Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,555)

Search Parameters:
Keywords = neighborhood analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7266 KiB  
Article
Relationship Between Aggregation Index and Change in the Values of Some Landscape Metrics as a Function of Cell Neighborhood Choice
by Paolo Zatelli, Clara Tattoni and Marco Ciolli
ISPRS Int. J. Geo-Inf. 2025, 14(8), 304; https://doi.org/10.3390/ijgi14080304 - 5 Aug 2025
Abstract
Landscape metrics are one of the main tools for studying changes in the landscape and the ecological structure of the territory. However, the calculation of some metrics yields significantly different values depending on the configuration of the “Cell neighborhood” (CN) used. This makes [...] Read more.
Landscape metrics are one of the main tools for studying changes in the landscape and the ecological structure of the territory. However, the calculation of some metrics yields significantly different values depending on the configuration of the “Cell neighborhood” (CN) used. This makes the comparison of different analysis results often impossible. In fact, although the metrics are defined in the same way for all software, the choice of a CN with four cells, which includes only the elements on the same row or column, or eight cells, which also includes the cells on the diagonal, changes their value. QGIS’ LecoS plugin uses the value eight while GRASS’ r.li module uses the value four and these values are not modifiable by users. A previous study has shown how the value of the CN used for the calculation of landscape metrics is rarely explicit in scientific publications and its value cannot always be deduced from the indication of the software used. The difference in value for the same metric depends on the CN configuration and on the compactness of the patches, which can be expressed through the Aggregation Index (AI), of the investigated landscape. The scope of this paper is to explore the possibility of deriving an analytical relationship between the Aggregation Index and the variation in the values of some landscape metrics as the CN varies. The numerical experiments carried out in this research demonstrate that it is possible to estimate the differences in landscape metrics evaluated with a four and eight CN configuration using polynomials only for few metrics and only for some intervals of AI values. This analysis combines different Free and Open Source Software (FOSS) systems: GRASS GIS for the creation of test maps and R landscapemetrics package for the calculation of landscape metrics and the successive statistical analysis. Full article
Show Figures

Figure 1

21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Viewed by 60
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 8930 KiB  
Article
Beyond Homogeneous Perception: Classifying Urban Visitors’ Forest-Based Recreation Behavior for Policy Adaptation
by Young-Jo Yun, Ga Eun Choi, Ji-Ye Lee and Yun Eui Choi
Land 2025, 14(8), 1584; https://doi.org/10.3390/land14081584 - 3 Aug 2025
Viewed by 197
Abstract
Urban forests, as a form of green infrastructure, play a vital role in enhancing urban resilience, environmental health, and quality of life. However, users perceive and utilize these spaces in diverse ways. This study aims to identify latent perception types among urban forest [...] Read more.
Urban forests, as a form of green infrastructure, play a vital role in enhancing urban resilience, environmental health, and quality of life. However, users perceive and utilize these spaces in diverse ways. This study aims to identify latent perception types among urban forest visitors and analyze their behavioral, demographic, and policy-related characteristics in Incheon Metropolitan City (Republic of Korea). Using latent class analysis, four distinct visitor types were identified: multipurpose recreationists, balanced relaxation seekers, casual forest users, and passive forest visitors. Multipurpose recreationists preferred active physical use and sports facilities, while balanced relaxation seekers emphasized emotional well-being and cultural experiences. Casual users engaged lightly with forest settings, and passive forest visitors exhibited minimal recreational interest. Satisfaction with forest elements such as vegetation, facilities, and management conditions varied across visitor types and age groups, especially among older adults. These findings highlight the need for perception-based green infrastructure planning. Policy recommendations include expanding accessible neighborhood green spaces for aging populations, promoting community-oriented events, and offering participatory forest programs for youth engagement. By integrating user segmentation into urban forest planning and governance, this study contributes to more inclusive, adaptive, and sustainable management of urban green infrastructure. Full article
Show Figures

