Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = negative temperature coefficient (NTC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7932 KiB  
Article
A Multi-Condition-Based Junction Temperature Estimation Technology for Double-Sided Cooled Insulated-Gate Bipolar Transistor Modules
by Mengfan Chen, Guangyin Lei, Min Li, Shouzhong Chang, Sirui Wu and Huichuang Bao
Energies 2025, 18(7), 1785; https://doi.org/10.3390/en18071785 - 2 Apr 2025
Viewed by 527
Abstract
A method considering thermal boundary conditions and thermal coupling effects is proposed to estimate the junction temperature of double-sided cooling insulated-gate bipolar transistor (IGBT) modules. Traditional methods, which rely on negative temperature coefficient (NTC) measurements, often overlook mutual thermal interactions among chips, leading [...] Read more.
A method considering thermal boundary conditions and thermal coupling effects is proposed to estimate the junction temperature of double-sided cooling insulated-gate bipolar transistor (IGBT) modules. Traditional methods, which rely on negative temperature coefficient (NTC) measurements, often overlook mutual thermal interactions among chips, leading to inaccuracies under varying cooling boundary conditions. In this paper, a Foster thermal network model incorporating chip thermal coupling is developed to estimate the junction temperature of double-sided cooling IGBT power modules. The thermal model parameters are extracted through a combination of finite element simulation and experimental analysis. The effects of different cooling boundary conditions on the thermal model and the module’s heat channeling behavior are examined, and compensation strategies for various cooling boundaries are proposed. Experimental and simulation results indicate that the estimated junction temperature error of the proposed method remains within 5 °C under different operating conditions. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

19 pages, 6677 KiB  
Article
Tunable Electrical Properties of Cobalt-Doped Maghemite Nanoparticles for Advanced Resistive and Thermistor Applications
by Mokhtar Hjiri, Sonia Soltani, Anouar Jbeli, Nazir Mustapha, Nouf Ahmed Althumairi, Majdi Benamara and Manuel Almeida Valente
Nanomaterials 2025, 15(7), 534; https://doi.org/10.3390/nano15070534 - 1 Apr 2025
Viewed by 578
Abstract
Maghemite (γ-Fe2O3) nanoparticles have attracted considerable interest for electronic applications due to their tunable electrical properties. Doping strategies offer an effective way to optimize their resistive behavior for use in electronic devices. In this study, cobalt (Co) was incorporated [...] Read more.
Maghemite (γ-Fe2O3) nanoparticles have attracted considerable interest for electronic applications due to their tunable electrical properties. Doping strategies offer an effective way to optimize their resistive behavior for use in electronic devices. In this study, cobalt (Co) was incorporated into γ-Fe2O3 to enhance its resistive properties. X-ray diffraction (XRD) confirmed the retention of the cubic P4332 phase, with Co doping inducing subtle lattice distortions due to ionic substitution. Scanning and transmission electron microscopy (SEM/TEM) revealed morphological changes, where Co incorporation influenced particle shape and size distribution. Electrical conductivity analysis demonstrated a decrease in both AC and DC conductivity with the increase in Co content, indicating enhanced resistive behavior. The increase in activation energy suggests a reduction in charge carrier mobility, leading to higher resistivity. Impedance spectroscopy further confirmed increased real and imaginary impedance values, reinforcing the role of Co in suppressing charge transport. These results position cobalt-doped maghemite as a promising material for electronic resistive devices, such as tunable resistors and negative temperature coefficient (NTC) thermistors, where controlled conductivity and stable resistive behavior are essential. Full article
Show Figures

