Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,767)

Search Parameters:
Keywords = network delay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1259 KiB  
Article
A Novel Multi-Agent-Based Approach for Train Rescheduling in Large-Scale Railway Networks
by Jin Liu, Lei Chen, Zhongbei Tian, Ning Zhao and Clive Roberts
Appl. Sci. 2025, 15(14), 7996; https://doi.org/10.3390/app15147996 (registering DOI) - 17 Jul 2025
Abstract
Real-time train rescheduling is a widely used strategy to minimize knock-on delays in railway networks. While recent research has introduced intelligent solutions to railway traffic management, the tight interdependence of train timetables and the intrinsic complexity of railway networks have hindered the scalability [...] Read more.
Real-time train rescheduling is a widely used strategy to minimize knock-on delays in railway networks. While recent research has introduced intelligent solutions to railway traffic management, the tight interdependence of train timetables and the intrinsic complexity of railway networks have hindered the scalability of these approaches to large-scale systems. This paper proposes a multi-agent system (MAS) that addresses these challenges by decomposing the network into single-junction levels, significantly reducing the search space for real-time rescheduling. The MAS employs a Condorcet voting-based collaborative approach to ensure global feasibility and prevent overly localized optimization by individual junction agents. This decentralized approach enhances both the quality and scalability of train rescheduling solutions. We tested the MAS on a railway network in the UK and compared its performance with the First-Come-First-Served (FCFS) and Timetable Order Enforced (TTOE) routing methods. The computational results show that the MAS significantly outperforms FCFS and TTOE in the tested scenarios, yielding up to a 34.11% increase in network capacity as measured by the defined objective function, thus improving network line capacity. Full article
Show Figures

Figure 1

18 pages, 4603 KiB  
Article
Genome-Wide Identification and Analysis of the CCT Gene Family Contributing to Photoperiodic Flowering in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
by Wei Fu, Xinyu Jia, Shanyu Li, Yang Zhou, Xinjie Zhang, Lisi Jiang and Lin Hao
Horticulturae 2025, 11(7), 848; https://doi.org/10.3390/horticulturae11070848 - 17 Jul 2025
Abstract
Photoperiod sensitivity significantly affects the reproductive process of plants. The CONSTANS, CONSTANS-LIKE, and TOC1 (CCT) genes play pivotal roles in photoperiod sensitivity and regulating flowering time. However, the function of the CCT gene in regulating flowering varies among different species. [...] Read more.
Photoperiod sensitivity significantly affects the reproductive process of plants. The CONSTANS, CONSTANS-LIKE, and TOC1 (CCT) genes play pivotal roles in photoperiod sensitivity and regulating flowering time. However, the function of the CCT gene in regulating flowering varies among different species. Further research is needed to determine whether it promotes or delays flowering under long-day (LD) or short-day (SD) conditions. CCT MOTIF FAMILY (CMF) belongs to one of the three subfamilies of the CCT gene and has been proven to be involved in the regulation of circadian rhythms and flowering time in cereal crops. In this study, 60 CCT genes in Chinese cabbage were genome-wide identified, and chromosomal localization, gene duplication events, gene structure, conserved domains, co-expression networks, and phylogenetic tree were analyzed by bioinformatics methods. The specific expression patterns of the BrCMF gene in different tissues, as well as the transcriptome and RT-qPCR results under different photoperiodic conditions, were further analyzed. The results showed that BrCMF11 was significantly upregulated in ebm5 under LD conditions, suggesting that BrCMF11 promoted flowering under LD conditions in Chinese cabbage. These findings revealed the function of the BrCCT gene family in photoperiod flowering regulation and provided a prominent theoretical foundation for molecular breeding in Chinese cabbage. Full article
(This article belongs to the Special Issue Optimized Light Management in Controlled-Environment Horticulture)
Show Figures

