Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = net assimilation rate (NAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8515 KB  
Article
Vegetative Growth Analysis of Schoenoplectus californicus (Totora): Dynamics and Physiological Mechanisms in High-Altitude Andean Lakes
by Galo Pabón-Garcés, Lucía Vásquez-Hernández, Gladys Yaguana-Jiménez and Patricia Aguirre-Mejía
Ecologies 2025, 6(4), 71; https://doi.org/10.3390/ecologies6040071 - 30 Oct 2025
Viewed by 1112
Abstract
Schoenoplectus californicus (Totora) is a wetland plant of cultural and ecological importance, traditionally used for handicrafts and habitat conservation in Andean lakes. This study investigates its vegetative growth in two Andean lakes in Imbabura, Ecuador (Yahuarcocha and Imbacocha), which present contrasting chemical and [...] Read more.
Schoenoplectus californicus (Totora) is a wetland plant of cultural and ecological importance, traditionally used for handicrafts and habitat conservation in Andean lakes. This study investigates its vegetative growth in two Andean lakes in Imbabura, Ecuador (Yahuarcocha and Imbacocha), which present contrasting chemical and biological conditions (total nitrogen, total phosphorus, and chlorophyll a). Vegetative growth analysis, using indices, provides tools for understanding Totora growth dynamics within a cultivation cycle. By quantifying biomass accumulation and other parameters, it is possible to infer how the plant responds to its environment and to guide its production and management. Our objective was to evaluate how physiological and morphological traits influence growth under differential nutrient conditions. A 210-day field trial was conducted with periodic sampling and analysis of physiological indices, combining classical and functional growth approaches. Key growth indices—relative growth rate (RGR), net assimilation rate (NAR), and leaf area ratio (LAR)—were calculated from photosynthetic surface area and dry biomass. Results show that plants in Yahuarcocha, a hypertrophic lake, exhibited greater biomass production (up to 2380 g m−2) and photosynthetic area (8.68 m2), reaching peak growth at 150 days. In contrast, plants in Imbacocha, a eutrophic lake, reached maximum growth at 180 days, with a greater dependence on NAR. Strong correlations among RGR, NAR, and LAR were observed in Yahuarcocha, highlighting the influence of higher nutrient concentrations and harvesting pressure on growth dynamics. These findings underscore the importance of considering lake trophic status when planning sustainable harvesting and cultivation strategies for Totora in Andean wetlands. Full article
Show Figures

Figure 1

16 pages, 992 KB  
Article
Relative Growth Rate and Specific Absorption Rate of Nutrients in Lactuca sativa L. Under Secondary Paper Sludge Application and Soil Contamination with Lead
by Elena Ikkonen and Marija Yurkevich
Agriculture 2025, 15(14), 1541; https://doi.org/10.3390/agriculture15141541 - 17 Jul 2025
Viewed by 830
Abstract
Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill [...] Read more.
Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill sludge on the relative growth rate (RGR) and its determinants, as well as the specific absorption rate (SAR) of nutrients of Lactuca sativa L. For the 46-day pot experiment, which was carried out in 2022 under controlled conditions at the Karelian Research Centre of RAS, sandy loam soil was used, to which Pb was added at rates of 0, 50, and 250 mg Pb(NO3)2 kg−1. Secondary sludge was applied with each watering at concentrations of 0%, 20%, and 40%. RGR values varied significantly, primarily due to changes in net assimilation rate (NAR) rather than specific leaf area. Positive relationships were found between RGR and NAR, and RGR and SAR of nitrogen and phosphorus, but not potassium. Sludge applications can stimulate NAR at early stages of plant growth. For plants grown on soil with the highest Pb concentration studied, secondary sludge reduced root lead content by an average of 35%. Soil contamination with lead increased nutrient SAR by 79 and 39% when applied as 20 and 40% sludge, respectively, while 40% sludge increased nitrogen SAR by 51% but did not change phosphorus and potassium SAR. A sludge-mediated reduction in root Pb content and an increase in NAR suggest that secondary paper sludge may contribute to the remediation of Pb-contaminated soils and reduce the toxicity of heavy metals to plants. The results may help in finding new ways to manage soil fertility, especially for contaminated soils. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 996 KB  
Article
Interactive Effect of Copper and Herbivory on the Whole-Plant Growth of Leucaena leucocephala
by Shirley Margarita Amaya-Martín, Horacio Salomón Ballina-Gómez, Esaú Ruíz-Sánchez, Gabriel Jesús Azcorra-Perera, Roberto Rafael Ruiz-Santiago and Jacques Fils Pierre
Int. J. Plant Biol. 2025, 16(3), 76; https://doi.org/10.3390/ijpb16030076 - 6 Jul 2025
Viewed by 922
Abstract
This study investigated how Leucaena leucocephala, a dry forest plant, copes with soil copper and herbivory caused by Schistocerca piceifrons, crucial for understanding species adaptation in stressed environments. A 33-day factorial experiment with three copper and two herbivory treatments assessed seedling [...] Read more.
This study investigated how Leucaena leucocephala, a dry forest plant, copes with soil copper and herbivory caused by Schistocerca piceifrons, crucial for understanding species adaptation in stressed environments. A 33-day factorial experiment with three copper and two herbivory treatments assessed seedling growth rates (relative growth rate of biomass—RGRB, and leaf area—RGRLA), morphology, net assimilation rate (NAR), biomass allocation, and survival. Seedlings demonstrated compensatory growth in terms of RGRB and RGRLA under high copper and herbivory. Although copper decreased overall survival, surviving individuals effectively compensated for herbivory damage. These tolerance responses, primarily driven by an increased NAR (accounting for 98% of compensation), aligned with the limiting resource model. While most morphological components remained stable, herbivory specifically increased the root–shoot ratio. These findings indicate L. leucocephala possesses significant resilience through physiological adjustments, like enhancing NAR, and biomass reallocation strategies, allowing it to persist despite multiple stressors common in dry forests. Full article
(This article belongs to the Special Issue Plant Resistance to Insects)
Show Figures

