Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = negative-lift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3380 KiB  
Article
The Effect of Airfoil Geometry Variation on the Efficiency of a Small Wind Turbine
by José Rafael Dorrego Portela, Orlando Lastres Danguillecurt, Víctor Iván Moreno Oliva, Eduardo Torres Moreno, Cristofer Aguilar Jimenez, Liliana Hechavarría Difur, Quetzalcoatl Hernandez-Escobedo and Jesus Alejandro Franco
Technologies 2025, 13(8), 328; https://doi.org/10.3390/technologies13080328 - 1 Aug 2025
Viewed by 153
Abstract
This study analyzes the impact of geometric variations induced by the manufacturing process on the aerodynamic efficiency of an airfoil used in the design of a 3 kW wind turbine blade. For this purpose, a computational fluid dynamics (CFD) analysis was implemented, and [...] Read more.
This study analyzes the impact of geometric variations induced by the manufacturing process on the aerodynamic efficiency of an airfoil used in the design of a 3 kW wind turbine blade. For this purpose, a computational fluid dynamics (CFD) analysis was implemented, and the results were compared with those obtained using QBlade software. After blade fabrication, experimental evaluation was performed using the laser triangulation technique, enabling the reconstruction of the deformed airfoils and their comparison with the original geometry. Additional CFD simulations were carried out on the manufactured airfoil to quantify the loss of aerodynamic efficiency due to geometrical deformations. The results show that the geometric deviations significantly affect the aerodynamic coefficients, generating a decrease in the lift coefficient and an increase in the drag coefficient, which negatively impacts the airfoil aerodynamic efficiency. A 14.9% reduction in the rotor power coefficient was observed with the deformed airfoils compared to the original design. This study emphasizes the importance of quality control in wind turbine blade manufacturing processes and its impact on turbine power performance. In addition, the findings can contribute to the development of design compensation strategies to mitigate the adverse effects of geometric imperfections on the aerodynamic performance of wind turbines. Full article
Show Figures

Figure 1

8 pages, 701 KiB  
Communication
Non-Influenza and Non-SARS-CoV-2 Viruses Among Patients with Severe Acute Respiratory Infections in Tanzania: A Post-COVID-19 Pandemic Snapshot
by Maria Ezekiely Kelly, Frank Msafiri, Francisco Averhoff, Jane Danda, Alan Landay, Azma Simba, Ambele Elia Mwafulango, Solomoni Mosha, Alex Magesa, Vida Mmbaga and Sandra S. Chaves
Viruses 2025, 17(8), 1042; https://doi.org/10.3390/v17081042 - 25 Jul 2025
Viewed by 471
Abstract
Respiratory pathogens are significant causes of morbidity and mortality worldwide. Since the emergence of SARS-CoV-2 in 2019 and the mitigation measures implemented to control the pandemic, other respiratory viruses’ transmission and circulation patterns were substantially disrupted. We leveraged the influenza hospitalization surveillance in [...] Read more.
Respiratory pathogens are significant causes of morbidity and mortality worldwide. Since the emergence of SARS-CoV-2 in 2019 and the mitigation measures implemented to control the pandemic, other respiratory viruses’ transmission and circulation patterns were substantially disrupted. We leveraged the influenza hospitalization surveillance in Tanzania to understand the distribution of respiratory viruses shortly after nonpharmaceutical interventions (NPIs) were lifted. A total of 475 samples that tested negative for SARS-CoV-2 and influenza from March through May 2022 were included in this study. The samples were tested for 16 virus targets using Anyplex II RV16 multiplex assays. The findings indicate that most hospitalizations (74%) were among children under 15 years, with human bocavirus (HBoV) being the most prevalent (26.8%), followed by rhinovirus (RV, 12.3%), parainfluenza viruses (PIVs1–4, 10.2%), respiratory syncytial virus (RSV, 8.7%), adenovirus (AdV, 4.3%), and metapneumovirus (MPV, 2.9%). Notably, 54% of respiratory hospitalizations had no viruses detected. The findings highlight the broad circulation of respiratory viruses shortly after NPIs were lifted in Tanzania. Surveillance for respiratory pathogens beyond influenza and SARS-CoV-2 can inform public health officials of emerging threats in the country and should be considered an important pandemic preparedness measure at a global level. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