Figure 1

22 pages, 8515 KiB  
Article
Insulated Gate Bipolar Transistor Junction Temperature Estimation Technology for Traction Inverters Using a Thermal Model
by Kijung Kong, Junhwan Choi, Geonhyeong Park, Seungmin Baek, Sungeun Ju and Yongsu Han
Electronics 2025, 14(5), 999; https://doi.org/10.3390/electronics14050999 - 1 Mar 2025
Viewed by 920
Abstract
This study proposes a method for estimating the junction temperature of power semiconductors, particularly IGBTs (Insulated Gate Bipolar Transistors) and diodes. Traditional temperature measurement methods using NTC (Negative Temperature Coefficient) sensors have limitations in reflecting dynamic conditions in real time, as temperature changes [...] Read more.
This study proposes a method for estimating the junction temperature of power semiconductors, particularly IGBTs (Insulated Gate Bipolar Transistors) and diodes. Traditional temperature measurement methods using NTC (Negative Temperature Coefficient) sensors have limitations in reflecting dynamic conditions in real time, as temperature changes take time to reach the sensors. To address this, this study proposes a junction temperature estimation method using RC curve fitting and a thermal impedance model. This model represents the thermal behavior of IGBTs and diodes using a Foster thermal network that considers the resistance and capacitance of the heat transfer path. In particular, transient temperature estimation considering thermal coupling enables the prediction of temperature changes in IGBTs and diodes. To verify the proposed temperature estimation method, experiments were conducted to build the model based on data measured with an infrared thermal camera and NTC sensors. The model’s estimated results were compared with actual values across 25 operating regions, achieving a maximum MAE (Mean Absolute Error) of 2.26 °C. A comparative analysis of first-, second-, third-, and fourth-order Foster networks revealed that, while higher orders improve accuracy, gains beyond the second order are minimal relative to computational demands. This study contributes to enhancing not only the reliability of power semiconductor modules but also minimizing the temperature margin for inverters by estimating the junction temperature with better dynamic performance than that achieved by NTC sensors. Full article
Show Figures

Figure 1

22 pages, 3314 KiB  
Review
Advanced Techniques for Internal Temperature Monitoring in Lithium-Ion Batteries: A Review of Recent Developments
by Yuanyuan Pan, Ke Xu, Zhaoliang Chen and Kai Wang
Coatings 2025, 15(3), 268; https://doi.org/10.3390/coatings15030268 - 24 Feb 2025
Cited by 19 | Viewed by 1561
Abstract
Temperature is the key monitoring measurement of lithium-ion battery condition monitoring, and it plays a very important role in battery life prediction, thermal runaway warning, and thermal management decision making. Therefore, this paper mainly summarizes the research status of internal temperature monitoring (ITM) [...] Read more.
Temperature is the key monitoring measurement of lithium-ion battery condition monitoring, and it plays a very important role in battery life prediction, thermal runaway warning, and thermal management decision making. Therefore, this paper mainly summarizes the research status of internal temperature monitoring (ITM) method for lithium-ion batteries. Firstly, the lithium-ion battery ITM methods are divided into three types, namely temperature sensor, battery thermal model, and electrochemical impedance spectroscopy (EIS) types. The measurement principle, implementation difficulty, and measurement effect of the above ITM methods are different. The advantages and disadvantages of these methods are analyzed and pointed out. In particular, the five latest ITM methods based on negative temperature coefficient (NTC) temperature sensor, optical fiber sensor, ultrasonic wireless sensor, electrochemical thermal coupling model, and multi-frequency EIS are introduced. Finally, based on the existing research, the future development trend of the above five methods is discussed. Full article
Show Figures

Figure 1

13 pages, 2458 KiB  
Article
Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads
by Ji-Yoon Ahn, Dong-Kwan Lee, Min-Gi Kim, Won-Jin Kim and Sung-Hoon Park
Micromachines 2025, 16(1), 108; https://doi.org/10.3390/mi16010108 - 19 Jan 2025
Cited by 1 | Viewed by 1194
Abstract
Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive [...] Read more.
Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy. In this study, we present a novel hybrid composite combining carbon nanotubes (CNTs) with NTC properties and carbon black (CB) with PTC properties to achieve a near-zero temperature coefficient of resistance (TCR) at an optimal ratio. This innovation enhances the safety and reliability of carbon-based polymer composites for wearable heating applications. Furthermore, a thermochromic pigment layer is integrated into the hybrid composite, enabling visual temperature indication across three distinct zones. This bilayer structure not only addresses the TCR challenge but also provides real-time, user-friendly temperature monitoring. The resulting composite demonstrates consistent performance and high precision under diverse heating conditions, making it ideal for wearable thermotherapy pads. This study highlights a significant advancement in developing multifunctional, temperature-responsive materials, offering a promising solution for safer and more controllable wearable devices. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in 'Materials and Processing' 2024)
Show Figures

