Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (557)

Search Parameters:
Keywords = near ultra-violet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1588 KiB  
Article
385 nm AlGaN Near-Ultraviolet Micro Light-Emitting Diode Arrays with WPE 30.18% Realized Using an AlN-Inserted Hole Spreading Enhancement S Electron Blocking Layer
by Qi Nan, Shuhan Zhang, Jiahao Yao, Yun Zhang, Hui Ding, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2025, 15(8), 910; https://doi.org/10.3390/coatings15080910 (registering DOI) - 3 Aug 2025
Viewed by 122
Abstract
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays [...] Read more.
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays in this work comprise 228 chips in parallel with wavelengths at 385 nm, and each single chip size is 15 × 30 μm2. Compared with conventional bulk AlGaN-based EBL structures, the NUV-Micro LED arrays that implemented the new hole spreading enhanced superlattice electrical blocking layer (HSESL-EBL) structure proposed in this work had a remarkable increase in light output power (LOP) at current density, increasing the range down from 0.02 A/cm2 to as high as 97 A/cm2. The array’s light output power is increased up to 1540% at the lowest current density 0.02 A/cm2, and up to 58% at the highest current density 97 A/cm2, measured under room temperature (RT); consequently, the WPE is increased from 13.4% to a maximum of 30.18%. This AlN-inserted HESEL-EBL design significantly enhances both the lateral expansion efficiency and the hole injection efficiency into the multi quantum well (MQW) in the arrays, improving the concentration distribution of the holes in MQW while maintaining good suppression of electron leakage. The array’s efficiency droop has also been greatly reduced. Full article
Show Figures

Figure 1

17 pages, 310 KiB  
Article
Statistical Entropy Based on the Generalized-Uncertainty-Principle-Induced Effective Metric
by Soon-Tae Hong, Yong-Wan Kim and Young-Jai Park
Universe 2025, 11(8), 256; https://doi.org/10.3390/universe11080256 - 2 Aug 2025
Viewed by 81
Abstract
We investigate the statistical entropy of black holes within the framework of the generalized uncertainty principle (GUP) by employing effective metrics that incorporate leading-order and all-order quantum gravitational corrections. We construct three distinct effective metrics induced by the GUP, which are derived from [...] Read more.
We investigate the statistical entropy of black holes within the framework of the generalized uncertainty principle (GUP) by employing effective metrics that incorporate leading-order and all-order quantum gravitational corrections. We construct three distinct effective metrics induced by the GUP, which are derived from the GUP-corrected temperature, entropy, and all-order GUP corrections, and analyze their impact on black hole entropy using ’t Hooft’s brick wall method. Our results show that, despite the differences in the effective metrics and the corresponding ultraviolet cutoffs, the statistical entropy consistently satisfies the Bekenstein–Hawking area law when expressed in terms of an invariant (coordinate-independent) distance near the horizon. Furthermore, we demonstrate that the GUP naturally regularizes the ultraviolet divergence in the density of states, eliminating the need for artificial cutoffs and yielding finite entropy even when counting quantum states only in the vicinity of the event horizon. These findings highlight the universality and robustness of the area law under GUP modifications and provide new insights into the interplay between quantum gravity effects and black hole thermodynamics. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
16 pages, 2657 KiB  
Article
Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions
by Marcelo Vitor Ferreira Machado, Felipe Perissé Duarte Lopes, Noan Tonini Simonassi, Eduardo Atem de Carvalho, Carlos Maurício Fontes Vieira and Sergio Neves Monteiro
Polymers 2025, 17(15), 2105; https://doi.org/10.3390/polym17152105 - 31 Jul 2025
Viewed by 229
Abstract
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. [...] Read more.
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. This research aims to identify the impact behavior of ramie reinforced epoxy composites with medium- and high-volume fractions of fibers in intact (nonaged) and aged conditions as well as to analyze if the influence of interface quality on the impact fracture energy can be described by a novel mathematical model. To reach these objectives, the study is designed with three groups (40%, 50%, and 60% of fiber theoretical volume fractions) of intact specimens and three groups of aged samples by condensation and ultraviolet radiation (C-UV) simulation containing the same fiber percentages. Consecutively, impact strength and fracture surface analyses are done to expand the comprehension of the damage mechanisms suffered by the biocomposites and to support the development of the mathematical relation. Certainly, this novel model can contribute to more sustainable and greener industries in the near future. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites, 2nd Edition)
Show Figures