19 pages, 5383 KiB  
Article
Design and Hydrodynamic Performance Analysis of Airlift Sediment Removal Equipment for Seedling Fish Tanks
by Yufei Zhang, Andong Liu, Chenglin Zhang, Chongwu Guan and Haigeng Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1236; https://doi.org/10.3390/jmse13071236 - 26 Jun 2025
Viewed by 334
Abstract
This study innovatively proposes a pipeline-type pneumatic lift sediment removal device for cleaning pollutants at the bottom of fish breeding tanks and conducts hydrodynamic characteristic analysis on its core component, the pneumatic lift pipeline structure, which consists of a horizontal circular tube with [...] Read more.
This study innovatively proposes a pipeline-type pneumatic lift sediment removal device for cleaning pollutants at the bottom of fish breeding tanks and conducts hydrodynamic characteristic analysis on its core component, the pneumatic lift pipeline structure, which consists of a horizontal circular tube with multiple micro-orifices at the bottom and an upward-inclined circular tube. The pipeline has an inner diameter of 20 mm and a vertical length of 1.2 m, with the orifice at one end of the horizontal tube connected to the gas supply line. During operation, compressed gas enters the horizontal tube, generating negative liquid pressure that draws solid–liquid mixtures from the tank bottom into the pipeline, while buoyant forces propel the gas–liquid–solid mixture upward for discharge through the outlet. Under a constant gas flow rate, numerical simulations investigated efficiency variations through three operational scenarios: ① different pipeline orifice diameters, ② varying orifice quantities and spacings, and ③ adjustable pipeline bottom clearance heights. The results indicate that in scenario ①, an orifice diameter of 4 mm demonstrated optimal efficiency; in scenario ②, the eight-orifice configuration achieved peak efficiency; and scenario ③ showed that the proper adjustment of the bottom clearance height enhances pneumatic efficiency, with maximum efficiency observed at a clearance of 10 mm between sediment suction pipe and tank bottom. Full article
Show Figures

Figure 1

20 pages, 6765 KiB  
Article
Effect of Precipitated Bubbles on the Behavior of Gas–Liquid Two-Phase Flow in Ruhrstahl Heraeus Refining
by Yihong Li, Zongyi Chen, Yan Tian, Dong Wang, Yibo He, Chengjian Hua, Zhifeng Ren and Pengju Zhang
Processes 2025, 13(5), 1484; https://doi.org/10.3390/pr13051484 - 12 May 2025
Cited by 1 | Viewed by 440
Abstract
In this study, through RH water model simulation experiments, the effects of precipitation bubbles on the two-phase flow pattern, liquid steel flow behavior, and flow characteristics in an RH reactor during the whole decarburization process were comparatively investigated and analyzed by using quasi-counts [...] Read more.
In this study, through RH water model simulation experiments, the effects of precipitation bubbles on the two-phase flow pattern, liquid steel flow behavior, and flow characteristics in an RH reactor during the whole decarburization process were comparatively investigated and analyzed by using quasi-counts that reflected the similarity of the precipitation bubble phenomenon. The experimental results show that an increase in precipitation bubbles is positively related to an increase in circulating flow rate, a reduction in mixing time, and an increase in gas content and negatively related to the residence time of liquid steel in the vacuum chamber. The two-phase flow pattern of the rising tube under the influence of precipitation bubbles includes bubble flow, slug flow, mixing flow, and churn flow. Under the influence of precipitation bubbles, the liquid surface spattering inside the vacuum chamber is reduced, the fluctuation amplitude is reduced, the efficiency of liquid steel processing is improved, it is not easy for cold steel to form, and the fluctuation frequency is increased, which is conducive to increasing the surface area of the vacuum chamber; the bubbles’ rising, aggregating, and crushing behavior increases the stirring effect inside the vacuum chamber, which is conducive to improving the decarburization and mass transfer rate. Under the influence of the precipitated bubbles, the concentration gradient between the ladle and the vacuum chamber is increased, which accelerates the mixing speed of the liquid steel in the ladle, and the volume of the dead zone is reduced by 50%. The lifting gas flow rate can be appropriately reduced in the plant. Full article
(This article belongs to the Special Issue Advanced Ladle Metallurgy and Secondary Refining)
Show Figures