Graphical abstract

26 pages, 1669 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 - 1 Aug 2025
Viewed by 174
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
49 pages, 10031 KiB  
Article
Redefining Urban Boundaries for Health Planning Through an Equity Lens: A Socio-Demographic Spatial Analysis Model in the City of Rome
by Elena Mazzalai, Susanna Caminada, Lorenzo Paglione and Livia Maria Salvatori
Land 2025, 14(8), 1574; https://doi.org/10.3390/land14081574 - 31 Jul 2025
Viewed by 201
Abstract
Urban health planning requires a multi-scalar understanding of the territory, capable of capturing socio-economic inequalities and health needs at the local level. In the case of Rome, current administrative subdivisions—Urban Zones (Zone Urbanistiche)—are too large and internally heterogeneous to serve as [...] Read more.
Urban health planning requires a multi-scalar understanding of the territory, capable of capturing socio-economic inequalities and health needs at the local level. In the case of Rome, current administrative subdivisions—Urban Zones (Zone Urbanistiche)—are too large and internally heterogeneous to serve as effective units for equitable health planning. This study presents a methodology for the territorial redefinition of Rome’s Municipality III, aimed at supporting healthcare planning through an integrated analysis of census sections. These were grouped using a combination of census-based socio-demographic indicators (educational attainment, employment status, single-person households) and real estate values (OMI data), alongside administrative and road network data. The resulting territorial units—21 newly defined Mesoareas—are smaller than Urban Zones but larger than individual census sections and correspond to socio-territorially homogeneous neighborhoods; this structure enables a more nuanced spatial understanding of health-related inequalities. The proposed model is replicable, adaptable to other urban contexts, and offers a solid analytical basis for more equitable and targeted health planning, as well as for broader urban policy interventions aimed at promoting spatial justice. Full article
Show Figures

Figure 1

22 pages, 3025 KiB  
Article
Exploring the Spatial Association Between Spatial Categorical Data Using a Fuzzy Geographically Weighted Colocation Quotient Method
by Ling Li, Lian Duan, Meiyi Li and Xiongfa Mai
ISPRS Int. J. Geo-Inf. 2025, 14(8), 296; https://doi.org/10.3390/ijgi14080296 - 29 Jul 2025
Viewed by 162
Abstract
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to [...] Read more.
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to define the scale effect, which can lead to scale sensitivity and discontinuity results. To address these limitations, this study introduces the Fuzzy Geographically Weighted Colocation Quotient (FGWCLQ) method. By integrating fuzzy theory, FGWCLQ replaces binary distance cutoffs with continuous membership functions, providing a more flexible and stable approach to spatial association mining. Using Point of Interest (POI) data from the Beijing urban area, FGWCLQ was applied to explore both intra- and inter-category spatial association patterns among star hotels, transportation facilities, and tourist attractions at different fuzzy neighborhoods. The results indicate that FGWCLQ can reliably discover global prevalent spatial associations among diverse facility types and visualize the spatial heterogeneity at various spatial scales. Compared to the deterministic GWCLQ method, FGWCLQ delivers more stable and robust results across varying spatial scales and generates more continuous association surfaces, which enable clear visualization of hierarchical clustering. Empirical findings provide valuable insights for optimizing the location of star hotels and supporting decision-making in urban planning. The method is available as an open-source Matlab package, providing a practical tool for diverse spatial association investigations. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

29 pages, 16630 KiB  
Article
Impact of Radar Data Assimilation on the Simulation of Typhoon Morakot
by Lingkun Ran and Cangrui Wu
Atmosphere 2025, 16(8), 910; https://doi.org/10.3390/atmos16080910 - 28 Jul 2025
Viewed by 222
Abstract
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures [...] Read more.
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures up to at least 12 h. For the case of typhoon Morakot (2009), Taiwan radar data was assimilated to adjust the dynamic and thermodynamic structures of the vortex in the model initialization by the three-dimensional variation data assimilation system in the Advanced Region Prediction System (ARPS). The radial wind was directly assimilated to tune the original unbalanced velocity fields through a 3-dimensional variation method, and complex cloud analysis was conducted by using the reflectivity data. The influence of radar data assimilation on typhoon prediction was examined at the stages of Morakot landing on Taiwan Island and subsequently going inland. The results showed that the assimilation made some improvement in the prediction of vortex intensity, track, and structures in the initialization and subsequent forecast. For example, besides deepening the central sea level pressure and enhancing the maximum surface wind speed, the radar data assimilation corrected the typhoon center movement to the best track and adjusted the size and inner-core structure of the vortex to be close to the observations. It was also shown that the specific humidity adjustment in the cloud analysis procedure during the assimilation time window played an important role, producing more hydrometeors and tuning the unbalanced moisture and temperature fields. The neighborhood-based ETS revealed that the assimilation with the specific humidity adjustment was propitious in improving forecast skill, specifically for smaller-scale reflectivity at the stage of Morakot landing, and for larger-scale reflectivity at the stage of Morakot going inland. The calculation of the intensity-scale skill score of the hourly precipitation forecast showed the assimilation with the specific humidity adjustment performed skillful forecasting for the spatial forecast-error scales of 30–160 km. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