Figure 1

13 pages, 1798 KB  
Article
Effect of Ozonated Avocado and High-Oleic Palm Oils on “Bolo Verde” Variety Squash
by Ramírez Aura, Amariles Santiago, Hurtado-Salazar Alejandro and Ceballos-Aguirre Nelson
Horticulturae 2025, 11(6), 676; https://doi.org/10.3390/horticulturae11060676 - 13 Jun 2025
Viewed by 1076
Abstract
Ozonated oils have promise as biostimulants, positively affecting physiological processes that promote plant growth and biomass accumulation. However, additional research is required to clarify their mechanisms of action, optimize dosages, and define effective application strategies. This study aimed to evaluate the biostimulant effect [...] Read more.
Ozonated oils have promise as biostimulants, positively affecting physiological processes that promote plant growth and biomass accumulation. However, additional research is required to clarify their mechanisms of action, optimize dosages, and define effective application strategies. This study aimed to evaluate the biostimulant effect of three concentrations of two oils, avocado (Persea maricana Mill cv Hass) (50, 100, and 200 meqO2 kg−1) and high-oleic palm (Elaeis guineensis Jacq.) (5, 10, and 20 meqO2 kg−1), on the “Bolo Verde” squash Cucurbita moschata. The experiment followed a completely randomized design with a three-factor factorial arrangement: Factor I—type of ozonated oil; Factor II—application concentration (low, medium, and high); Factor III—application method (drench or foliar). The trial consisted of 15 experimental units, each with 32 plants, totaling 480 plants. Data were analyzed using SAS software. A one-way ANOVA was performed, and means were compared using Tukey’s test p ≤ 0.05. The drench application of high-concentration ozonated avocado oil (200 meqO2 kg−1) produced the most favorable biostimulant response, significantly increasing plant height, leaf number, root length, root volume, and total dry weight. This was followed by the drench application of low-concentration ozonated high-oleic palm oil (5 meqO2 kg−1), which yielded the highest dry matter accumulation. For the net assimilation rate (NAR) and leaf area index (LAI), the drench application of ozonated avocado oil at a high concentration resulted in 4.29 g cm−2 day−1 NAR and 7957.99 LAI, while low-concentration high-oleic palm oil recorded 4.36 g cm−2 day−1 NAR and 7208.40 LAI. Both treatments showed statistically significant differences (p < 0.05) compared to the control 2.35 g cm−2 day−1 NAR and 6780.24 LAI, indicating improved photosynthetic efficiency and leaf expansion. Similar trends were observed for crop growth rate (CGR) and relative growth rate (RGR). The drench application of high-concentration ozonated avocado oil yielded a CGR of 6.77 × 10−4 g cm−2 day−1 and RGR 0.0441953 g g−1 day−1. Low-concentration high-oleic palm oil drench application resulted in the highest CGR of 7.35 × 10−4 g cm−2 day−1 and RGR 0.0454216 g g−1 day−1. These values were significantly higher than those of the control (CGR 4.14 × 10−4 g cm−2 day−1; RGR 0.0357569 g g−1 day−1). These results suggest that the drench application of ozonated oils not only enhances photosynthesis and leaf growth but also favors the incorporation and accumulation of biomass in “Bolo Verde” squash. Full article
(This article belongs to the Special Issue The Role of Plant Growth Regulators in Horticulture)
Show Figures