Figure 1

11 pages, 8580 KiB  
Article
High-Entropy Thermistor Ceramics (La1/3Nd1/3M1/3)2(Zr1/2Sn1/2)2O7 (M = Sm, Eu, Gd, or Dy) with High Sensitivity for High-Temperature Measurements
by Yian Chen, Tingting Xuan, Xiaohui Li, Yuling Tuo, Xiaoyi Chen and Bo Gao
Sensors 2024, 24(23), 7523; https://doi.org/10.3390/s24237523 - 25 Nov 2024
Cited by 1 | Viewed by 706
Abstract
A series of high-entropy pyrochlore ceramics, specifically (La1/3Nd1/3M1/3)2(Zn1/2Sn1/2)2O7 (M = Sm, Eu, Gd, or Dy), have been synthesized using the solid-state reaction method. Their potential as high-temperature [...] Read more.
A series of high-entropy pyrochlore ceramics, specifically (La1/3Nd1/3M1/3)2(Zn1/2Sn1/2)2O7 (M = Sm, Eu, Gd, or Dy), have been synthesized using the solid-state reaction method. Their potential as high-temperature thermistors was investigated by analyzing electrical and aging properties at elevated temperatures. Characterization using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy confirms that these ceramics are dense, single-phase solid solutions with a pyrochlore structure. Electrical analysis demonstrate that these ceramics maintain high resistivity and resistance stability, exhibiting typical negative temperature coefficient features and high B values across a wide temperature range. These characteristics make (La1/3Nd1/3M1/3)2(Zn1/2Sn1/2)2O7 promising candidates for the development of high-sensitivity, long-life high-temperature thermistors suitable for applications within the temperature range of 400–1200 °C. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 11947 KiB  
Article
Decoupling Analysis of Ignition Processes of Ammonia/N-Heptane Mixtures
by Zheng Li, Yilin Zhang, Jingrui Li, Changchun Xu, Huabing Wen, Jianhua Shen, Haiguo Jing, Haifeng Liu, Xinyan Wang and Hua Zhao
Energies 2024, 17(19), 4938; https://doi.org/10.3390/en17194938 - 2 Oct 2024
Viewed by 921
Abstract
To further understand the influence of n-heptane on the ignition process of ammonia, an isotope labeling method was applied in the current investigation to decouple the influence of the chemical effect, the thermal effect, and the effect of O radical from the oxidation [...] Read more.
To further understand the influence of n-heptane on the ignition process of ammonia, an isotope labeling method was applied in the current investigation to decouple the influence of the chemical effect, the thermal effect, and the effect of O radical from the oxidation of n-heptane on the ignition delay times (IDTs) of ammonia. An analysis of the time evolution of fuel, analysis of the time evolution of temperature, rate of consumption and production (ROP) analysis, and sensitivity analysis were conducted to gain a further understanding of the mechanism of the influence of the chemical effect, the thermal effect, and the effect of O radical on the ignition of ammonia. The results showed that the negative temperature coefficient (NTC) behavior of n-heptane is mitigated by the blending of ammonia, and this mitigated effect of ammonia is mainly due to the chemical effect. The IDTs of ammonia under low and medium temperatures are significantly shortened by the chemical effect at a n-heptane mass fraction of 10%. The promoting effect of the chemical effect decreases when the n-heptane mass fraction increases. The time evolution of n-heptane for NC7H16/ND3-G can be classified into three stages at 800 K, and the rapid consumption stage is mitigated by an increase in temperature. The rapid consumption stage is suppressed by the chemical effect of ammonia, while O radical has a promoting effect on the rapid consumption stage. The chemical effect will enhance the sensitivities of reactions associated with ammonia. As the n-heptane mass fraction increases, the sensitivities of reactions associated with n-heptane are enhanced. Correspondingly, the effect of reactions associated with ammonia is weakened. When the n-heptane mass fraction is 30%, only reactions related to n-heptane have a great influence on the ignition of ammonia/n-heptane fuel blends under the thermal effect + the effect of O radical or only the thermal effect. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