Figure 1

16 pages, 995 KiB  
Article
An Upper Partial Moment Framework for Pathfinding Problem Under Travel Time Uncertainty
by Xu Zhang and Mei Chen
Systems 2025, 13(7), 600; https://doi.org/10.3390/systems13070600 - 17 Jul 2025
Abstract
Route planning under uncertain traffic conditions requires accounting for not only expected travel times but also the risk of late arrivals. This study proposes a mean-upper partial moment (MUPM) framework for pathfinding that explicitly considers travel time unreliability. The framework incorporates a benchmark [...] Read more.
Route planning under uncertain traffic conditions requires accounting for not only expected travel times but also the risk of late arrivals. This study proposes a mean-upper partial moment (MUPM) framework for pathfinding that explicitly considers travel time unreliability. The framework incorporates a benchmark travel time to measure the upper partial moment (UPM), capturing both the probability and severity of delays. By adjusting a risk parameter (θ), the model reflects different traveler risk preferences and unifies several existing reliability measures, including on-time arrival probability, late arrival penalty, and semi-variance. A bi-objective model is formulated to simultaneously minimize mean travel time and UPM. Theoretical analysis shows that the MUPM framework is consistent with the expected utility theory (EUT) and stochastic dominance theory (SDT), providing a behavioral foundation for the model. To efficiently solve the model, an SDT-based label-correcting algorithm is adapted, with a pre-screening step to reduce unnecessary pairwise path comparisons. Numerical experiments using GPS probe vehicle data from Louisville, Kentucky, USA, demonstrate that varying θ values lead to different non-dominated paths. Lower θ values emphasize frequent small delays but may overlook excessive delays, while higher θ values effectively capture the tail risk, aligning with the behavior of risk-averse travelers. The MUPM framework provides a flexible, behaviorally grounded, and computationally scalable approach to pathfinding under uncertainty. It holds strong potential for applications in traveler information systems, transportation planning, and network resilience analysis. Full article
(This article belongs to the Special Issue Data-Driven Urban Mobility Modeling)
Show Figures

Figure 1

25 pages, 2870 KiB  
Article
Performance Evaluation and QoS Optimization of Routing Protocols in Vehicular Communication Networks Under Delay-Sensitive Conditions
by Alaa Kamal Yousif Dafhalla, Hiba Mohanad Isam, Amira Elsir Tayfour Ahmed, Ikhlas Saad Ahmed, Lutfieh S. Alhomed, Amel Mohamed essaket Zahou, Fawzia Awad Elhassan Ali, Duria Mohammed Ibrahim Zayan, Mohamed Elshaikh Elobaid and Tijjani Adam
Computers 2025, 14(7), 285; https://doi.org/10.3390/computers14070285 - 17 Jul 2025
Abstract
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic [...] Read more.
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic topology of vehicular environments. While some efforts have explored routing protocol optimization, few have systematically compared multiple optimization approaches tailored to distinct traffic and delay conditions. This study addresses this gap by evaluating and enhancing two widely used routing protocols, QOS-AODV and GPSR, through their improved versions, CM-QOS-AODV and CM-GPSR. Two distinct optimization models are proposed: the Traffic-Oriented Model (TOM), designed to handle variable and high-traffic conditions, and the Delay-Efficient Model (DEM), focused on reducing latency for time-critical scenarios. Performance was evaluated using key QoS metrics: throughput (rate of successful data delivery), packet delivery ratio (PDR) (percentage of successfully delivered packets), and end-to-end delay (latency between sender and receiver). Simulation results reveal that TOM-optimized protocols achieve up to 10% higher PDR, maintain throughput above 0.40 Mbps, and reduce delay to as low as 0.01 s, making them suitable for applications such as collision avoidance and emergency alerts. DEM-based variants offer balanced, moderate improvements, making them better suited for general-purpose VCN applications. These findings underscore the importance of traffic- and delay-aware protocol design in developing robust, QoS-compliant vehicular communication systems. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