Figure 1

14 pages, 1629 KB  
Article
Exogenous Sucrose Enhances Growth and Physiological Performance of Tomato Seedlings Under Suboptimal Light Conditions in Passive Greenhouses
by Miguel Gómez-Cabezas and Ángelo España
Horticulturae 2024, 10(12), 1337; https://doi.org/10.3390/horticulturae10121337 - 13 Dec 2024
Cited by 1 | Viewed by 3149
Abstract
Tomato is an important crop worldwide. Commonly, the production process is initiated in nurseries that provide seedlings to greenhouse growers. Many factors influence crop production, one of which is the seedlings’ quality. Light has an enormous effect on seedlings; however, in passive greenhouses, [...] Read more.
Tomato is an important crop worldwide. Commonly, the production process is initiated in nurseries that provide seedlings to greenhouse growers. Many factors influence crop production, one of which is the seedlings’ quality. Light has an enormous effect on seedlings; however, in passive greenhouses, its control is quite difficult. In this situation, plants are usually affected by low or high light intensities which induces poor growth on plants. On the other hand, there is some evidence that sucrose applications could compensate for the adverse effects caused by low light intensities and other abiotic factors like salinity, drought, and temperature. In this way, this research aimed to assess the impact of exogenous sucrose on the morphology, quality, and growth of tomato seedlings cultivated under low-tech greenhouse conditions commonly observed in tropical and subtropical commercial nurseries. Four sucrose treatments were proposed (0, 1, 10, and 100 mM). On days 28, 32, 36, 40, and 44 after sowing, several morphological, physiological and growth measurements were evaluated. Sucrose-treated plants displayed higher leaf areas and chlorophyll contents, facilitating light absorption. Therefore, the relative growth rate (RGR) was enhanced and better explained by a higher net assimilation rate (NAR). Consequently, a higher dry matter accumulation and Dixon quality index (DQI) were achieved. Plants under treatment at 100 mM exhibited the best performance. Full article
Show Figures

Figure 1

21 pages, 4345 KB  
Article
Effect of Different Intensities of Leaf Removal on Tomato Development and Yield
by Vanesa Raya, Margarita Parra, María del Carmen Cid, Belarmino Santos and Domingo Ríos
Horticulturae 2024, 10(11), 1136; https://doi.org/10.3390/horticulturae10111136 - 25 Oct 2024
Cited by 1 | Viewed by 3382
Abstract
Defoliation (leaf removal or pruning) is a common practice in tomato production that makes crops more manageable, prevents conditions conducive to fungal attack and increases the exposure of the fruit to light, especially in winter conditions. The intensity and frequency of leaf removal [...] Read more.
Defoliation (leaf removal or pruning) is a common practice in tomato production that makes crops more manageable, prevents conditions conducive to fungal attack and increases the exposure of the fruit to light, especially in winter conditions. The intensity and frequency of leaf removal on commercial farms often vary according to workforce availability criteria, which makes it difficult to determine their effect on tomato crop yields. It would be reasonable to think that a reduction in leaf area influences radiation interception and, therefore, the production of assimilates and biomass. However, in intensive production systems with a high leaf area index (LAI), leaf pruning can increase radiation interception, either by reducing competition between productive and vegetative organs or by increasing radiation use efficiency. This study was therefore designed to assess the effect of different intensities and frequencies of basal leaf removal on dry matter production and partitioning between the different organs of the plant, and thus on tomato crop productivity. A series of trials were conducted over three consecutive seasons, with a trial conducted per season: (a) Trial 1: leaf removal control—LRC (with leaves removed from the base to two leaves below the truss close to harvest, T0) was compared with LR1 (leaf removal from the base to two leaves below the truss above T0, i.e., T1) and LR2 (two trusses above T0 (T2)); (b) Trial 2: LRC compared with LR2 and LR4 (four trusses above T0 (T4)), carried out at two frequencies; and (c) Trial 3: LRC compared with an intense leaf removal treatment (LRI) whereby between 10 and 12 leaves were left on each stem. LAI saturation values under our conditions were found to be around 2.0. No significant differences in yield were found between the control and treatments LR1, LR2 and LR4, with a reduction in the number of leaves of up to 35% and LAI values during harvest above 2.0. The intense leaf removal treatment (LRI), which reduced the number of leaves by 47% and the LAI value from 2.8 to 1.5 compared to the control, resulted in a 15% reduction in dry biomass and a 17% decrease in fruit yield. Full article
Show Figures