13 pages, 2717 KiB  
Article
Thermally Coupled NTC Chip Thermistors: Their Properties and Applications
by Milan Z. Bodić, Stanko O. Aleksić, Vladimir M. Rajs, Mirjana S. Damnjanović and Milica G. Kisić
Sensors 2024, 24(11), 3547; https://doi.org/10.3390/s24113547 - 31 May 2024
Cited by 6 | Viewed by 1852
Abstract
Negative temperature coefficient (NTC) chip thermistors were thermally coupled to form a novel device (TCCT) aimed for application in microelectronics. It consists of two NTC chip thermistors Th1 and Th2, which are small in size (0603) and power (1/10 W). [...] Read more.
Negative temperature coefficient (NTC) chip thermistors were thermally coupled to form a novel device (TCCT) aimed for application in microelectronics. It consists of two NTC chip thermistors Th1 and Th2, which are small in size (0603) and power (1/10 W). They are in thermal junction, but concurrently they are electrically isolated. The first thermistor Th1 generates heat as a self-heating component at a constant supply voltage U (input thermistor), while the second thermistor Th2 receives heat as a passive component (output thermistor). The temperature dependence R(T) of NTC chip thermistors was measured in the climatic test chamber, and the exponential factor B10/30 of thermistor resistance was determined. After that, a self–heating current I1 of the input thermistor was measured vs. supply voltage U and ambient temperature Ta as a parameter. Input resistance R1 was determined as a ratio of U and I1 while output thermistor resistance R2 was measured by a multimeter concurrently with the current I1. Temperatures T1 and T2 of both thermistors were determined using the Steinhart–Hart equation. Heat transfer, thermal response, stability, and inaccuracy were analyzed. The application of thermally coupled NTC chip thermistors is expected in microelectronics for the input to output electrical decoupling/thermal coupling of slow changeable signals. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 28128 KiB  
Article
All Screen Printed and Flexible Silicon Carbide NTC Thermistors for Temperature Sensing Applications
by Arjun Wadhwa, Jaime Benavides-Guerrero, Mathieu Gratuze, Martin Bolduc and Sylvain G. Cloutier
Materials 2024, 17(11), 2489; https://doi.org/10.3390/ma17112489 - 22 May 2024
Cited by 4 | Viewed by 2830
Abstract
In this study, Silicon Carbide (SiC) nanoparticle-based serigraphic printing inks were formulated to fabricate highly sensitive and wide temperature range printed thermistors. Inter-digitated electrodes (IDEs) were screen printed onto Kapton® substrate using commercially avaiable silver ink. Thermistor inks with different weight ratios [...] Read more.
In this study, Silicon Carbide (SiC) nanoparticle-based serigraphic printing inks were formulated to fabricate highly sensitive and wide temperature range printed thermistors. Inter-digitated electrodes (IDEs) were screen printed onto Kapton® substrate using commercially avaiable silver ink. Thermistor inks with different weight ratios of SiC nanoparticles were printed atop the IDE structures to form fully printed thermistors. The thermistors were tested over a wide temperature range form 25 °C to 170 °C, exhibiting excellent repeatability and stability over 15 h of continuous operation. Optimal device performance was achieved with 30 wt.% SiC-polyimide ink. We report highly sensitive devices with a TCR of −0.556%/°C, a thermal coefficient of 502 K (β-index) and an activation energy of 0.08 eV. Further, the thermistor demonstrates an accuracy of ±1.35 °C, which is well within the range offered by commercially available high sensitivity thermistors. SiC thermistors exhibit a small 6.5% drift due to changes in relative humidity between 10 and 90%RH and a 4.2% drift in baseline resistance after 100 cycles of aggressive bend testing at a 40° angle. The use of commercially available low-cost materials, simplicity of design and fabrication techniques coupled with the chemical inertness of the Kapton® substrate and SiC nanoparticles paves the way to use all-printed SiC thermistors towards a wide range of applications where temperature monitoring is vital for optimal system performance. Full article
Show Figures