24 pages, 2667 KiB  
Article
Transformer-Driven Fault Detection in Self-Healing Networks: A Novel Attention-Based Framework for Adaptive Network Recovery
by Parul Dubey, Pushkar Dubey and Pitshou N. Bokoro
Mach. Learn. Knowl. Extr. 2025, 7(3), 67; https://doi.org/10.3390/make7030067 - 16 Jul 2025
Abstract
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, [...] Read more.
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, and delayed convergence, limiting their effectiveness in real-time applications. This study utilizes two benchmark datasets—EFCD and SFDD—which represent electrical and sensor fault scenarios, respectively. These datasets pose challenges due to class imbalance and complex temporal dependencies. To address this, we propose a novel hybrid framework combining Attention-Augmented Convolutional Neural Networks (AACNN) with transformer encoders, enhanced through Enhanced Ensemble-SMOTE for balancing the minority class. The model captures spatial features and long-range temporal patterns and learns effectively from imbalanced data streams. The novelty lies in the integration of attention mechanisms and adaptive oversampling in a unified fault-prediction architecture. Model evaluation is based on multiple performance metrics, including accuracy, F1-score, MCC, RMSE, and score*. The results show that the proposed model outperforms state-of-the-art approaches, achieving up to 97.14% accuracy and a score* of 0.419, with faster convergence and improved generalization across both datasets. Full article
Show Figures

Figure 1

19 pages, 2270 KiB  
Article
IoMT Architecture for Fully Automated Point-of-Care Molecular Diagnostic Device
by Min-Gin Kim, Byeong-Heon Kil, Mun-Ho Ryu and Jong-Dae Kim
Sensors 2025, 25(14), 4426; https://doi.org/10.3390/s25144426 - 16 Jul 2025
Abstract
The Internet of Medical Things (IoMT) is revolutionizing healthcare by integrating smart diagnostic devices with cloud computing and real-time data analytics. The emergence of infectious diseases, including COVID-19, underscores the need for rapid and decentralized diagnostics to facilitate early intervention. Traditional centralized laboratory [...] Read more.
The Internet of Medical Things (IoMT) is revolutionizing healthcare by integrating smart diagnostic devices with cloud computing and real-time data analytics. The emergence of infectious diseases, including COVID-19, underscores the need for rapid and decentralized diagnostics to facilitate early intervention. Traditional centralized laboratory testing introduces delays, limiting timely medical responses. While point-of-care molecular diagnostic (POC-MD) systems offer an alternative, challenges remain in cost, accessibility, and network inefficiencies. This study proposes an IoMT-based architecture for fully automated POC-MD devices, leveraging WebSockets for optimized communication, enhancing microfluidic cartridge efficiency, and integrating a hardware-based emulator for real-time validation. The system incorporates DNA extraction and real-time polymerase chain reaction functionalities into modular, networked components, improving flexibility and scalability. Although the system itself has not yet undergone clinical validation, it builds upon the core cartridge and detection architecture of a previously validated cartridge-based platform for Chlamydia trachomatis and Neisseria gonorrhoeae (CT/NG). These pathogens were selected due to their global prevalence, high asymptomatic transmission rates, and clinical importance in reproductive health. In a previous clinical study involving 510 patient specimens, the system demonstrated high concordance with a commercial assay with limits of detection below 10 copies/μL, supporting the feasibility of this architecture for point-of-care molecular diagnostics. By addressing existing limitations, this system establishes a new standard for next-generation diagnostics, ensuring rapid, reliable, and accessible disease detection. Full article
(This article belongs to the Special Issue Advances in Sensors and IoT for Health Monitoring)
Show Figures