Figure 1

12 pages, 7951 KiB  
Communication
Tropospheric NO2 Column over Tibet Plateau According to Geostationary Environment Monitoring Spectrometer: Spatial, Seasonal, and Diurnal Variations
by Xue Zhang, Chunxiang Ye, Jhoon Kim, Hanlim Lee, Junsung Park, Yeonjin Jung, Hyunkee Hong, Weitao Fu, Xicheng Li, Yuyang Chen, Xingyi Wu, Yali Li, Juan Li, Peng Zhang, Zhuoxian Yan, Jiaming Zhang, Song Liu and Lei Zhu
Remote Sens. 2025, 17(10), 1690; https://doi.org/10.3390/rs17101690 - 12 May 2025
Viewed by 709
Abstract
Nitrogen oxides (NOx) are key precursors of tropospheric ozone and particulate matter. The sparse local observations make it challenging to understand NOx cycling across the Tibetan Plateau (TP), which plays a crucial role in regional and global atmospheric processes. Here, [...] Read more.
Nitrogen oxides (NOx) are key precursors of tropospheric ozone and particulate matter. The sparse local observations make it challenging to understand NOx cycling across the Tibetan Plateau (TP), which plays a crucial role in regional and global atmospheric processes. Here, we utilized Geostationary Environment Monitoring Spectrometer (GEMS) data to examine the tropospheric NO2 vertical column density (ΩNO2) spatiotemporal variability over TP, a pristine environment marked with natural sources. GEMS observations revealed that the ΩNO2 over TP is generally low compared with surrounding regions with significant surface emissions, such as India and the Sichuan basin. A spatial decreasing trend of ΩNO2 is observed from the south and center to the north over Tibet. Unlike the surrounding regions, the TP exhibits opposing seasonal patterns and a negative correlation between the surface NO2 and ΩNO2. In the Lhasa and Nam Co areas within Xizang, the highest ΩNO2 in spring contrasts with the lowest surface concentration. Diurnally, a midday increase in ΩNO2 in the warm season reflects some external sources affecting the remote area. Trajectory analysis suggests strong convection lifted air mass from India and Southeast Asia into the upper troposphere over the TP. These findings highlight the mixing interplay of nonlocal and local NOx sources in shaping NO2 variability in a high-altitude environment. Future research should explore these transport mechanisms and their implications for atmospheric chemistry and climate dynamics over the TP. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

