics like Root Mean Squared Error, Mean Absolute Error, and the r-squared statistic. The dynamic nature of the predictor allows it to operate effectively with a single input, thus rendering a feature selection phase unnecessary. DNFWP is compared to Machine Learning-based and Deep Learning-based counterparts, such that its prediction capabilities along with its reduced parametric complexity are highlighted. Full article
Show Figures

Figure 1

28 pages, 2541 KiB  
Article
Photovoltaic Farm Power Generation Forecast Using Photovoltaic Battery Model with Machine Learning Capabilities
by Agboola Benjamin Alao, Olatunji Matthew Adeyanju, Manohar Chamana, Stephen Bayne and Argenis Bilbao
Solar 2025, 5(2), 26; https://doi.org/10.3390/solar5020026 - 6 Jun 2025
Viewed by 439
Abstract
This study presents a machine learning-based photovoltaic (PV) model for energy management and planning in a microgrid with a battery system. Microgrids integrating PV face challenges such as solar irradiance variability, temperature fluctuations, and intermittent generation, which impact grid stability and battery storage [...] Read more.
This study presents a machine learning-based photovoltaic (PV) model for energy management and planning in a microgrid with a battery system. Microgrids integrating PV face challenges such as solar irradiance variability, temperature fluctuations, and intermittent generation, which impact grid stability and battery storage efficiency. Existing models often lack predictive accuracy, computational efficiency, and adaptability to changing environmental conditions. To address these limitations, the proposed model integrates an Adaptive Neuro-Fuzzy Inference System (ANFIS) with a multi-input multi-output (MIMO) prediction algorithm, utilizing historical temperature and irradiance data for accurate and efficient forecasting. Simulation results demonstrate high prediction accuracies of 95.10% for temperature and 98.06% for irradiance on dataset-1, significantly reducing computational demands and outperforming conventional prediction techniques. The model further uses ANFIS outputs to estimate PV generation and optimize battery state of charge (SoC), achieving a consistent minimal SoC reduction of about 0.88% (from 80% to 79.12%) over four different battery types over a seven-day charge–discharge cycle, providing up to 11 h of battery autonomy under specified load conditions. Further validation with four other distinct datasets confirms the ANFIS network’s robustness and superior ability to handle complex data variations with consistent accuracy, making it a valuable tool for improving microgrid stability, energy storage utilization, and overall system reliability. Overall, ANFIS outperforms other models (like curve fittings, ANN, Stacked-LSTM, RF, XGBoost, GBoostM, Ensemble, LGBoost, CatBoost, CNN-LSTM, and MOSMA-SVM) with an average accuracy of 98.65%, and a 0.45 RMSE value on temperature predictions, while maintaining 98.18% accuracy, and a 31.98 RMSE value on irradiance predictions across all five datasets. The lowest average computational time of 17.99s was achieved with the ANFIS model across all the datasets compared to other models. Full article
Show Figures

Figure 1

21 pages, 1493 KiB  
Article
An Assistive System for Thermal Power Plant Management
by Aleksa Stojic, Goran Kvascev and Zeljko Djurovic
Energies 2025, 18(11), 2977; https://doi.org/10.3390/en18112977 - 5 Jun 2025
Viewed by 345
Abstract
The estimation of available active power in coal-fired thermal power plant units involves considerable complexity and remains a critical task for plant operators. To avoid compromising system stability, operators often operate the thermal unit below its full capacity. To address this issue, the [...] Read more.
The estimation of available active power in coal-fired thermal power plant units involves considerable complexity and remains a critical task for plant operators. To avoid compromising system stability, operators often operate the thermal unit below its full capacity. To address this issue, the aim of this paper is to facilitate the process of estimating the maximum active electrical power by applying an assistive system based on ANFIS (Adaptive Neuro-Fuzzy Inference System), a method that combines the strengths of neural networks and fuzzy logic. Since the generated electric energy is directly linked to the amount of thermal energy produced, the analysis is focused on the boiler combustion process. It has been shown that the key factors in this process are the coal mills and their achievable capacity, as well as the calorific value of coal. Therefore, the proposed assistive system is based on the estimation of the available capacity of each active mill, which is then combined with the estimated calorific value of the coal to determine the achievable active electrical power of the unit. The conducted analysis and experiments confirm the validity of this approach. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

19 pages, 1865 KiB  
Article
Modeling Soil Temperature with Fuzzy Logic and Supervised Learning Methods
by Bilal Cemek, Yunus Kültürel, Emirhan Cemek, Erdem Küçüktopçu and Halis Simsek
Appl. Sci. 2025, 15(11), 6319; https://doi.org/10.3390/app15116319 - 4 Jun 2025
Viewed by 472
Abstract
Soil temperature is a critical environmental factor that affects plant development, physiological processes, and overall productivity. This study compares two modeling approaches for predicting soil temperature at various depths: (i) fuzzy logic-based systems, including the Mamdani fuzzy inference system (MFIS) and the adaptive [...] Read more.
Soil temperature is a critical environmental factor that affects plant development, physiological processes, and overall productivity. This study compares two modeling approaches for predicting soil temperature at various depths: (i) fuzzy logic-based systems, including the Mamdani fuzzy inference system (MFIS) and the adaptive neuro-fuzzy inference system (ANFIS); (ii) supervised machine learning algorithms, such as multilayer perceptron (MLP), support vector regression (SVR), random forest (RF), extreme gradient boosting (XGB), and k-nearest neighbors (KNN), along with multiple Linear regression (MLR) as a statistical benchmark. Soil temperature data were collected from Tokat, Türkiye, between 2016 and 2024 at depths of 5, 10, 20, 50, and 100 cm. The dataset was split into training (2016–2021) and testing (2022–2024) periods. Performance was evaluated using the root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2). The ANFIS achieved the best prediction accuracy (MAE = 1.46 °C, RMSE = 1.89 °C, R2 = 0.95), followed by RF, XGB, MLP, KNN, SVR, MLR, and MFIS. This study underscores the potential of integrating machine learning and fuzzy logic techniques for more accurate soil temperature modeling, contributing to precision agriculture and better resource management. Full article
Show Figures