Figure 1

19 pages, 1761 KB  
Article
Optimizing Nitrogen Dosage and Planting Density to Improve Japonica Rice Yield
by Liming Zhao, Hang Zhou, Liang Tang, Yongguang Na, Shaobiao Duan, Dianfeng Zheng, Naijie Feng and Xuefeng Shen
Agronomy 2024, 14(8), 1738; https://doi.org/10.3390/agronomy14081738 - 8 Aug 2024
Cited by 8 | Viewed by 2422
Abstract
In Northeast China’s black soil rice cropping area, nitrogen (N) application is lower than in the south, yet excessive N fertilizer use persists, particularly in base fertilizers. This study aimed to assess the impact of reduced N and increased planting density on rice [...] Read more.
In Northeast China’s black soil rice cropping area, nitrogen (N) application is lower than in the south, yet excessive N fertilizer use persists, particularly in base fertilizers. This study aimed to assess the impact of reduced N and increased planting density on rice yields and photosynthetic matter production. From 2019 to 2020, a field split-plot experiment was conducted with two N rates (conventional N, CN: 120 kg ha−1 and reduced basal N, RN: 108 kg ha−1) and two planting densities (D1: 33.3 × 104 hills ha−1 and D2: 27.8 × 104 hills ha−1) using the rice varieties Kongyu131 (KY131) and Kendao24 (KD24). The results showed that RN increased the effective panicle formation rate but decreased the tiller numbers, dry matter accumulation, stems/sheaths transport capacity, leaf photosynthetic capacity, and yield by 2.67% compared to CN. D1 significantly boosted the dry matter accumulation, stems/sheaths transport, effective panicles, grains per square meter, and yield by 8.26% compared to D2. Interaction analysis revealed that RN under D2 conditions reduced the effective panicle percentage, harvest index, filled grain number, leaf area index (LAI), crop growth rate (CGR), and net assimilation rate (NAR) but increased the seed setting rate and 1000-grain weight. Under D1, RN reduced the LAI, CGR, and NAR at the tillering and heading stages but increased the NAR post-heading. Compared to CND2, RND1 increased the biomass, stems/sheaths transport, LAI, CGR, NAR, seed setting rate, 1000-grain weight, panicle numbers, and filled grains per square meter, compensating for the lower harvest index and effective panicle rate, achieving a 5.36% yield increase. KD24 outperformed KY131 in yield improvement. In summary, using 108 kg ha−1 with a planting density of 33.3 × 104 hills ha−1 promotes tillering, enhances photosynthetic substance production stems/sheaths dry matter transport, and increases rice yields. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

20 pages, 6376 KB  
Article
Ability of Different Growth Indicators to Detect Salt Tolerance of Advanced Spring Wheat Lines Grown in Real Field Conditions
by Muhammad Mubushar, Salah El-Hendawy, Yaser Hassan Dewir and Nasser Al-Suhaibani
Plants 2024, 13(6), 882; https://doi.org/10.3390/plants13060882 - 19 Mar 2024
Cited by 4 | Viewed by 2659
Abstract
Plant growth indicators (GIs) are important for evaluating how different genotypes respond to normal and stress conditions separately. They consider both the morphological and physiological components of plants between two successive growth stages. Despite their significance, GIs are not commonly used as screening [...] Read more.
Plant growth indicators (GIs) are important for evaluating how different genotypes respond to normal and stress conditions separately. They consider both the morphological and physiological components of plants between two successive growth stages. Despite their significance, GIs are not commonly used as screening criteria for detecting salt tolerance of genotypes. In this study, 36 recombinant inbred lines (RILs) along with four genotypes differing in their salt tolerance were grown under normal and 150 mM NaCl in a two-year field trial. The performance and salt tolerance of these germplasms were assessed through various GIs. The analysis of variance showed highly significant variation between salinity levels, genotypes, and their interaction for all GIs and other traits in each year and combined data for two years, with a few exceptions. All traits and GIs were significantly reduced by salinity stress, except for relative growth rate (RGR), net assimilation rate (NAR), and specific leaf weight (SLW), which increased under salinity conditions. Traits and GIs were more correlated with each other under salinity than under normal conditions. Principal component analysis organized traits and GIs into three main groups under both conditions, with RGR, NAR, and specific leaf area (SLA) closely associated with grain yield (GY) and harvest index, while leaf area duration (LAD) was closely associated with green leaf area (GLA), plant dry weight (PDW), and leaf area index (LAI). A hierarchical clustering heatmap based on GIs and traits organized germplasms into three and four groups under normal and salinity conditions, respectively. Based on the values of traits and GIs for each group, the germplasms varied from high- to low-performing groups under normal conditions and from salt-tolerant to salt-sensitive groups under salinity conditions. RGR, NAR, and LAD were important factors determining genotypic variation in GY of high- and low-performing groups, while all GIs, except leaf area duration (LAR), were major factors describing genotypic variation in GY of salt-tolerant and salt-sensitive groups. In conclusion, different GIs that reveal the relationship between the morphological and physiological components of genotypes could serve as valuable selection criteria for evaluating the performance of genotypes under normal conditions and their salt tolerance under salinity stress conditions. Full article
(This article belongs to the Special Issue Mitigation Strategies and Tolerance of Plants to Abiotic Stresses)
Show Figures