26 pages, 5975 KiB  
Article
A Detailed Performance Evaluation of the GK2A Fog Detection Algorithm Using Ground-Based Visibility Meter Data (2021–2023, Part I)
by Hyun-Kyoung Lee and Myoung-Seok Suh
Remote Sens. 2025, 17(15), 2596; https://doi.org/10.3390/rs17152596 - 25 Jul 2025
Viewed by 313
Abstract
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood [...] Read more.
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood pixel approaches to the visibility meter, the 3-year average probability of detection (POD) is 0.59 and 0.70, the false alarm ratio (FAR) is 0.86 and 0.81, and the bias is 4.25 and 3.73, respectively. POD is highest during daytime (0.72; bias: 7.34), decreases at night (0.57; bias: 3.89), and is lowest at twilight (0.52; bias: 2.36). The seasonal mean POD is 0.65 in winter, 0.61 in spring and autumn, and 0.47 in summer, with August reaching the minimum value, 0.33. While POD is higher in coastal areas than inland areas, inland regions show lower FAR, indicating more stable performance. Over-detections occurred regardless of geographic location and time, mainly due to the misclassification of low-level clouds and cloud edges as fog. Especially after sunrise, the fog dissipated and transformed into low-level clouds. These findings suggest that there are limitations to improving fog detection levels using satellite data alone, especially when the surface is obscured by clouds, indicating the need to utilize other data sources, such as objective ground-based analysis data. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

23 pages, 907 KiB  
Article
Mediating Power of Place Attachment for Urban Residents’ Well-Being in Community Cohesion
by Tingting Liu, Xiaoqi Shen and Tiansheng Xia
Sustainability 2025, 17(15), 6756; https://doi.org/10.3390/su17156756 - 24 Jul 2025
Viewed by 294
Abstract
The structure and interpersonal interactions of traditional residential communities have also been impacted and recreated as a result of the fast development of urban space and related communities. This study explores the interrelationship between neighborhood social cohesion and the life satisfaction of urban [...] Read more.
The structure and interpersonal interactions of traditional residential communities have also been impacted and recreated as a result of the fast development of urban space and related communities. This study explores the interrelationship between neighborhood social cohesion and the life satisfaction of urban adult residents through the mediating effect of place attachment. A comprehensive theoretical model was constructed to analyze the action mechanism among these variables. Data were collected through an online questionnaire platform (n = 301), and structural equation modeling (PLS-SEM) was employed for analysis. The findings revealed a significant positive relationship between neighborhood social cohesion and residents’ place attachment. Place attachment appeared to play a mediating role between neighborhood social cohesion and life satisfaction, in which place dependence was also a potential effective mediator between the three dimensions of neighborhood social cohesion (neighborliness, sense of community, and neighborhood attractiveness) and life satisfaction. The results suggest that enhancing community cohesion may contribute to urban adult residents’ well-being by strengthening their functional dependence on the community. Full article
Show Figures

Figure 1

27 pages, 6977 KiB  
Article
Urbanization and Health Inequity in Sub-Saharan Africa: Examining Public Health and Environmental Crises in Douala, Cameroon
by Babette Linda Safougne Djomekui, Chrétien Ngouanet and Warren Smit
Int. J. Environ. Res. Public Health 2025, 22(8), 1172; https://doi.org/10.3390/ijerph22081172 - 24 Jul 2025
Viewed by 373
Abstract
Africa’s rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are [...] Read more.
Africa’s rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are not simply the result of urban growth but are shaped by spatial inequities, historical legacies, and systemic exclusion. Disadvantaged neighborhoods are particularly impacted, becoming epicenters of health crises. Using a mixed-methods approach combining spatial analysis, household surveys and interviews, the study identifies three key findings: (1) Healthcare services in Douala are unevenly distributed and dominated by private providers, which limits access for low-income residents. (2) Inadequate infrastructure and environmental risks in informal settlements lead to a higher disease burden and an overflow of demand into better-equipped districts, which overwhelms public health centers across the city. (3) This structural mismatch fuels widespread reliance on informal and unregulated care practices. This study positions Douala as a microcosm of broader public health challenges in rapidly urbanizing African cities. It highlights the need for integrated urban planning and health system reforms that address spatial inequalities, strengthen public health infrastructure, and prioritize equity—key principles for achieving the third Sustainable Development Goal (ensuring good health and well-being for all residents) in sub-Saharan Africa. Full article
(This article belongs to the Special Issue SDG 3 in Sub-Saharan Africa: Emerging Public Health Issues)
Show Figures