Figure 1

20 pages, 690 KiB  
Article
Wearable Sensor-Based Human Activity Recognition: Performance and Interpretability of Dynamic Neural Networks
by Dalius Navakauskas and Martynas Dumpis
Sensors 2025, 25(14), 4420; https://doi.org/10.3390/s25144420 - 16 Jul 2025
Abstract
Human Activity Recognition (HAR) using wearable sensor data is increasingly important in healthcare, rehabilitation, and smart monitoring. This study systematically compared three dynamic neural network architectures—Finite Impulse Response Neural Network (FIRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)—to examine their suitability [...] Read more.
Human Activity Recognition (HAR) using wearable sensor data is increasingly important in healthcare, rehabilitation, and smart monitoring. This study systematically compared three dynamic neural network architectures—Finite Impulse Response Neural Network (FIRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)—to examine their suitability and specificity for HAR tasks. A controlled experimental setup was applied, training 16,500 models across different delay lengths and hidden neuron counts. The investigation focused on classification accuracy, computational cost, and model interpretability. LSTM achieved the highest classification accuracy (98.76%), followed by GRU (97.33%) and FIRNN (95.74%), with FIRNN offering the lowest computational complexity. To improve model transparency, Layer-wise Relevance Propagation (LRP) was applied to both input and hidden layers. The results showed that gyroscope Y-axis data was consistently the most informative, while accelerometer Y-axis data was the least informative. LRP analysis also revealed that GRU distributed relevance more broadly across hidden units, while FIRNN relied more on a small subset. These findings highlight trade-offs between performance, complexity, and interpretability and provide practical guidance for applying explainable neural wearable sensor-based HAR. Full article
Show Figures

Figure 1

21 pages, 733 KiB  
Article
A Secure and Privacy-Preserving Approach to Healthcare Data Collaboration
by Amna Adnan, Firdous Kausar, Muhammad Shoaib, Faiza Iqbal, Ayesha Altaf and Hafiz M. Asif
Symmetry 2025, 17(7), 1139; https://doi.org/10.3390/sym17071139 - 16 Jul 2025
Abstract
Combining a large collection of patient data and advanced technology, healthcare organizations can excel in medical research and increase the quality of patient care. At the same time, health records present serious privacy and security challenges because they are confidential and can be [...] Read more.
Combining a large collection of patient data and advanced technology, healthcare organizations can excel in medical research and increase the quality of patient care. At the same time, health records present serious privacy and security challenges because they are confidential and can be breached through networks. Even traditional methods with federated learning are used to share data, patient information might still be at risk of interference while updating the model. This paper proposes the Privacy-Preserving Federated Learning with Homomorphic Encryption (PPFLHE) framework, which strongly supports secure cooperation in healthcare and at the same time providing symmetric privacy protection among participating institutions. Everyone in the collaboration used the same EfficientNet-B0 architecture and training conditions and keeping the model symmetrical throughout the network to achieve a balanced learning process and fairness. All the institutions used CKKS encryption symmetrically for their models to keep data concealed and stop any attempts at inference. Our federated learning process uses FedAvg on the server to symmetrically aggregate encrypted model updates and decrease any delays in our server communication. We attained a classification accuracy of 83.19% and 81.27% when using the APTOS 2019 Blindness Detection dataset and MosMedData CT scan dataset, respectively. Such findings confirm that the PPFLHE framework is generalizable among the broad range of medical imaging methods. In this way, patient data are kept secure while encouraging medical research and treatment to move forward, helping healthcare systems cooperate more effectively. Full article
(This article belongs to the Special Issue Exploring Symmetry in Wireless Communication)
Show Figures