Figure 1

33 pages, 4142 KiB  
Review
Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
by Ge Chen, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng and Wei Wang
Micromachines 2025, 16(8), 893; https://doi.org/10.3390/mi16080893 (registering DOI) - 31 Jul 2025
Viewed by 310
Abstract
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the [...] Read more.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability. To achieve droplet manipulation, the core driving forces primarily stem from natural forces guided by bioinspired gradient surfaces or the regulatory effects of external fields. In terms of bioinspired self-propelled droplet movement, this paper summarizes research inspired by natural organisms such as desert beetles, cacti, self-aligning floating seeds of emergent plants, or water-walking insects, which construct bioinspired special gradient surfaces to induce Laplace pressure differences or wettability gradients on both sides of droplets for droplet manipulation. Moreover, this paper further analyzes the mechanisms, advantages, and limitations of these self-propelled approaches, while summarizing the corresponding driving force sources and their theoretical formulas. For droplet manipulation under external fields, this paper elaborates on various external stimuli including electric fields, thermal fields, optical fields, acoustic fields, and magnetic fields. Among them, electric fields involve actuation mechanisms such as directly applied electrostatic forces and indirectly applied electrocapillary forces; thermal fields influence droplet motion through thermoresponsive wettability gradients and thermocapillary effects; optical fields cover multiple wavelengths including near-infrared, ultraviolet, and visible light; acoustic fields utilize horizontal and vertical acoustic radiation pressure or acoustic wave-induced acoustic streaming for droplet manipulation; the magnetic force acting on droplets may originate from their interior, surface, or external substrates. Based on these different transport principles, this paper comparatively analyzes the unique characteristics of droplet manipulation under the five external fields. Finally, this paper summarizes the current challenges and issues in the research of droplet manipulation on the open planar surfaces and provides an outlook on future development directions in this field. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

14 pages, 7022 KiB  
Article
Sensitive and Facile Detection of Aloin via N,F-CD-Coated Test Strips Coupled with a Miniaturized Fluorimeter
by Guo Wei, Chuanliang Wang, Rui Wang, Peng Zhang, Xuhui Geng, Jinhua Li, Abbas Ostovan, Lingxin Chen and Zhihua Song
Biomolecules 2025, 15(7), 1052; https://doi.org/10.3390/biom15071052 - 21 Jul 2025
Viewed by 294
Abstract
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects [...] Read more.
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects (increased carcinogenicity caused by excessive use of aloin) impacting human health. This investigation was inspired by the good fluorescence properties of carbon dots (CDs); CD-based sensors have aroused a great deal of interest due to their excellent sensitivity and selectivity. Thus, it is of great significance to develop novel CD-based sensors for aloin determination. Herein, N,F-CDs were designed and synthesized through a convenient hydrothermal strategy; the synthesized N,F-CDs possessed good fluorescence performance and a small particle size (near 4.3 nm), which demonstrated the successful preparation of N,F-CDs. The resulting N,F-CDs possessed a large Stokes shift and could emit a highly stable green fluorescence. The fluorescence of the N,F-CDs could be effectively quenched by aloin through the inner filter effect. Furthermore, the synthesis procedure was easy to operate. Finally, the N,F-CD-coated test strips were fabricated and combined with a miniaturized fluorimeter for the fluorescence detection of aloin via the inner filter effect for the first time. The N,F-CD-coated test strips were fabricated and used for the fluorescence sensing of aloin, and the results were compared with a typical ultraviolet (UV) method. The N,F-CD-coated test strips exhibited high recovery (96.9~106.1%) and sensitivity (31.8 nM, n = 3), good selectivity, low sample consumption (1 μL), high speed (5 min), good stability, and anti-interference properties. The results indicate that N,F-CD-coated test strips are applicable for the quantitative determination of aloin in bovine serum, orange juice, and urine samples. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