9 pages, 1138 KiB  
Article
Impact of Delayed Centrifugation on Interleukin 6 Determination in Human Blood
by Hannah L. Sauerwein, Derik F. Hermsen, Detlef Kindgen-Milles, Erik Michael, Johannes C. Fischer and Fritz Boege
Diagnostics 2025, 15(10), 1187; https://doi.org/10.3390/diagnostics15101187 - 8 May 2025
Viewed by 601
Abstract
Background/Objectives: Clinical experience indicates that the determination of interleukin 6 (IL-6) in human blood can vary depending on time span between sample collection and centrifugation. Here, we evaluated confounding effects in various blood specimens. Methods: The blood of healthy individuals and [...] Read more.
Background/Objectives: Clinical experience indicates that the determination of interleukin 6 (IL-6) in human blood can vary depending on time span between sample collection and centrifugation. Here, we evaluated confounding effects in various blood specimens. Methods: The blood of healthy individuals and critically ill patients was collected in EDTA-, heparin-, and serum collection tubes. Tubes were facultatively incubated (20 °C, 24–48 h) before centrifugation, and IL-6 was measured in the supernatant. Results: The preincubation of the blood collection tubes increased the IL-6 values in heparin plasma (in 17/20 samples up to 50-fold) and serum (in 17/20 samples up to 12-fold). These changes were relevant since the normal values were thereby lifted above the upper confidence limit in 12/20 heparin plasma samples and 4/20 serum samples. These IL-6 increases were probably due to in vitro synthesis as opposed to the release of preformed IL-6 from blood cells because subjecting uncentrifuged collection tubes to mechanical cell lyses had negligible effects on IL-6, while incubation with microbial stimulators dramatically increased these values. In the case of EDTA blood, collection tube preincubation induced IL-6 decreases in 17/20 samples from healthy individuals and 20/23 samples from critically ill patients. Conclusions: IL-6 determination in heparin plasma and serum is compromised by delayed centrifugation. This effect is relevant for normal values. It increased the number of false high results by >50%. The delayed centrifugation of EDTA blood decreased the IL-6 values, which caused a single false-negative result in 1/43 healthy and critically ill people. The false-negative rate is possibly higher in EDTA blood from non-critically ill out-patients, exhibiting moderately increased IL-6 levels. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

28 pages, 2632 KiB  
Article
A Neural Network Approach for Pricing Correlated Health Risks
by Alessandro G. Laporta, Susanna Levantesi and Lea Petrella
Risks 2025, 13(5), 82; https://doi.org/10.3390/risks13050082 - 24 Apr 2025
Viewed by 771
Abstract
In recent years, the actuarial literature involving machine learning in insurance pricing has flourished. However, most actuarial machine learning research focuses on property and casualty insurance, while using such techniques in health insurance is yet to be explored. In this paper, we discuss [...] Read more.
In recent years, the actuarial literature involving machine learning in insurance pricing has flourished. However, most actuarial machine learning research focuses on property and casualty insurance, while using such techniques in health insurance is yet to be explored. In this paper, we discuss the use of neural networks to set the price of health insurance coverage following the structure of a classical frequency-severity model. In particular, we propose negative multinomial neural networks to jointly model the frequency of possibly correlated medical claims and Gamma neural networks to estimate the expected claim severity. Using a case study based on real-world health insurance data, we highlight the overall better performance of the neural network models with respect to more established regression models, both in terms of accuracy (frequency models achieve an average out-of-sample deviance of 8.54 compared to 8.61 for classical regressions) and risk diversification, as indicated by the ABC lift metric, which is 5.62×103 for neural networks versus 8.27×103 for traditional models. Full article
Show Figures