Figure 1

36 pages, 6911 KB  
Article
Potentiality of Sustainable Maize Production under Rainfed Conditions in the Tropics by Triggering Agro-Physio-Biochemical Traits Ascertained from a Greenhouse
by Md. Samim Hossain Molla, Orawan Kumdee, Arunee Wongkaew, Phanuphong Khongchiu, Nattaporn Worathongchai, Md. Robiul Alam, Abdullah-Al Mahmud and Sutkhet Nakasathien
Plants 2023, 12(24), 4192; https://doi.org/10.3390/plants12244192 - 18 Dec 2023
Cited by 3 | Viewed by 3285
Abstract
A major portion of maize is produced under rainfed conditions in the tropics with relatively poor yield because of the unpredictable and irregular distribution of seasonal rainfall, as well as a decline in pre-rainy season rainfall due to climate change, so identification of [...] Read more.
A major portion of maize is produced under rainfed conditions in the tropics with relatively poor yield because of the unpredictable and irregular distribution of seasonal rainfall, as well as a decline in pre-rainy season rainfall due to climate change, so identification of sustainable production options is utmost needed. Thus, the present studies were conducted in a greenhouse (GH) to ascertain the water stress-tolerant traits of maize and at the field level in the tropical environment of Thailand to see the stimulating possibility of the ascertained traits in a locally popular cultivar using ethephon. Depending on tolerance level, three maize genotypes (Suwan 2301 > Suwan 4452 > S 7328) were tested under different water conditions—well-watered, short-term, and long-term water stress—in the GH. At the field level, the locally popular maize cultivar Suwan 5819 was examined with six ethephon levels (doses in g a.i. ha−1 of ethephon, i.e., T1, 281 at V6 stage; T2, 281 at V6 + 281 at V10 stage; T3, 281 at V10 stage; T4, 562 at V6 stage; T5, 562 at V6 + 562 at V10 stage; T6, 562 at V10 stage) against no ethephon application (T0) under rainfed conditions. Maize suffered from the scarcity of sufficient rainfall during 26–39 days after planting (DAP) and 43–63 DAP in the field. The yield index (YI) was identified from biplot analysis as one of the suitable standards for drought tolerance checks for maize at GH as well as at field level in the tropics. The YI value of observed agro-physio-biochemical traits of maize in GH showed that relative water content (RWC, 1.23), stem base diameter (SBD, 1.21), total soluble sugar (TSS, 1.15), proline (Pr, 1.13), aboveground plant biomass (APB, 1.13), root weight (RW, 1.13), relative growth rate (RGR, 1.15), specific leaf weight (SLW, 1.12), and net assimilation rate (NAR, 1.08) were the most desirable. Efforts were made to stimulate these traits under water stress at the field level. Ethephon application as T1 helped to gain higher kernel yield (KY) (5.26 t ha−1) with the support of higher RWC (90.38%), proline (24.79 µmol g−1 FW), TSS (1629 mg g−1 FW), SBD (24.49 mm), APB (271.34 g plant−1), SLW (51.71 g m−2), RGR (25.26 mg plant−1 day−1), and NAR (0.91 mg cm−2 day−1) compared to others, especially no ethephon application. Furthermore, the attributes SLW, SBD, Pr, heat utilization efficiency (HUE), 100-kernel weight, TSS, electrolyte leakage, and lodging percentage showed a substantial direct effect and significant correlation with KY. Aside from higher KY, ethephon application as T1 tactics resulted in higher values of energy efficiency (1.66), HUE (2.99 kg ha−1 °C days−1), gross margin (682.02 USD ha−1), MBCR (3.32), and C absorption (6.19 t C ha−1), indicating that this practice may be a good option for maize sustainable production under rainfed conditions. Full article
(This article belongs to the Special Issue Stress-Resilient Maize for Climate-Vulnerable Environments)
Show Figures