Figure 1

24 pages, 6250 KiB  
Article
A Failure Risk-Aware Multi-Hop Routing Protocol in LPWANs Using Deep Q-Network
by Shaojun Tao, Hongying Tang, Jiang Wang and Baoqing Li
Sensors 2025, 25(14), 4416; https://doi.org/10.3390/s25144416 - 15 Jul 2025
Viewed by 43
Abstract
Multi-hop routing over low-power wide-area networks (LPWANs) has emerged as a promising technology for extending network coverage. However, existing protocols face high transmission disruption risks due to factors such as dynamic topology driven by stochastic events, dynamic link quality, and coverage holes induced [...] Read more.
Multi-hop routing over low-power wide-area networks (LPWANs) has emerged as a promising technology for extending network coverage. However, existing protocols face high transmission disruption risks due to factors such as dynamic topology driven by stochastic events, dynamic link quality, and coverage holes induced by imbalanced energy consumption. To address this issue, we propose a failure risk-aware deep Q-network-based multi-hop routing (FRDR) protocol, aiming to reduce transmission disruption probability. First, we design a power regulation mechanism (PRM) that works in conjunction with pre-selection rules to optimize end-device node (EN) activations and candidate relay selection. Second, we introduce the concept of routing failure risk value (RFRV) to quantify the potential failure risk posed by each candidate next-hop EN, which correlates with its neighborhood state characteristics (i.e., the number of neighbors, the residual energy level, and link quality). Third, a deep Q-network (DQN)-based routing decision mechanism is proposed, where a multi-objective reward function incorporating RFRV, residual energy, distance to the gateway, and transmission hops is utilized to determine the optimal next-hop. Simulation results demonstrate that FRDR outperforms existing protocols in terms of packet delivery rate and network lifetime while maintaining comparable transmission delay. Full article
(This article belongs to the Special Issue Security, Privacy and Trust in Wireless Sensor Networks)
Show Figures

Figure 1

22 pages, 1847 KiB  
Article
Unveiling Hidden Dynamics in Air Traffic Networks: An Additional-Symmetry-Inspired Framework for Flight Delay Prediction
by Chao Yin, Xinke Du, Jianyu Duan, Qiang Tang and Li Shen
Mathematics 2025, 13(14), 2274; https://doi.org/10.3390/math13142274 - 15 Jul 2025
Viewed by 143
Abstract
Flight delays pose a significant challenge to the modern aviation industry, with prediction difficulties arising from the need to accurately model spatio-temporal dependencies and uncertainties within complex air traffic networks. To address this challenge, this study proposes a novel hybrid predictive framework named [...] Read more.
Flight delays pose a significant challenge to the modern aviation industry, with prediction difficulties arising from the need to accurately model spatio-temporal dependencies and uncertainties within complex air traffic networks. To address this challenge, this study proposes a novel hybrid predictive framework named DenseNet-LSTM-FBLS. The framework first employs a DenseNet-LSTM module for deep spatio-temporal feature extraction, where DenseNet captures the intricate spatial correlations between airports, and LSTM models the temporal evolution of delays and meteorological conditions. In a key innovation, the extracted features are fed into a Fuzzy Broad Learning System (FBLS)—marking the first application of this method in the field of flight delay prediction. The FBLS component effectively handles data uncertainty through its fuzzy logic, while its “broad” architecture offers greater computational efficiency compared to traditional deep networks. Validated on a large-scale dataset of 198,970 real-world European flights, the proposed model achieves a prediction accuracy of 92.71%, significantly outperforming various baseline models. The results demonstrate that the DenseNet-LSTM-FBLS framework provides a highly accurate and efficient solution for flight delay forecasting, highlighting the considerable potential of Fuzzy Broad Learning Systems for tackling complex real-world prediction tasks. Full article
(This article belongs to the Special Issue Symmetries of Integrable Systems, 2nd Edition)
Show Figures

Figure 1

17 pages, 820 KiB  
Article
Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread
by Ye Wang, Chuxin Chen, Ran Zhang and Yiqiao Mei
Electronics 2025, 14(14), 2830; https://doi.org/10.3390/electronics14142830 - 15 Jul 2025
Viewed by 96
Abstract
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz [...] Read more.
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz massive multiple-input multiple-output (MIMO) systems induce a pronounced beam split effect, leading to a serious array gain loss. To mitigate the beam split effect, this paper considers a delay-phase precoding (DPP) architecture in which a true-time-delay (TTD) network is introduced between radio-frequency (RF) chains and phase shifters (PSs) in the standard hybrid precoding architecture. Then, we propose a fast Riemannian conjugate gradient optimization-based alternating minimization (FRCG-AltMin) algorithm to jointly optimize the digital precoding, analog precoding, and delay matrix, aiming to maximize the spectral efficiency. Different from the existing method, which solves an approximated version of the analog precoding design problem, we adopt an FRCG method to deal with the original problem directly. Simulation results demonstrate that our proposed algorithm can improve the spectral efficiency, and achieve superior performance over the existing algorithm for wideband THz massive MIMO systems with angular spread. Full article
Show Figures