Figure 1

21 pages, 7771 KiB  
Article
Experimental Study on the Uplift Correction of Raft Foundations in Saturated Silty Clay
by Tengyue Cui, Yingguang Shi and Feng Huang
Buildings 2025, 15(9), 1415; https://doi.org/10.3390/buildings15091415 - 23 Apr 2025
Viewed by 428
Abstract
Although grouting technology has been widely applied for lifting and rectifying tilted structures, theoretical research remains underdeveloped and lags behind the practical demands of engineering applications. In this study, a self-developed experimental setup was utilized to conduct model tests on the lifting and [...] Read more.
Although grouting technology has been widely applied for lifting and rectifying tilted structures, theoretical research remains underdeveloped and lags behind the practical demands of engineering applications. In this study, a self-developed experimental setup was utilized to conduct model tests on the lifting and rectification of a raft foundation in saturated silty clay. The evolution patterns of ground surface displacement, excess pore water pressure, and foundation-additional pressure induced by grouting were systematically analyzed. Furthermore, the influence of grouting depth and injection rate on surface displacement, excess pore water pressure, foundation-additional pressure, and grouting parameters (grout volume and pressure) was investigated. The key findings are summarized as follows: The grouting efficiency (η) ranged between 0.72 and 0.81. A power-exponential dual-function model was proposed to quantify the spatiotemporal evolution of excess pore water pressure, achieving a distance–decay power function with R2 > 0.89 and a time-dependent dissipation exponential function with R2 > 0.94. The maximum surface uplift displacement decreased by 20.6% and 8.9% with increasing grouting rates, respectively. The dissipation time of excess pore water pressure exhibited a negative correlation with the grouting rate, and grouting efficiency declined as excess pore water pressure dissipated. The maximum foundation-additional pressure occurred directly above the grouting center and gradually diminished as the horizontal distance from the grouting location increased. Variations in surface displacement, excess pore water pressure, and additional base pressure induced by grouting were systematically analyzed. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 12039 KiB  
Article
The Design and Testing of a Combined Operation Machine for Corn Straw Crushing and Residual Film Recycling
by Jiuxin Wang, Wuyun Zhao, Xiaolong Liu, Fei Dai, Ruijie Shi, Keping Zhang, Xiaoyang Wang, Wenhui Zhang and Jiadong Liang
Agriculture 2025, 15(9), 916; https://doi.org/10.3390/agriculture15090916 - 22 Apr 2025
Cited by 2 | Viewed by 406
Abstract
To address the negative impacts in recovering large areas of residual plastic film from corn stubble in the Hexi irrigation area—such as the residual film containing substantial amounts of soil, corn stubble, and corn straw, and high power consumption during the operation process—in [...] Read more.
To address the negative impacts in recovering large areas of residual plastic film from corn stubble in the Hexi irrigation area—such as the residual film containing substantial amounts of soil, corn stubble, and corn straw, and high power consumption during the operation process—in this study, a combined operation machine was designed for corn straw crushing and residual film recovery. The machine consisted of a double-wing, single-blade shovel for lifting the film and cutting corn stubble, a corn straw-crushing and returning device for reducing the residual film impurity rate, an eccentric teeth shifting cylinder for picking up residual film, a device for shifting residual film, and a collection device for bundling residual film. The key components of the combined operation machine were designed based on an agronomic model for corn planting and the mechanized operation requirements in the Hexi irrigation area. The optimal combination of operating parameters was devised based on theoretical calculations and single- and multifactor simulation tests. The results showed that when the angle of entry of the film-lifting shovel was 25.14°, the rotational speed of the eccentric teeth shifting cylinder was 80.96 rpm, and the forward velocity of the machine was 4.03 km/h, while the rate of recovery of residual film was 92.56%. The field test showed that the residual film contained 16.65% impurities, and the qualified rate of corn straw crushing was 88.51%, with a relative error of 0.65% from the optimized value. The experimental results provide theoretical support and a design reference for research on the mechanized recycling of residual film in large areas of corn stubble. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 2569 KiB  
Article
The Effect of the Marine Environment on the Distribution of Sthenoteuthis oualaniensis in the East Equatorial Indian Ocean
by Shigang Liu, Liyan Zhang, Peng Lian, Jianhua Kang, Puqing Song, Xing Miao, Longshan Lin, Rui Wang and Yuan Li
Fishes 2025, 10(4), 184; https://doi.org/10.3390/fishes10040184 - 17 Apr 2025
Viewed by 336
Abstract
Sthenoteuthis oualaniensis is one of the most commercially important marine cephalopod species distributed throughout tropical and subtropical waters of the Indo-Pacific Seas. The Indian Ocean is a main fishing ground for S. oualaniensis with a high population density. To explore the distribution of [...] Read more.
Sthenoteuthis oualaniensis is one of the most commercially important marine cephalopod species distributed throughout tropical and subtropical waters of the Indo-Pacific Seas. The Indian Ocean is a main fishing ground for S. oualaniensis with a high population density. To explore the distribution of S. oualaniensis in the east equatorial Indian Ocean, four surveys were carried out using light-lift-net fishing vessels. Meanwhile, marine environmental data were also collected, including the sea surface temperature, sea temperature at 100 m depth, mixed layer depth, sea surface chlorophyll-a concentration, sea surface height, and eddy kinetic energy. Generalized Additive Models were used to analyze the relationship between the catch per unit effort (CPUE) for S. oualaniensis and environmental factors. The results showed that the average CPUE of S. oualaniensis was 14.55 kg/h in the four surveys, which was considerably lower than in the South China Sea and Northwest Indian Ocean. In terms of seasonal distribution, the high-CPUE stations were closer to the continental shelf in spring, while they shifted towards the deeper and offshore water in autumn, demonstrating a seasonal migration trend. Pearson correlation analysis showed that CPUE reflected a significant negative correlation with both sea temperature at 100 m depth and eddy kinetic energy (p < 0.001). The Generalized Additive Models revealed that sea surface height was the most significant factor affecting CPUE with a variance explanation of 30.1%. Furthermore, the optimal CPUE prediction model was established by stepwise regression, which contains two factors, sea surface height and eddy kinetic energy, with a variance explanation of 34.9%. This study provides insights into the environmental factors influencing the distribution of S. oualaniensis, which is essential for the sustainable utilization and management of this species. Full article
(This article belongs to the Special Issue Assessment and Management of Fishery Resources)
Show Figures