Figure 1

15 pages, 328 KB  
Article
Influence of Chemical, Organic, and Biological Silicon Fertilization on Physiological Studies of Egyptian Japonica Green Super Rice (Oryza sativa L.)
by Nehal M. Elekhtyar and Arwa A. AL-Huqail
Sustainability 2023, 15(17), 12968; https://doi.org/10.3390/su151712968 - 28 Aug 2023
Cited by 3 | Viewed by 2298
Abstract
Rice plants are known to be silicon (Si) accumulators, hence farmers often use specific commercial chemical fertilizers to meet the nutrient needs of plants. Farmers commonly use fertilizers that are expensive and produce immediate effects, yet they contaminate the soil, water, and air. [...] Read more.
Rice plants are known to be silicon (Si) accumulators, hence farmers often use specific commercial chemical fertilizers to meet the nutrient needs of plants. Farmers commonly use fertilizers that are expensive and produce immediate effects, yet they contaminate the soil, water, and air. We should reduce the use of chemical fertilizers by combining a part of them with alternative organic and biological sources of Si, such as rice husk and Bacillus mucilaginosus (Si-solubilizing bacteria). Furthermore, it rationalizes chemical fertilizer consumption, reduces environmental pollution, and improves nutrient use efficiency to achieve rationalization of consumption with economic benefits in spending and rationalization of consumption of chemicals polluting the environment. In two successive growth seasons, 2021 and 2022, a field experiment was conducted to determine the effects of chemical, organic, and biological silicon fertilization in physiological studies of Egyptian Japonica green super rice. A randomized complete block design was used, with four replications, and the following treatments were used: T1, recommended dose of silica gel (SG; chemical Si); T2, recommended dose of rice husk (RH; organic Si); T3, recommended dose of Si-solubilizing bacteria (SSB; Bacillus mucilaginosus; biological Si); T4, ½ SG + ½ RH; T5, ½ SG + ½ SSB; T6, ½ RH + ½ SSB; T7, 1/3 SG + 1/3 RH + 1/3 SSB; T8, zero chemical, organic, and biological Si (control). The results showed that the application of silica gel as a chemical Si fertilizer, rice husk as an organic Si fertilizer, and Bacillus mucilaginosus as a Si-solubilizing bacteria or biological Si fertilizer source resulted in significantly higher yields of grain (10.71 and 10.53) t ha−1 and straw (12.66 and 12.37) t ha−1 in 2021 and 2022, respectively. Following that, silica gel, when combined with Si-solubilizing bacteria, led to increases in grain yield output of 10.32 and 10.39 t ha−1 and straw yield of 12.16 and 12.05 t ha−1 in 2021 and 2022, respectively. In addition, yield attributes, chlorophyll content in leaves, flag leaf area, flag leaf weight, chlorophyll in flag leaf, crop growth rate (CGR), relative growth rate (RGR), net assimilation rate (NAR), and silicon uptake in grain and straw were determined as follows: The application of silica gel as a chemical Si fertilizer, rice husk as an organic Si fertilizer, and Bacillus mucilaginosus as a Si-solubilizing bacteria or biological Si fertilizer source had a substantial impact on all examined characteristics. According to the optimal treatment, one part of the three parts of Si fertilization utilized just chemical Si fertilizer and the other two parts organic and biological Si. So we can minimize chemical fertilizer use and reduce soil pollution. The findings of this study will be valuable for future research, such as the usage of alternative organic and biological sources of Si in rice. Full article
13 pages, 1041 KB  
Article
Comparison of the Source–Sink Characteristics between Main Season and Ratooning in Rice (Oryza sativa L.)
by Xinjie Huang, Jing Yang, Wenxin Zhou, Guilian Zhang, Bin Liao, Abdul Wahab, Zhenxie Yi and Naimei Tu
Agronomy 2023, 13(7), 1731; https://doi.org/10.3390/agronomy13071731 - 28 Jun 2023
Cited by 11 | Viewed by 2290
Abstract
Objectives: In order to find out the differences in source–sink characteristics of ratooning rice and main season rice and find approaches to increase the grain yield of ratooning rice, a sowing-by-stage method was adopted to synchronize main season rice with ratooning rice and [...] Read more.
Objectives: In order to find out the differences in source–sink characteristics of ratooning rice and main season rice and find approaches to increase the grain yield of ratooning rice, a sowing-by-stage method was adopted to synchronize main season rice with ratooning rice and induce their key growth stages under similar environmental conditions. The source–sink characteristics of four varieties under similar ecological conditions of main and ratooning rice were examined in 2019 and 2020. Results: The main results were: (1) The leaf area index (LAI) of the ratooning rice ranged from 0.54 to 1.44, while that of the LAI of main season rice was 4.67–7.71. The LAI of ratooning rice was much smaller than that of the main season rice; the former was only approximately 1/7–1/5 of the latter. (2) The photosynthesis (Pn) and net assimilation rate (NAR) of the ratooning rice were significantly higher than those of the main season rice before the milking–maturing stages. Still, at the late maturing stage, no definite tendency existed. (3) Ratooning rice transported 14C-assimilate from the flag leaf to the panicle at an estimated 81.43%, while main season rice transported 63.95%. The main stem’s top first and second internodes have been observed to be a major location for the 14C-assimilate in main season rice. (4) The grain yield of main season rice was 6029–7929 kg ha−1 while the grain yield of ratooning rice ranged from 2363–3297 kg ha−1. The sink capacity of the main season rice was approximately 2.4–3.6 times that of ratooning rice. The catalase activity of the rachis branches of the ratooning rice was higher than that of the main season rice. (5) The grain/leaf area (sink/source) ratio in the ratoon season rice was 1.69–2.46 times higher than that of the main season rice. Conclusions: The grain yields of ratooning rice were determined by the interaction of source and sink capacity while those of main season rice were mainly increased by enhancing sink capacity. Choosing varieties with heavier 1000 grain weight, exerting the advantages of higher photosynthetic rate and net assimilation rate of ratooning rice, promoting leaf area, and improving the transportation capacity of carbohydrate are the main approaches to increase the grain yield of ratooning rice. Full article
(This article belongs to the Special Issue In Memory of Professor Longping Yuan, the Father of Hybrid Rice)
Show Figures