Figure 1

17 pages, 2681 KiB  
Article
Ensemble Learning-Based Soft Computing Approach for Future Precipitation Analysis
by Shiu-Shin Lin, Kai-Yang Zhu, Chen-Yu Wang, Chou-Ping Yang and Ming-Yi Liu
Atmosphere 2025, 16(6), 669; https://doi.org/10.3390/atmos16060669 - 1 Jun 2025
Viewed by 319
Abstract
This study integrated the strengths of ensemble learning and soft computing to develop a future regional rainfall model for evaluating the complex characteristics of island precipitation. Soft computing uses the well-developed adaptive neuro-fuzzy inference system, which has been successfully applied in atmospheric hydrology [...] Read more.
This study integrated the strengths of ensemble learning and soft computing to develop a future regional rainfall model for evaluating the complex characteristics of island precipitation. Soft computing uses the well-developed adaptive neuro-fuzzy inference system, which has been successfully applied in atmospheric hydrology and combines the features of neural networks and fuzzy logic. This combination enables artificial intelligence (AI) to effectively represent reasoning derived from complex data and expert experience. Due to the multiple atmospheric and hydrological factors that influence rainfall, the nonlinear interrelations among them are highly intricate. Nonlinear principal component analysis can extract nonlinear features from the data, reduce dimensionality, and minimize the adverse effects of data noise and excessive input factors on soft computing, which may otherwise result in poor model performance. Ultimately, ensemble learning enhances prediction accuracy and reduces uncertainty. This study used Tamsui and Kaohsiung in Taiwan as case study locations. Historical monthly rainfall data (January 1950 to December 2005) from Tamsui Station and Kaohsiung Station of the Central Weather Administration, along with historical and varied emission scenario data (RCP 4.5 and RCP 8.5) from three AR5 GCM models (ACCESS 1.0, CSIRO-MK3.6.0, MRI-CGCM3), were used to evaluate future regional rainfall trends and uncertainties through the method proposed in this study. The research findings indicate the following: (1) Ensemble learning results demonstrate that all examined general circulation models effectively simulate historical rainfall trends. (2) The average rainfall trends under the RCP 4.5 emission scenario are generally consistent with historical rainfall trends. (3) The exceedance probabilities of future rainfall during the mid-term (2061–2080) and long-term (2081–2100) suggest that Kaohsiung may experience precipitation events with higher rainfall than historical data during dry seasons (October to April of next year), while Tamsui Station may exhibit greater variability in terms of exceedance probabilities. (4) Under both the RCP 4.5 and RCP 8.5 emission scenarios, the percentage changes in future rainfall variability at Kaohsiung Station during dry seasons are higher than those during wet seasons (May to September), indicating an increased risk of extreme precipitation events during dry seasons. Full article
(This article belongs to the Special Issue The Hydrologic Cycle in a Changing Climate (2nd Edition))
Show Figures

Figure 1

30 pages, 6996 KiB  
Article
Time-Series Prediction of Failures in an Industrial Assembly Line Using Artificial Learning
by Mert Can Sen and Mahmut Alkan
Appl. Sci. 2025, 15(11), 5984; https://doi.org/10.3390/app15115984 - 26 May 2025
Viewed by 378
Abstract
This study evaluates the efficacy of six artificial learning (AL) models—nonlinear autoregressive (NAR), long short-term memory (LSTM), adaptive neuro-fuzzy inference system (ANFIS), gated recurrent unit (GRU), multilayer perceptron (MLP), and CNN-RNN hybrid networks—for time-series data for failure prediction in aerospace assembly lines. The [...] Read more.
This study evaluates the efficacy of six artificial learning (AL) models—nonlinear autoregressive (NAR), long short-term memory (LSTM), adaptive neuro-fuzzy inference system (ANFIS), gated recurrent unit (GRU), multilayer perceptron (MLP), and CNN-RNN hybrid networks—for time-series data for failure prediction in aerospace assembly lines. The data consist of 45,654 records of configurations of failure. The models are trained to predict failures and assessed via error metrics (RMSE, MAE, MAPE), residual analysis, variance analysis, and computational efficiency. The results indicate that NAR and MLP models, respectively, achieve the lowest residuals (clustered near zero) and minimal variance, demonstrating robust calibration and stability. MLP exhibits strong accuracy (MAE = 2.122, MAPE = 0.876%, RMSE = 1.418, and ME = 1.145) but higher residual variability, while LSTM and CNN-RNN show sensitivity to data noise and computational inefficiency. ANFIS balances interpretability and performance but requires extensive training iterations. The study underscores NAR as optimal for precision-critical aerospace applications, where error minimisation and generalisability are paramount. However, the reliance on a single failure-related variable “configuration” and exclusion of exogenous factors may constrain holistic failure prediction. These findings advance predictive maintenance strategies in high-stakes manufacturing environments with future work integrating multivariable datasets and domain-specific constraints. Full article
Show Figures

Graphical abstract

Back to TopTop