Figure 1

24 pages, 2953 KiB  
Article
Research on the Coupled Bending–Torsional Flutter Mechanism for Ideal Plate
by Guang Hong, Jiawu Li, Song Cai and Jiaying Wang
Appl. Sci. 2025, 15(7), 3611; https://doi.org/10.3390/app15073611 - 25 Mar 2025
Viewed by 404
Abstract
In order to explore the inducing mechanism of negative damping of bending–torsional coupling flutter, an ideal plate with a width of 0.45 m was taken as the research object. The changes in frequency, critical wind speed, aerodynamic stiffness, and aerodynamic damping were systematically [...] Read more.
In order to explore the inducing mechanism of negative damping of bending–torsional coupling flutter, an ideal plate with a width of 0.45 m was taken as the research object. The changes in frequency, critical wind speed, aerodynamic stiffness, and aerodynamic damping were systematically analyzed by using the “incentive-feedback” mechanism theory. The source of modal damping and the inducing mechanism of bending–torsional coupling flutter were identified. The research results show that the torsional modal damping of the ideal plate mainly comes from the aerodynamic positive damping of the torsional velocity self-excitation (A2*) and the aerodynamic negative damping of the torsional displacement incentive feedback (A1*H3*). Among them, the aerodynamic negative damping of the item (A1*H3*) causes the torsional mode damping to be negative, and the ideal plate undergoes bending–torsion-coupled flutter under the drive of the torsional mode aerodynamic negative damping. The reason why the aerodynamic damping of the item (A1*H3*) is negative depends on two aspects: one is that the flutter derivatives A1* and H3* have opposite signs; the second is that the torsional displacement self-excited lift excites the vertical vibration to produce negative stiffness mhωsα2. This results in the phase difference between the torsional displacement self-excited lift and the vertical displacement response in the range of (90–180°). Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