Figure 1

19 pages, 515 KB  
Article
Phytohormones Promote the Growth, Pigment Biosynthesis and Productivity of Green Gram [Vigna radiata (L.) R. Wilczek]
by Asif Iqbal, Muhammad Aamir Iqbal, Iqra Akram, Muhammad Abdullah Saleem, Rana Nadeem Abbas, Mashael Daghash Alqahtani, Raees Ahmed and Junaid Rahim
Sustainability 2023, 15(12), 9548; https://doi.org/10.3390/su15129548 - 14 Jun 2023
Cited by 7 | Viewed by 3203
Abstract
Globally, optimized doses of exogenously applied growth regulators hold the potential to sustainably boost the growth and productivity of leguminous crops, including green gram. A field investigation was undertaken at the Agronomy Farm of the University of Agriculture Faisalabad, Pakistan in 2021–2022 to [...] Read more.
Globally, optimized doses of exogenously applied growth regulators hold the potential to sustainably boost the growth and productivity of leguminous crops, including green gram. A field investigation was undertaken at the Agronomy Farm of the University of Agriculture Faisalabad, Pakistan in 2021–2022 to determine the highest-performing doses of foliar-applied salicylic acid (S1 = 0 and S2 = 75 ppm) and gibberellic acid (G1 = 0, G2 = 30, G3 = 60, G4 = 90 and G5 = 120 ppm) for green gram (cv. NIAB-MUNG 2011) sown under irrigated conditions in a semiarid climate. The response variables included physiological growth traits (CGR and net assimilation rate (NAR)), yield attributes (plant height (PH), PBs and the number of pods per plant−1 (NP), pod length (PL) and SW, grain (GY) and biological yields (BY), the biosynthesis of pigments (chlorophyll a, chlorophyll b and total chlorophyll along with carotenoids) and protein (P) contents. The results revealed that S2G5 remained unmatched in that it exhibited the highest crop growth rate, while it remained on par with S2G4 and S2G3 in terms of its net assimilation rate. Additionally, S2G5 maximized plant height, the number of pod-bearing branches and pods per plant, pod length, seed number per pod−1 and 1000-seed weight, which led to the highest grain yield and biological yield (104% and 69% greater than those of the control, respectively). Moreover, the same treatment combination also surpassed the rest of the treatments because it recorded the largest amounts of chlorophyll and carotenoid contents, and the P content was increased to 24% greater than that observed for the control treatment. Thus, the exogenous application of salicylic acid (75 ppm) and gibberellic acid (120 ppm) might be recommended to green gram growers to sustainably increase the plant’s yield and nutritional value, and these findings may serve as a baseline for conducting more studies to test higher doses of these growth regulators. Full article
Show Figures

Figure 1

19 pages, 2806 KB  
Article
Exploring the Plant Growth-Promotion of Four Streptomyces Strains from Rhizosphere Soil to Enhance Cucumber Growth and Yield
by Ayman F. Omar, Adil H. A. Abdelmageed, Ahmad Al-Turki, Noha M. Abdelhameid, R. Z. Sayyed and Medhat Rehan
Plants 2022, 11(23), 3316; https://doi.org/10.3390/plants11233316 - 1 Dec 2022
Cited by 50 | Viewed by 5598
Abstract
The genus Streptomyces is the most abundant and essential microbes in the soil microbial community. Streptomyces are familiar and have great potential to produce a large variety of bioactive compounds. This genus considers an efficient biofertilizer based on its plant growth-promoting activities. Based [...] Read more.
The genus Streptomyces is the most abundant and essential microbes in the soil microbial community. Streptomyces are familiar and have great potential to produce a large variety of bioactive compounds. This genus considers an efficient biofertilizer based on its plant growth-promoting activities. Based on their ability to produce a wide varieties of bioactive molecules, the present study aimed to explore the potential plant growth promotion of four Streptomyces strains and their role in enhancing cucumber growth and yield under greenhouse conditions. Streptomyces sp. strain HM2, Streptomyces thinghirensis strain HM3, Streptomyces sp. strain HM8, and Streptomyces tricolor strain HM10 were chosen for the current study. Plant growth-promoting (PGP) features, i.e., indole acetic acid (IAA) production, siderophore excretion, and solubilizing phosphate, were evaluated in vitro. All four strains produced IAA, siderophore, and immobilized inorganic phosphate. Following 4 days of incubation at 30 °C, strains HM2, HM3, HM8, and HM10 produced copious amounts of IAA (18, 22, 62, and 146 µg/mL, respectively) and siderophores (42.59, 40.01, 16.84, 64.14% SU, respectively). At the same time, P solubilization efficacy scored 64.3%, 84.4%, 57.2%, and 81.6% with the same frequency. During in planta evaluation, selected Streptomyces strains combined with rock phosphate were assessed as biofertilizers on the growth and yield of cucumber plants. Under all treatments, positive and significant differences in studied traits were manifested except dry stem matter (SDM), net assimilation rate (NAR), relative growth rate (RGR), and fruit firmness (FF). Treatment T4 (rock phosphate + strain HM3) followed by T5 (rock phosphate + strain HM8) revealed the best results for plant height (PH), number of leaves per plant (NLPP), root length (RL), number of fruits per plant (NFPP), fruit length (FL), fruit diameter (FD), fruit fresh weight per plant (FFWPP), soil P (SP) after 21 DAT, and soil P at the end of the experiment. Notably, T6 (rock phosphate + strain HM10) caused a considerable increase in leaf area (LA). Plant growth-promoting bacteria enhance plant growth and yield through phosphorus solubilizing, improve nutrient availability, produce phytohormones, and support plant growth under abiotic stress. These features are important for sustainable agriculture and reducing environmental pollution with chemical fertilizers and pesticides. Full article
(This article belongs to the Special Issue Plant Growth Promoting Bacteria)
Show Figures