18 pages, 5775 KiB  
Article
Precision Solar Spectrum Filtering in Aerogel Windows via Synergistic ITO-Ag Nanoparticle Doping for Hot-Climate Energy Efficiency
by Huilin Yang, Maoquan Huang, Mingyang Yang, Xuankai Zhang and Mu Du
Gels 2025, 11(7), 553; https://doi.org/10.3390/gels11070553 - 18 Jul 2025
Viewed by 204
Abstract
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant [...] Read more.
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant challenge for material design. We propose a plasma silica aerogel window utilizing the local surface plasmon resonance effect of plasmonic nanoparticles. This design incorporates indium tin oxide (ITO) nanospheres (for broad-band UV/NIR blocking) and silver (Ag) nanocylinders (targeted blocking of the 0.78–0.9 μm NIR band) co-doped into the silica aerogel. This design achieves a visible light transmittance of 0.8, a haze value below 0.12, and a photothermal ratio of 0.91. Building simulations indicate that compared to traditional glass, this window can achieve annual energy savings of 20–40% and significantly reduce the economic losses associated with traditional glass, providing a feasible solution for sustainable buildings. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

20 pages, 5206 KiB  
Article
Self-Powered Photodetectors with Ultra-Broad Spectral Response and Thermal Stability for Broadband, Energy Efficient Wearable Sensing and Optoelectronics
by Peter X. Feng, Elluz Pacheco Cabrera, Jin Chu, Badi Zhou, Soraya Y. Flores, Xiaoyan Peng, Yiming Li, Liz M. Diaz-Vazquez and Andrew F. Zhou
Molecules 2025, 30(14), 2897; https://doi.org/10.3390/molecules30142897 - 8 Jul 2025
Viewed by 391
Abstract
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), [...] Read more.
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), high responsivity (up to 1015 mA/W at 250 nm and 2.5 V bias), and thermal stability up to 100 °C. The synthesis process involved CO2 laser exfoliation of hexagonal boron nitride, followed by gold NP deposition via RF sputtering and thermal annealing. Structural and compositional analyses confirmed the formation of a three-dimensional network of atomically thin BN nanosheets decorated with uniformly distributed gold nanoparticles. This architecture facilitates plasmon-enhanced absorption and efficient charge separation via heterojunction interfaces, significantly boosting photocurrent generation across the deep ultraviolet (DUV), visible, near-infrared (NIR), and mid-infrared (MIR) spectral regions. First-principles calculations support the observed broadband response, confirming bandgap narrowing induced by defects in h-BN and functionalization by gold nanoparticles. The device’s self-driven operation, wide spectral response, and durability under elevated temperatures underscore its strong potential for next-generation broadband, self-powered, and wearable sensing and optoelectronic applications. Full article
(This article belongs to the Special Issue Novel Nanomaterials: Sensing Development and Applications)
Show Figures

Figure 1

17 pages, 1027 KiB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Viewed by 568
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

19 pages, 3941 KiB  
Article
Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells
by Emeka Harrison Onah, N. L. Lethole and P. Mukumba
Materials 2025, 18(14), 3213; https://doi.org/10.3390/ma18143213 - 8 Jul 2025
Viewed by 278
Abstract
Dye-sensitized solar cells (DSSCs) are promising alternatives for power generation due to their environmental friendliness, cost effectiveness, and strong performance under diffused light. Conversely, their low spectral response in the ultraviolet (UV) region significantly obliterates their overall performance. The so-called luminescent down-shifting (LDS) [...] Read more.
Dye-sensitized solar cells (DSSCs) are promising alternatives for power generation due to their environmental friendliness, cost effectiveness, and strong performance under diffused light. Conversely, their low spectral response in the ultraviolet (UV) region significantly obliterates their overall performance. The so-called luminescent down-shifting (LDS) presents a practical solution by converting high-energy UV photons into visible light that can be efficiently absorbed by sensitizer dyes. Herein, a conventional solid-state technique was applied for the synthesis of an LDS, europium (II)-doped barium orthosilicate (BaSiO3:Eu2+) material. The material exhibited strong UV absorption, with prominent peaks near 400 nm and within the 200–300 nm range, despite a weaker response in the visible region. The estimated optical bandgap was 3.47 eV, making it well-suited for UV absorbers. Analysis of the energy transfer mechanism from the LDS material to the N719 dye sensitizer depicted a strong spectral overlap of 2×1010M1cm1nm4, suggesting efficient energy transfer from the donor to the acceptor. The estimated Förster distance was approximately 6.83 nm, which matches the absorption profile of the dye-sensitizer. Our findings demonstrate the potential of BaSiO3:Eu2+ as an effective LDS material for enhancing UV light absorption and improving DSSC performance through increased spectral utilization and reduced UV-induced degradation. Full article
(This article belongs to the Special Issue Advanced Luminescent Materials and Applications)
Show Figures