Figure 1

17 pages, 3990 KiB  
Communication
Design of a Negative Temperature Coefficient Temperature Measurement System Based on a Resistance Ratio Model
by Ziang Liu, Peng Huo, Yuquan Yan, Chenyu Shi, Fanlin Kong, Shiyu Cao, Aimin Chang, Junhua Wang and Jincheng Yao
Sensors 2024, 24(9), 2780; https://doi.org/10.3390/s24092780 - 26 Apr 2024
Viewed by 2163
Abstract
In this paper, a temperature measurement system with NTC (Negative Temperature Coefficient) thermistors was designed. An MCU (Micro Control Unit) primarily operates by converting the voltage value collected by an ADC (Analog-to-Digital Converter) into the resistance value. The temperature value is then calculated, [...] Read more.
In this paper, a temperature measurement system with NTC (Negative Temperature Coefficient) thermistors was designed. An MCU (Micro Control Unit) primarily operates by converting the voltage value collected by an ADC (Analog-to-Digital Converter) into the resistance value. The temperature value is then calculated, and a DAC (Digital-to-Analog Converter) outputs a current of 4 to 20 mA that is linearly related to the temperature value. The nonlinear characteristics of NTC thermistors pose a challenging problem. The nonlinear characteristics of NTC thermistors were to a great extent solved by using a resistance ratio model. The high precision of the NTC thermistor is obtained by fitting it with the Hoge equation. The results of actual measurements suggest that each module works properly, and the temperature measurement accuracy of 0.067 °C in the range from −40 °C to 120 °C has been achieved. The uncertainty of the output current is analyzed and calculated with the uncertainty of 0.0014 mA. This type of system has broad potential applications in industry fields such as the petrochemical industry. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

16 pages, 2212 KiB  
Article
Electrothermal Instabilities in Barium-Titanate-Based Ceramics
by Rizos N. Krikkis
J 2024, 7(2), 153-168; https://doi.org/10.3390/j7020009 - 26 Apr 2024
Cited by 2 | Viewed by 1734
Abstract
An electrothermal analysis for barium-titanate-based ceramics is presented, combining the Heywang–Jonker model for the electric resistivity with a heat dissipation mechanism based on natural convection and radiation in a one-dimensional model on the device level with voltage as the control parameter. Both positive-temperature-coefficient [...] Read more.
An electrothermal analysis for barium-titanate-based ceramics is presented, combining the Heywang–Jonker model for the electric resistivity with a heat dissipation mechanism based on natural convection and radiation in a one-dimensional model on the device level with voltage as the control parameter. Both positive-temperature-coefficient (PTC) and negative temperature coefficient (NTC) effects are accounted for through the double Schottky barriers at the grain boundaries of the material. The problem formulated in this way admits uniform and non-uniform multiple-steady-state solutions that do not depend on the external circuit. The numerical bifurcation analysis reveals that the PTC effect gives rise to several multiplicites above the Curie point, whereas the NTC effect is responsible for the thermal runaway (temperature blowup). The thermal runaway phenomenon as a potential thermal shock could be among the possible reasons for the observed thermomechanical failures (delamination fracture). The theoretical results for the NTC regime and the thermal runaway are in agreement with the experimental flash sintering results obtained for barium titanate, and 3% and 8% yttria-stabilized zirconia. Full article
Show Figures