13 pages, 5052 KiB  
Article
The Influence of Wing Membrane Elasticity on Aerodynamics in a Bat-Inspired Flapping Robot
by Szu-I Yeh and Chia-Hsu Chiang
Biomimetics 2025, 10(3), 161; https://doi.org/10.3390/biomimetics10030161 - 5 Mar 2025
Cited by 3 | Viewed by 1046
Abstract
This study investigates the aerodynamic effects of wing membrane elasticity inspired by bats, which exhibit exceptional maneuverability and stability. By mimicking bat wing folding and flapping motions, a 2-DOF flapping mechanism was developed to examine the impact of wing membrane elasticity. Polydimethylsiloxane (PDMS) [...] Read more.
This study investigates the aerodynamic effects of wing membrane elasticity inspired by bats, which exhibit exceptional maneuverability and stability. By mimicking bat wing folding and flapping motions, a 2-DOF flapping mechanism was developed to examine the impact of wing membrane elasticity. Polydimethylsiloxane (PDMS) membranes with tunable elastic properties were fabricated by adjusting the ratio of the curing agent (B agent), with the 1/50 ratio exhibiting the greatest extensibility and the lowest Young’s modulus. Experimental results demonstrate that wing membrane elasticity significantly influences aerodynamic performance. During flapping, increased elasticity led to larger camber changes, enhancing vertical lift through stronger leading-edge vortices, as confirmed by PIV flow field measurements. However, when elasticity became excessively high, as in the 1/50 membrane, the lift benefit diminished, and horizontal force decreased, indicating a trade-off between vertical and horizontal aerodynamic performance. Additionally, the folding mechanism was found to be critical for drag reduction, reducing nearly 50% of negative horizontal forces during flight. By integrating adjustable wing membrane properties and a bioinspired flapping mechanism, this research provides valuable insights into the aerodynamic characteristics of bat flight. These findings not only enhance the understanding of flapping wing aerodynamics but also offer guidance for the design of efficient and agile bioinspired aerial vehicles. Full article
(This article belongs to the Special Issue Bioinspired Flapping Wing Aerodynamics: Progress and Challenges)
Show Figures

Figure 1

25 pages, 13569 KiB  
Article
Enhancing Aerodynamic Performance of Horizontal Axis Wind Turbine Blade Aerodynamic Performance Under Rough Wall Condition Using Vortex Generators
by Yingjian Yang, Dian Wang, Hairui Zhang, Rongyu Zha, Guangxing Wu, Chang Cai, Jianhua Zhang and Qing’an Li
J. Mar. Sci. Eng. 2025, 13(3), 397; https://doi.org/10.3390/jmse13030397 - 21 Feb 2025
Cited by 1 | Viewed by 983
Abstract
In the complex and harsh working environment of wind turbines, the horizontal axis wind turbine blade is increasingly confronted with the issue of surface roughening. It leads to a decrease and instability in the output power of the horizontal axis wind turbine. Vortex [...] Read more.
In the complex and harsh working environment of wind turbines, the horizontal axis wind turbine blade is increasingly confronted with the issue of surface roughening. It leads to a decrease and instability in the output power of the horizontal axis wind turbine. Vortex generator have emerged as a potential solution to this problem by regulating the flow patterns on the blade surface. This research focuses on exploring the impact of vortex generator on the aerodynamic performance of blades under rough wall condition by wind tunnel experiment and computational fluid dynamics simulation. It is important to improve the aerodynamic performance of horizontal axis wind turbine under rough condition. The results show that vortex generator changes the airfoil aerodynamic performance by slowing the stall angle of attack and increasing the ratio of lift-drag in some angles of attack. vortex generator delays the flow separation of the suction surface under the rough wall condition. It is able to counteract the reduction in the aerodynamic performance of blade under rough wall condition. At tip speed ratio is 5.83, vortex generator increased power coefficient by 47.8% under rough wall condition by reducing the flow separation area of 33% radius and weakening the spanwise flow. The study found that the vortex generator effectively eliminated the negative effects of blade surface roughening on aerodynamic performance, improved the roughness insensitivity of the blade, and has good potential for future applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 9529 KiB  
Article
Hydrodynamics Model Identification and Model-Based Control Application of a New Type of AUV
by Lunyang Lin, Yuxiang Chen, Hong Xiong, Chunliang Yu, Hong Zhu, Yiyang Xing and Guodong Zheng
J. Mar. Sci. Eng. 2025, 13(2), 310; https://doi.org/10.3390/jmse13020310 - 7 Feb 2025
Viewed by 1379
Abstract
The hydrodynamic coefficients of underwater robots can be used to evaluate their maneuverability and motion stability and to design motion controllers, thereby reducing experimental time and costs. In this paper, an Autonomous Underwater Vehicle (AUV) with a negative-lift profile is designed. The spatially [...] Read more.
The hydrodynamic coefficients of underwater robots can be used to evaluate their maneuverability and motion stability and to design motion controllers, thereby reducing experimental time and costs. In this paper, an Autonomous Underwater Vehicle (AUV) with a negative-lift profile is designed. The spatially constrained motion method, combined with neural networks, is utilized to identify all the hydrodynamic coefficients in the standard hydrodynamic equations of the AUV. Subsequently, based on the goodness-of-fit, the significance of the hydrodynamic coefficients is evaluated to yield a simplified hydrodynamic equation. Given the cost constraints, it was not feasible to obtain precise experimental data on hydrodynamic coefficients to validate the accuracy of the CFD calculation method. Therefore, the hydrodynamic coefficients were used to construct a dynamic model for the AUV, and an MPC controller was designed based on this model. Finally, simulations and pool tests were conducted on the AUV, and a comparative analysis of the simulation results with the pool test results revealed that although there were certain errors in the calculation of the hydrodynamic coefficients, the controller constructed within this margin of error was still capable of effectively controlling the AUV. This fully demonstrates the feasibility and applicability of using CFD methods to calculate hydrodynamic coefficients and establishing model predictive control methods based on these coefficients in practical applications. Full article
(This article belongs to the Special Issue Marine Technology: Latest Advancements and Prospects)
Show Figures