Figure 1

30 pages, 5942 KiB  
Article
Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
by Jayson C. dos Santos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes and Adenilson O. dos Santos
Molecules 2025, 30(13), 2873; https://doi.org/10.3390/molecules30132873 - 6 Jul 2025
Viewed by 414
Abstract
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an [...] Read more.
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an octahedral Ni(II) coordination involving Phen and Ile ligands. A Hirshfeld surface analysis highlighted intermolecular interactions stabilizing the crystal lattice, with hydrogen bonds (H···H and O···H/H···O) dominating (99.1% of contacts). Density functional theory (DFT) calculations, including solvation effects (in water and methanol), demonstrated strong agreement with the experimental geometric parameters and revealed higher affinity to the water solvent. The electronic properties of the complex, such as HOMO−LUMO gaps (3.20–4.26 eV) and electrophilicity (4.54–5.88 eV), indicated a charge-transfer potential suitable for biological applications through interactions with biomolecules. Raman and infrared spectroscopic studies showed vibrational modes associated with Ni–N/O bonds and ligand-specific deformations, with solvation-induced shifts observed. A study using ultraviolet–visible–near-infrared absorption spectroscopy demonstrated that the complex remains stable in solution. In vitro cytotoxicity assays against MCF-7 (breast adenocarcinoma) and HCT-116 (colorectal carcinoma) cells showed dose-dependent activity, achieving 47.6% and 65.3% viability reduction at 100 μM (48 h), respectively, with lower toxicity to non-tumor lung fibroblasts (GM07492A, 39.8%). Supporting the experimental data, we performed computational modeling to examine the pharmacokinetic profile, with particular focus on the absorption, distribution, metabolism, and excretion properties and drug-likeness potential. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

28 pages, 6945 KiB  
Article
Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches
by Tumelo Hope Baloyi, Motsie Elija Mashuga, Abdelilah El-Khlifi, Mohammad Salman and Indra Bahadur
Corros. Mater. Degrad. 2025, 6(3), 29; https://doi.org/10.3390/cmd6030029 - 5 Jul 2025
Viewed by 426
Abstract
In a recent investigation the corrosion-fighting potential of five benzaldehyde derivatives were explored: 4-Formylbenzonitrile (BA1), 4-Nitrobenzaldehyde (BA2), 2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (BA3), 3,5-Bis(trifluoromethyl)benzaldehyde (BA4), and 4-Fluorobenzaldehyde (BA5). Benzaldehyde derivative (BA-2) showed a maximum inhibition efficiency of 93.3% at 500 ppm. Several techniques were used to evaluate [...] Read more.
In a recent investigation the corrosion-fighting potential of five benzaldehyde derivatives were explored: 4-Formylbenzonitrile (BA1), 4-Nitrobenzaldehyde (BA2), 2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (BA3), 3,5-Bis(trifluoromethyl)benzaldehyde (BA4), and 4-Fluorobenzaldehyde (BA5). Benzaldehyde derivative (BA-2) showed a maximum inhibition efficiency of 93.3% at 500 ppm. Several techniques were used to evaluate these compounds’ ability to protect mild steel from corrosion in a 1 M HCl solution, including potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), adsorption isotherms, and computational methods. Supporting techniques Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV-Vis) spectroscopy were also employed to validate the results. Despite sharing a common benzene ring, the molecules differ in their substituents, allowing for a comprehensive examination of the substituents’ impact on corrosion inhibition. PDP analysis disclosed that the inhibitors exhibited mixed-type inhibition behavior, interacting with anodic as well as cathodic reactions, influencing the corrosion process. EIS analysis revealed that benzaldehyde derivatives formed a protective passive film on the metal, exhibiting high corrosion resistance by shielding the alloy from corrosive attacks. The benzaldehyde inhibitors followed the Langmuir adsorption isotherm, with high R² values near one, indicating a monolayer adsorption mechanism. DFT results indicate that BA 2 is the most effective inhibitor. FTIR and UV-vis spectroscopy revealed the molecular interactions between metal and benzaldehyde derivative molecules, providing insight into the binding mechanism. Experimental results support the outcomes obtained from the molecular dynamic (MD) simulations. Full article
Show Figures