Figure 1

13 pages, 2716 KB  
Article
Screening Soybean for Adaptation to Relay Intercropping Systems: Associations between Reproductive Organ Abscission and Yield
by Qing Du, Ping Chen, Benchuan Zheng, Yongchun Hu, Wenyu Yang and Taiwen Yong
Agronomy 2022, 12(10), 2379; https://doi.org/10.3390/agronomy12102379 - 1 Oct 2022
Cited by 4 | Viewed by 2843
Abstract
The flower and pod abscission is one of the characteristics of soybean that severely limits yield, especially when intercropped with maize. Therefore, suitable soybean cultivars for intercropping are urgently needed to improve farmland productivity. We conducted a two-year field experiment to evaluate the [...] Read more.
The flower and pod abscission is one of the characteristics of soybean that severely limits yield, especially when intercropped with maize. Therefore, suitable soybean cultivars for intercropping are urgently needed to improve farmland productivity. We conducted a two-year field experiment to evaluate the flower and pod abscission, dry matter production, and yield advantages of 15 soybean cultivars. The results of the principal component analysis (PCA) and cluster analysis (CA) showed that 15 soybean cultivars were classified into three groups, i.e., high-yielding group (HYG), mid-yielding cultivars (MYG), and low-yielding cultivars (LYG). In the HYG group, ND12 and GX3 had characteristics of more flowers and pods and less abscission of flowers and pods. Moreover, the net assimilation rate (NAR) and relative growth rate (RGR) of HYG were significantly higher than the other. The HYG obtained a considerably higher partition ratio of 53% from biomass to seed than the other. Therefore, selecting and breeding cultivars with the characteristics of more flowers and pods and less abscission of flowers and pods can help to increase soybean yield in intercropping. Full article
(This article belongs to the Special Issue Crop Yield and Quality Response to Cultivation Practices)
Show Figures

Figure 1

13 pages, 1109 KB  
Article
The Influence of Different Row Spacing and Weed Control Intervals on Weed Infestation and Yield-Related Traits of American (Gossypium hirsutum L.) and Desi (Gossypium arboreum) Cotton
by Mubshar Hussain, Muhammad Haider Abbas, Abdul Majeed, Waqas Ahmed Minhas, Shahid Farooq and Khawar Jabran
Sustainability 2022, 14(16), 9867; https://doi.org/10.3390/su14169867 - 10 Aug 2022
Cited by 5 | Viewed by 2580
Abstract
Narrow row spacing has attracted significant attention due to its beneficial impacts on weed management in cotton. This study compared the effects of normal and ultra-narrow row spacing on critical periods of weed control in American (Gossypium hirsutum L.) and ‘Desi’ ( [...] Read more.
Narrow row spacing has attracted significant attention due to its beneficial impacts on weed management in cotton. This study compared the effects of normal and ultra-narrow row spacing on critical periods of weed control in American (Gossypium hirsutum L.) and ‘Desi’ (Gossypium arboreum) cotton. Two different row spacings (i.e., recommended (75 cm) and ultra-narrow (30 cm)) and three weed control intervals (i.e., weed control at 30, 60 and 90 days after sowing (DAS)) were included in the study. Weedy-check and weed-free treatments were included in the experiment as controls for comparison. ‘Desi’ cotton grown under ultra-narrow spacing recorded the lowest weed density and individual density of Trianthema portulacastarum L., Cyperus rotundus L., Cynodon dactylon L., Echinochloa colona (L.) Link and Digera muricata (L.) Mart. Moreover, ‘Desi’ cotton sown under ultra-narrow spacing with weed-free and weed control at 30 DAS resulted in the highest leaf area index (LAI), leaf area duration (LAD), net assimilation late (NAR), root elongation rate (RER) and root growth rate (RGR) at all sampling dates. Likewise, ‘desi’ cotton sown under recommended row spacing and weed-free conditions produced the highest number of sympodial and monopodial branches, number of flowers and bolls per plant, whereas the highest seed cotton yield of ‘Desi’ cotton was noted under ultra-narrow spacing and weed-free conditions. It is concluded that sowing both cotton types in ultra-narrow row spacing and controlling weeds at 30 DAS will result in lower weed infestation and higher seed cotton yield. Full article
(This article belongs to the Special Issue Sustainable Weed Control under Climate Change)
Show Figures

Figure 1

Back to TopTop