Figure 1

15 pages, 2168 KiB  
Article
High-Salt Exposure Disrupts Cardiovascular Development in Zebrafish Embryos, Brachyodanio rerio, via Calcium and MAPK Signaling Pathways
by Ebony Thompson, Justin Hensley and Renfang Song Taylor
J 2025, 8(3), 26; https://doi.org/10.3390/j8030026 - 14 Jul 2025
Viewed by 116
Abstract
Cardiovascular disease and hypertension are major global health challenges, and increasing dietary salt intake is a known contributor. Emerging evidence suggests that excessive salt exposure during pregnancy may impact fetal development, yet its effects on early embryogenesis remain poorly understood. In this study, [...] Read more.
Cardiovascular disease and hypertension are major global health challenges, and increasing dietary salt intake is a known contributor. Emerging evidence suggests that excessive salt exposure during pregnancy may impact fetal development, yet its effects on early embryogenesis remain poorly understood. In this study, we used zebrafish (Danio rerio) embryos as a model to investigate the developmental and molecular consequences of high-salt exposure during early vertebrate development. Embryos subjected to elevated salt levels exhibited delayed hatching, reduced heart rates, and significant alterations in gene expression profiles. Transcriptomic analysis revealed over 4000 differentially expressed genes, with key disruptions identified in calcium signaling, MAPK signaling, cardiac muscle development, and vascular smooth muscle contraction pathways. These findings indicate that early salt exposure can perturb crucial developmental processes and signaling networks, offering insights into how prenatal environmental factors may contribute to long-term cardiovascular risk. Full article
Show Figures

Figure 1

24 pages, 8216 KiB  
Article
Application of Dueling Double Deep Q-Network for Dynamic Traffic Signal Optimization: A Case Study in Danang City, Vietnam
by Tho Cao Phan, Viet Dinh Le and Teron Nguyen
Mach. Learn. Knowl. Extr. 2025, 7(3), 65; https://doi.org/10.3390/make7030065 - 14 Jul 2025
Viewed by 261
Abstract
This study investigates the application of the Dueling Double Deep Q-Network (3DQN) algorithm to optimize traffic signal control at a major urban intersection in Danang City, Vietnam. The objective is to enhance signal timing efficiency in response to mixed traffic flow and real-world [...] Read more.
This study investigates the application of the Dueling Double Deep Q-Network (3DQN) algorithm to optimize traffic signal control at a major urban intersection in Danang City, Vietnam. The objective is to enhance signal timing efficiency in response to mixed traffic flow and real-world traffic dynamics. A simulation environment was developed using the Simulation of Urban Mobility (SUMO) software version 1.11, incorporating both a fixed-time signal controller and two 3DQN models trained with 1 million (1M-Step) and 5 million (5M-Step) iterations. The models were evaluated using randomized traffic demand scenarios ranging from 50% to 150% of baseline traffic volumes. The results demonstrate that the 3DQN models outperform the fixed-time controller, significantly reducing vehicle delays, with the 5M-Step model achieving average waiting times of under five minutes. To further assess the model’s responsiveness to real-time conditions, traffic flow data were collected using YOLOv8 for object detection and SORT for vehicle tracking from live camera feeds, and integrated into the SUMO-3DQN simulation. The findings highlight the robustness and adaptability of the 3DQN approach, particularly under peak traffic conditions, underscoring its potential for deployment in intelligent urban traffic management systems. Full article
Show Figures