Figure 1

10 pages, 3372 KiB  
Communication
Recovery of Ni-Co-Mn Oxides from End-of-Life Lithium-Ion Batteries for the Application of a Negative Temperature Coefficient Sensor
by Sungwook Mhin
Inorganics 2024, 12(4), 105; https://doi.org/10.3390/inorganics12040105 - 5 Apr 2024
Cited by 1 | Viewed by 2071
Abstract
This study demonstrates the current advancements in battery management systems (BMSs), emphasizing the need for precise temperature monitoring within battery packs to enhance safety and performance through efficient thermal management. The increased demand for lithium-ion batteries (LIBs) has driven the development of temperature [...] Read more.
This study demonstrates the current advancements in battery management systems (BMSs), emphasizing the need for precise temperature monitoring within battery packs to enhance safety and performance through efficient thermal management. The increased demand for lithium-ion batteries (LIBs) has driven the development of temperature sensors with improved accuracy and stability. In particular, Ni-Co-Mn-based spinel oxides are commonly used due to their stable negative temperature coefficient (NTC) behavior. However, challenges arise in manufacturing due to the high cost and uncertain supply of critical cathode components (e.g., Co, Ni, and Mn) for LIBs. This research focuses on developing spinel-type (Ni0.6Co0.4Mn2)O4 using recycled Ni-Co-Mn oxides obtained from end-of-life (EOL) LIBs, demonstrating temperature resistance behavior suitable for temperature sensing. The oxides are prepared through hydrometallurgy, oxalate synthesis, and post-heat treatment. Successful integration into spinel-type NTC thermistors suggests broader applications in various industrial fields. A systematic investigation into the synthesis and characterization of recovered Ni-Co-Mn oxides from EOL LIB cathode materials (Li(Ni0.33Co0.33Mn0.33)O2) is presented for NTC thermistor application. Thermogravimetric analysis-derivative thermogravimetry (TGA-DTG) identifies the optimal post-heat treatment temperature. The X-ray diffraction (XRD) patterns confirm a cubic spinel structure of the Ni-Co-Mn oxides, supported by scanning electron microscope (SEM) images showing a uniform microstructure. Also, energy dispersive X-ray spectroscopy (EDS) mapping confirms homogeneous element distribution. Recovered oxide pellets from the sintering process exhibit a single spinel structure, with X-ray photoelectron spectroscopy (XPS) analysis revealing changes in the valence states for Ni and Mn. Resistivity measurements demonstrate semiconductive behavior, which shows a B value (3376.92 K) suitable for NTC thermistor applications. This study contributes valuable insights to black powder recycling from EOL LIBs and its potential in temperature-sensitive electronic devices. Full article
(This article belongs to the Special Issue Recent Advances in Energy Storage and Conversion)
Show Figures

Figure 1

14 pages, 4272 KiB  
Article
Negative Temperature Coefficient Properties of Natural Clinoptilolite
by Loredana Schiavo, Lucrezia Aversa, Roberto Verucchi, Rachele Castaldo, Gennaro Gentile and Gianfranco Carotenuto
Ceramics 2024, 7(2), 452-465; https://doi.org/10.3390/ceramics7020029 - 23 Mar 2024
Cited by 2 | Viewed by 2343
Abstract
Negative temperature coefficient (NTC) materials are usually based on ceramic semiconductors, and electrons are involved in their transport mechanism. A new type of NTC material, adequate for alternating current (AC) applications, is represented by zeolites. Indeed, zeolites are single charge carrier ionic conductors [...] Read more.
Negative temperature coefficient (NTC) materials are usually based on ceramic semiconductors, and electrons are involved in their transport mechanism. A new type of NTC material, adequate for alternating current (AC) applications, is represented by zeolites. Indeed, zeolites are single charge carrier ionic conductors with a temperature-dependent electrical conductivity. In particular, electrical transport in zeolites is due to the monovalent charge-balancing cations, like K+, capable of hopping between negatively charged sites in the aluminosilicate framework. Owing to the highly non-linear electrical behavior of the traditional electronic NTC materials, the possibility to have alternative types of materials, showing linearity in their electrical behavior, is very desirable. Among different zeolites, natural clinoptilolite has been selected for investigating NTC behavior since it is characterized by high zeolite content, a convenient Si/Al atomic ratio, good mechanical strength due to its compact microstructure, and low toxicity. Clinoptilolite has shown a rapid and quite reversible impedance change under heating, characterized by a linear dependence on temperature. X-ray diffraction (XRD) has been used to identify the natural zeolite, to establish all types of crystalline phases present in the mineral, and to investigate the thermal stability of these phases up to 150 °C. X-ray photoelectron spectroscopy (XPS) analysis was used for the chemical characterization of this natural clinoptilolite sample, providing important information on the cationic content and framework composition. In addition, since electrical transport takes place in the zeolite free-volume, a Brunauer–Emmett–Teller (BET) analysis of the mineral has also been performed. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Graphical abstract