Figure 1

18 pages, 4181 KiB  
Article
Crystal Structure Features, Spectroscopic Characteristics and Thermal Conversions of Sulfur-Bearing Groups: New Natural Commensurately Modulated Haüyne Analogue, Na6Ca2−x(Si6Al6O24)(SO42−,HS,S2●−,S4,S3●−,S52−)2−y
by Nikita V. Chukanov, Natalia V. Zubkova, Roman Yu. Shendrik, Anatoly N. Sapozhnikov, Igor V. Pekov, Marina F. Vigasina, Nadezhda A. Chervonnaya, Dmitry A. Varlamov, Nadezhda B. Bolotina, Dmitry A. Ksenofontov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 709; https://doi.org/10.3390/min15070709 - 3 Jul 2025
Viewed by 345
Abstract
A multimethodic approach based on infrared, Raman, electron spin resonance and photoluminescence spectroscopy, absorption spectroscopy in near infrared, visible and ultraviolet regions, single-crystal X-ray diffraction as well as electron microprobe analyses was applied to the characterization of a new commensurately modulated cubic haüyne [...] Read more.
A multimethodic approach based on infrared, Raman, electron spin resonance and photoluminescence spectroscopy, absorption spectroscopy in near infrared, visible and ultraviolet regions, single-crystal X-ray diffraction as well as electron microprobe analyses was applied to the characterization of a new commensurately modulated cubic haüyne analogue with the modulation parameter of 0.2 and unit-cell parameter of 45.3629(3) Å (designated as haüyne-45Å) from the Malobystrinskoe lazurite deposit, in the Baikal Lake area, Siberia, Russia, as well as associated SO32−-bearing afghanite. Haüyne-45Å is the second member, after vladimirivanovite, of the sodalite group with a commensurately modulated structure. The average structure is based on the tetrahedral aluminosilicate sodalite-type framework with sodalite cages of different sizes. The simplified formula of haüyne-45Å is Na6Ca2−x(Si6Al6O24)(SO42−,HS,S2●−,S4,S3●−,S52−)2−y. The structural modulations of the haüyne-45Å framework are presumably related to the regular alternation of SO42− anions with polysulfide S2●−, S3●−, S4, and S52− groups detected by the spectroscopic methods. Mechanisms of thermal conversions of S-bearing groups in haüyne-45Å under oxidizing and reducing conditions at temperatures up to 800 °C are studied, and their geochemical importance is discussed. Full article
(This article belongs to the Special Issue Crystal Chemistry of Sulfate Minerals and Synthetic Compounds)
Show Figures