Figure 1

17 pages, 2809 KiB  
Article
Analysis of Spatiotemporal Characteristics of Microseismic Monitoring Data in Deep Mining Based on ST-DBSCAN Clustering Algorithm
by Jingxiao Yu, Hongsen He, Zongquan Liu, Xinzhe He, Fengwei Zhou, Zhihao Song and Dingding Yang
Processes 2025, 13(8), 2359; https://doi.org/10.3390/pr13082359 - 24 Jul 2025
Viewed by 237
Abstract
Analyzing the spatiotemporal characteristics of microseismic monitoring data is crucial for the monitoring and early prediction of coal–rock dynamic disasters during deep mining. Aiming to address the challenges hampering the early prediction of coal–rock dynamic disasters in deep mining, in this paper, we [...] Read more.
Analyzing the spatiotemporal characteristics of microseismic monitoring data is crucial for the monitoring and early prediction of coal–rock dynamic disasters during deep mining. Aiming to address the challenges hampering the early prediction of coal–rock dynamic disasters in deep mining, in this paper, we propose a method for analyzing the spatiotemporal characteristics of microseismic events in deep mining based on the ST-DBSCAN algorithm. First, a spatiotemporal distance metric model integrating temporal and spatial distances was constructed to accurately describe the correlations between microseismic events in spatiotemporal dimensions. Second, along with the spatiotemporal distribution characteristics of microseismic data, we determined the spatiotemporal neighborhood parameters suitable for deep-mining environments. Finally, we conducted clustering analysis of 14 sets of actual microseismic monitoring data from the Xinjulong Coal Mine. The results demonstrate the precise identification of two characteristic clusters, namely middle-layer mining disturbances and deep-seated activities, along with isolated high-magnitude events posing significant risks. Full article
Show Figures

Figure 1

28 pages, 3632 KiB  
Article
Life-Centered City: Interspecies Spaces in Contemporary Resilient City Design—The Case of Gliwice
by Paulina Konsek and Alina Pancewicz
Sustainability 2025, 17(15), 6713; https://doi.org/10.3390/su17156713 - 23 Jul 2025
Viewed by 400
Abstract
The subject of this research is the original project concept of the life-centered city, which focuses on the planning and design of sustainable solutions for urban landscape transformation. This concept prioritizes the well-being and needs of all life on Earth, including not only [...] Read more.
The subject of this research is the original project concept of the life-centered city, which focuses on the planning and design of sustainable solutions for urban landscape transformation. This concept prioritizes the well-being and needs of all life on Earth, including not only humans but also animals and their natural habitats. The aim of this article is to propose ways to implement the life-centered city concept into the strategic development policies of cities and identify sustainable urban landscape solutions that foster the creation of interspecies spaces. The research employs a comparative analysis of selected European cities, neighborhoods, and urban microspaces that are progressively adapting to climate change, addressing the needs of various users, and prioritizing the development of interspecies spaces. A detailed study focuses on the Polish city of Gliwice, which serves as a pilot example of applying the life-centered city model to local landscapes. Our findings suggest that the life-centered city concept, when effectively integrated into city development strategies and implemented within the urban fabric, can act as a proactive tool for transforming urban landscapes to better accommodate both people and nature. It supports the creation of a sustainable built environment that is inclusive, resilient, and adaptable to change. Full article
Show Figures

Figure 1

21 pages, 1024 KiB  
Article
When the Map Does Not Tell the Whole Story: Integrating Community Voices into GIS Gentrification Analysis
by Ivis García
Land 2025, 14(8), 1510; https://doi.org/10.3390/land14081510 - 22 Jul 2025
Viewed by 494
Abstract
This exploratory case study examines the alignment between GIS-based displacement models and lived experiences of residents in Salt Lake City, addressing the benefits and limitations of spatial tools in capturing urban displacement complexities. By comparing the Urban Displacement Project’s Estimated Displacement Risk (EDR) [...] Read more.
This exploratory case study examines the alignment between GIS-based displacement models and lived experiences of residents in Salt Lake City, addressing the benefits and limitations of spatial tools in capturing urban displacement complexities. By comparing the Urban Displacement Project’s Estimated Displacement Risk (EDR) model with qualitative interviews from diverse neighborhoods, the research highlights discrepancies between predictive outputs and community narratives. The findings reveal that while GIS models effectively identify displacement hotspots, they often underestimate risks in areas with high homeownership or recent development. Conversely, resident interviews provide valuable insights into emerging displacement pressures that GIS may overlook. This study underscores the importance of integrating spatial analysis with community engagement to produce more equitable land-use planning strategies. The study contributes to urban governance and sustainable development by advocating for policies that prioritize the voices of vulnerable populations, fostering more resilient and inclusive cities. Full article
(This article belongs to the Special Issue Smart Land Use Planning II)
Show Figures