26 pages, 6411 KiB  
Article
Numerical Modeling of Chemical Kinetics, Spray Dynamics, and Turbulent Combustion towards Sustainable Aviation
by Arvid Åkerblom, Martin Passad, Alessandro Ercole, Niklas Zettervall, Elna J. K. Nilsson and Christer Fureby
Aerospace 2024, 11(1), 31; https://doi.org/10.3390/aerospace11010031 - 28 Dec 2023
Cited by 4 | Viewed by 2855
Abstract
With growing interest in sustainable civil supersonic and hypersonic aviation, there is a need to model the combustion of alternative, sustainable jet fuels. This work presents numerical simulations of several related phenomena, including laminar flames, ignition, and spray flames. Two conventional jet fuels, [...] Read more.
With growing interest in sustainable civil supersonic and hypersonic aviation, there is a need to model the combustion of alternative, sustainable jet fuels. This work presents numerical simulations of several related phenomena, including laminar flames, ignition, and spray flames. Two conventional jet fuels, Jet A and JP-5, and two alternative jet fuels, C1 and C5, are targeted. The laminar burning velocities of these fuels are predicted using skeletal and detailed reaction mechanisms. The ignition delay times are predicted in the context of dual-mode ramjet engines. Large Eddy Simulations (LES) of spray combustion in an aeroengine are carried out to investigate how the different thermodynamic and chemical properties of alternative fuels lead to different emergent behavior. A novel set of thermodynamic correlations are developed for the spray model. The laminar burning velocity predictions are normalized by heat of combustion to reveal a more distinct fuel trend, with C1 burning slowest and C5 fastest. The ignition results highlight the contributions of the Negative Temperature Coefficient (NTC) effect, equivalence ratio, and hydrogen enrichment in determining ignition time scales in dual-mode ramjet engines. The spray results reveal that the volatile alternative jet fuels have short penetration depths and that the flame of the most chemically divergent fuel (C1) stabilizes relatively close to the spray. Full article
Show Figures

Figure 1

26 pages, 8614 KiB  
Article
Formulation of a Jet Fuel Surrogate and Its Kinetic Chemical Mechanism by Emulating Physical and Chemical Properties of Real Jet Fuel
by Guangze Li, Boxuan Cui, Chenglin Zhang, Liuyong Chang and Longfei Chen
Sustainability 2023, 15(18), 13792; https://doi.org/10.3390/su151813792 - 15 Sep 2023
Cited by 2 | Viewed by 3007
Abstract
The application of jet fuel in gas turbines and diesel engines adheres to the Army’s single-fuel forward policy, streamlining supply chains. To ensure precise engine combustion numerical studies, surrogate fuels and mechanisms should faithfully replicate real fuel properties and combustion traits. In this [...] Read more.
The application of jet fuel in gas turbines and diesel engines adheres to the Army’s single-fuel forward policy, streamlining supply chains. To ensure precise engine combustion numerical studies, surrogate fuels and mechanisms should faithfully replicate real fuel properties and combustion traits. In this work, a new four-component jet fuel surrogate containing 39.05% n-dodecane/21.79% isocetane/11.49% decalin/27.67% toluene by mole fraction is formulated based on a property optimizer. The new-formulated fuel surrogate can satisfactorily emulate the chemical and physical properties of real jet fuel, including cetane number (CN), threshold sooting index (TSI), molecular weight (MW), lower heating value (LHV), the ratio of hydrogen and carbon (H/C), liquid density, viscosity, and surface tension. Furthermore, a reduced and robust kinetic chemical mechanism (containing 124 species and 590 reactions) that could be directly employed in practical engine combustion simulations has also been developed for the proposed surrogate jet fuel. The mechanism is validated through comprehensive experimental data, including ignition delay time (IDT) determined in shock tubes and rapid compression machines (RCMs), species mole fractions measured in premixed flames and jet stirred reactors (JSRs), and laminar flame speeds. Generally, the property deviations of the jet fuel surrogate are less than 2% except for MW (10.73%), viscosity (5.88%), and surface tension (8.71%). The comparison results between the predictions and measurements are in good agreement, indicating that the current kinetic mechanism is capable of reflecting the oxidation process of real jet fuel. The current mechanism can accurately capture variations in the ignition delay time in the negative temperature coefficient (NTC) region as well. In the future, the proposed surrogate jet fuel could be applied in practical engine computational fluid dynamic (CFD) simulations. Full article
(This article belongs to the Topic Zero Carbon Vehicles and Power Generation)
Show Figures

Figure 1

Back to TopTop