Figure 1

11 pages, 1814 KiB  
Case Report
A Positive-Reinforcement Training Regimen for Refined Sample Collection in Laboratory Pigs
by Rachel Layton, David Beggs, Andrew Fisher, Peter Mansell, Sarah Riddell, Daniel Layton, David T. Williams and Kelly J. Stanger
Animals 2025, 15(4), 471; https://doi.org/10.3390/ani15040471 - 7 Feb 2025
Cited by 3 | Viewed by 1320
Abstract
Positive-reinforcement training of laboratory pigs can reduce the reliance on forced manual restraint and anaesthesia for sample collection, reducing stress and physiological disruption. Training regimens for laboratory pigs typically rely on specialised equipment for restraint, such as Panepinto slings, with a time investment [...] Read more.
Positive-reinforcement training of laboratory pigs can reduce the reliance on forced manual restraint and anaesthesia for sample collection, reducing stress and physiological disruption. Training regimens for laboratory pigs typically rely on specialised equipment for restraint, such as Panepinto slings, with a time investment that may not be justified for short-term studies. These training regimens also commonly rely on pigs being lifted into sling restraints, which is not practical for studies involving large pigs. We developed and assessed a rapid, three-phase, positive-reinforcement training regimen for both individually housed and group-housed laboratory pigs to facilitate the collection of minimally invasive samples consciously and voluntarily. The time to complete each phase of training in both individually housed and group-housed pigs was recorded. The behaviour of the individually housed pigs was assessed via an ethogram of behaviours exhibited during a human approach test, and stress response was assessed by analysing salivary corticosterone. The rapid, positive-reinforcement training regimen successfully facilitated oral swabbing, rectal swabbing and rectal thermometer insertion from individually housed (within 18 days) and group-housed (within 6 days) pigs. The trained pigs displayed increasing positive behaviours, no or very few negative behaviours and corticosterone levels within normal limits throughout the study. This training regimen provides a practical and welfare-positive tool for the collection of minimally invasive samples from both small and large laboratory pigs, with a low time investment of 2–5 min/pig/day without the need for specialised restraint equipment. Full article
(This article belongs to the Special Issue Care and Well-Being of Laboratory Animals)
Show Figures

Figure 1

Back to TopTop