Figure 1

31 pages, 5332 KiB  
Review
Photothermal Release by Melanin-like Nanoparticles: Biomedical Applications
by Arianna Menichetti, Silvia Vicenzi, Agata Pane, Dario Mordini, Fabrizio Mancin and Marco Montalti
J. Funct. Biomater. 2025, 16(7), 243; https://doi.org/10.3390/jfb16070243 - 2 Jul 2025
Viewed by 778
Abstract
Melanin-like nanoparticles (NPs) exhibit a remarkable ability to absorb light across a wide range of wavelengths, from the ultraviolet (UV) to the near-infrared (NIR) spectrum. This characteristic enables them to serve as effective photothermal agents (PTAs). Upon irradiation, especially within the NIR window, [...] Read more.
Melanin-like nanoparticles (NPs) exhibit a remarkable ability to absorb light across a wide range of wavelengths, from the ultraviolet (UV) to the near-infrared (NIR) spectrum. This characteristic enables them to serve as effective photothermal agents (PTAs). Upon irradiation, especially within the NIR window, a region where biological tissues are highly transparent, these NPs efficiently convert light energy into heat. This phenomenon, known as the photothermal effect, leads to localized temperature increases. The resulting heat can be strategically employed to induce selective cell death in photothermal therapy (PTT) or to enhance the release of therapeutic agents directly from the NPs. The inherent versatility of melanin-like NPs, stemming from their synthesis methods and the presence of various functional groups, allows for straightforward loading with drugs or other bioactive molecules. Consequently, they are attractive tools for photothermally activated release. This review paper thoroughly examines and critically discusses the latest applications of melanin-like NPs in photothermally controlled release. We dedicate a specific section to general mechanisms and approaches, and this paper concludes with an analysis of critical challenges and prospective future developments. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery (2nd Edition))
Show Figures

Figure 1

18 pages, 433 KiB  
Article
Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration
by Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas and Abdelkader Makhoute
Atoms 2025, 13(7), 63; https://doi.org/10.3390/atoms13070063 - 1 Jul 2025
Viewed by 331
Abstract
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) [...] Read more.
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) radiation in the presence of a strong, synchronized NIR pulse. The theoretical investigation is conducted using an ab initio method to solve the time-dependent Schrödinger equation within the single active electron (SAE) approximation. The simulation results show a sequence of above-threshold ionization (ATI) peaks that shift to lower energies with increasing laser intensity. This behavior reflects the onset of the Stark effect, which modifies atomic energy levels and increases the number of photons required for ionization. An examination of the two-color photoionization spectrum, which includes sideband structures and harmonic peaks, shows how the ionization probability is redistributed between the direct path (single XUV photon absorption) and sideband pathways (XUV ± n × IR) as the intensity of the infrared field increases. Quantum interference between continuum states is further revealed by the photoelectron angular distribution, clearly indicating the control of ionization dynamics by the IR field. Full article
Show Figures

Figure 1

14 pages, 3510 KiB  
Article
Broadband Near-Infrared Reflective Film from Stacked Opposite-Handed Chiral Liquid Crystals with Pitch Gradients
by Hyeon Seong Hwang, Jongsu Lee, Byungsoo Kang, Minhye Kim, Doyo Kim and Se-Um Kim
Crystals 2025, 15(7), 597; https://doi.org/10.3390/cryst15070597 - 25 Jun 2025
Viewed by 381
Abstract
Broadband near-infrared (NIR) reflective films are widely used in architecture and the automotive and aerospace industries for energy saving and thermal regulation. For large-area and flexible applications, it is essential to develop cost-effective, solution-processable, and long-term-stable NIR-reflective films. Here, we present a polymer-stabilized [...] Read more.
Broadband near-infrared (NIR) reflective films are widely used in architecture and the automotive and aerospace industries for energy saving and thermal regulation. For large-area and flexible applications, it is essential to develop cost-effective, solution-processable, and long-term-stable NIR-reflective films. Here, we present a polymer-stabilized chiral liquid crystal (CLC) film that achieves broadband NIR reflection by stacking opposite-handed CLC layers with pitch gradients. We experimentally established optimal formulations of materials for both right-handed and left-handed CLCs. The resulting film exhibits high-degree broadband reflection (~95%) in the 1000–1800 nm wavelength range, while maintaining visible transmittance (~80%) in the 450–850 nm range. The concept proposed here will be widely applicable for scalable and practical NIR-filtering applications in smart glasses, sensors, and optoelectronic devices. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

Back to TopTop