Figure 1

35 pages, 10235 KiB  
Article
GIS-Driven Spatial Planning for Resilient Communities: Walkability, Social Cohesion, and Green Infrastructure in Peri-Urban Jordan
by Sara Al-Zghoul and Majd Al-Homoud
Sustainability 2025, 17(14), 6637; https://doi.org/10.3390/su17146637 - 21 Jul 2025
Viewed by 445
Abstract
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle [...] Read more.
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle emissions, mitigate urban heat island effects, and enhance the resilience of green infrastructure in peri-urban contexts. Using Deir Ghbar, a rapidly developing marginal area on Amman’s western edge, as a case study, we combine objective walkability metrics (street connectivity and residential and retail density) with GIS-based spatial regression analysis to examine relationships with residents’ sense of community. Employing a quantitative, correlational research design, we assess walkability using a composite objective walkability index, calculated from the land-use mix, street connectivity, retail density, and residential density. Our results reveal that higher residential density and improved street connectivity significantly strengthen social cohesion, whereas low-density zones reinforce spatial and socioeconomic disparities. Furthermore, the findings highlight the potential of targeted green infrastructure interventions, such as continuous street tree canopies and permeable pavements, to enhance pedestrian comfort and urban ecological functions. By visualizing spatial patterns and correlating built-environment attributes with community outcomes, this research provides actionable insights for policymakers and urban planners. These strategies contribute directly to several Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), by fostering more inclusive, connected, and climate-resilient neighborhoods. Deir Ghbar emerges as a model for scalable, GIS-driven spatial planning in rural and marginal peri-urban areas throughout Jordan and similar regions facing accelerated urban transitions. By correlating walkability metrics with community outcomes, this study operationalizes SDGs 11 and 13, offering a replicable framework for climate-resilient urban planning in arid regions. Full article
Show Figures

Figure 1

20 pages, 5236 KiB  
Article
Leakage Detection in Subway Tunnels Using 3D Point Cloud Data: Integrating Intensity and Geometric Features with XGBoost Classifier
by Anyin Zhang, Junjun Huang, Zexin Sun, Juju Duan, Yuanai Zhang and Yueqian Shen
Sensors 2025, 25(14), 4475; https://doi.org/10.3390/s25144475 - 18 Jul 2025
Viewed by 362
Abstract
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics [...] Read more.
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics of leakage patterns. To address these limitations, this study proposes a classification method based on XGBoost classifier, integrating both intensity and geometric features. The proposed methodology comprises the following steps: First, a RANSAC algorithm is employed to filter out noise from tunnel objects, such as facilities, tracks, and bolt holes, which exhibit intensity values similar to leakage. Next, intensity features are extracted to facilitate the initial separation of leakage regions from the tunnel lining. Subsequently, geometric features derived from the k neighborhood are incorporated to complement the intensity features, enabling more effective segmentation of leakage from the lining structures. The optimal neighborhood scale is determined by selecting the scale that yields the highest F1-score for leakage across various multiple evaluated scales. Finally, the XGBoost classifier is applied to the binary classification to distinguish leakage from tunnel lining. Experimental results demonstrate that the integration of geometric features significantly enhances leakage detection accuracy, achieving an F1-score of 91.18% and 97.84% on two evaluated datasets, respectively. The consistent performance across four heterogeneous datasets indicates the robust generalization capability of the proposed methodology. Comparative analysis further shows that XGBoost outperforms other classifiers, such as Random Forest, AdaBoost, LightGBM, and CatBoost, in terms of balance of accuracy and computational efficiency. Moreover, compared to deep learning models, including PointNet, PointNet++, and DGCNN, the proposed method demonstrates superior performance in both detection accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

Back to TopTop