Graphical abstract

17 pages, 618 KiB  
Article
A Biologically Inspired Cost-Efficient Zero-Trust Security Approach for Attacker Detection and Classification in Inter-Satellite Communication Networks
by Sridhar Varadala and Hao Xu
Future Internet 2025, 17(7), 304; https://doi.org/10.3390/fi17070304 - 13 Jul 2025
Viewed by 108
Abstract
In Next-Generation Low-Earth-Orbit (LEO) satellite networks, securing inter-satellite communication links (ISLs) through robust authentication is critical due to the dynamic and distributed nature of non-terrestrial environments. Traditional authentication frameworks often fall short under these conditions, prompting the adoption of Zero-Trust Security (ZTS) models. [...] Read more.
In Next-Generation Low-Earth-Orbit (LEO) satellite networks, securing inter-satellite communication links (ISLs) through robust authentication is critical due to the dynamic and distributed nature of non-terrestrial environments. Traditional authentication frameworks often fall short under these conditions, prompting the adoption of Zero-Trust Security (ZTS) models. However, existing ZTS protocols incur significant computational overhead, especially as the number of satellite nodes increases, thereby affecting both communication network efficiency and security. To address this, a novel bio-inspired intelligent ZTS approach, i.e., Manta Ray Foraging Cost-Optimized Zero-Trust Security (MRFCO-ZTS), has been developed to leverage bio-inspired data-enabled learning principles to enhance secure satellite communication. The model ingests high-density satellite network data and continuously verifies access requests by formulating a cost function that balances the risk level, attack likelihood, and computational delay in an effective manner. The Manta Ray Foraging Optimization (MRFO) algorithm is applied to minimize this cost function and to enable efficient classification of nodes as detector or attacker based on historical authentication as well as nodes dynamic behaviors. MRFCO-ZTS enables precise identification of attacker behavior while ensuring secure data transmission among verified satellites. The developed MRFCO-ZTS framework is evaluated using a series of numerical simulations under varying satellite user loads, with performance assessed in terms of security accuracy, latency, and operational efficiency. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems, 2nd Edition)
28 pages, 11429 KiB  
Article
Trajectory Tracking of Unmanned Surface Vessels Based on Robust Neural Networks and Adaptive Control
by Ziming Wang, Chunliang Qiu, Zaopeng Dong, Shaobo Cheng, Long Zheng and Shunhuai Chen
J. Mar. Sci. Eng. 2025, 13(7), 1341; https://doi.org/10.3390/jmse13071341 - 13 Jul 2025
Viewed by 123
Abstract
In this paper, a robust neural adaptive controller is proposed for the trajectory tracking control problem of unmanned surface vessels (USVs), considering model uncertainty, time-varying environmental disturbance, and actuator saturation. First, measurement errors in acceleration signals are eliminated through filtering techniques and a [...] Read more.
In this paper, a robust neural adaptive controller is proposed for the trajectory tracking control problem of unmanned surface vessels (USVs), considering model uncertainty, time-varying environmental disturbance, and actuator saturation. First, measurement errors in acceleration signals are eliminated through filtering techniques and a series of auxiliary variables, and after linearly parameterizing the USV dynamic model, a parameter adaptive update law is developed based on Lyapunov’s second method to estimate unknown dynamic parameters in the USV dynamics model. This parameter adaptive update law enables online identification of all USV dynamic parameters during trajectory tracking while ensuring convergence of the estimation errors. Second, a radial basis function neural network (RBF-NN) is employed to approximate unmodeled dynamics in the USV system, and on this basis, a robust damping term is designed based on neural damping technology to compensate for environmental disturbances and unmodeled dynamics. Subsequently, a trajectory tracking controller with parameter adaptation law and robust damping term is proposed using Lyapunov theory and adaptive control techniques. In addition, finite-time auxiliary variables are also added to the controller to handle the actuator saturation problem. Signal delay compensators are designed to compensate for input signal delays in the control system, thereby enhancing controller reliability. The proposed controller ensures robustness in trajectory tracking under model uncertainties and time-varying environmental disturbances. Finally, the convergence of each signal of the closed-loop system is proved based on Lyapunov theory. And the effectiveness of the control system is verified by numerical simulation experiments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop