Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (632)

Search Parameters:
Keywords = near infrared emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 479 KiB  
Article
Assessing the Potential of Fecal NIRS for External Marker and Digestibility Predictions in Broilers
by Oussama Tej, Elena Albanell, Ibtissam Kaikat and Carmen L. Manuelian
Animals 2025, 15(15), 2181; https://doi.org/10.3390/ani15152181 - 24 Jul 2025
Viewed by 283
Abstract
This study evaluated fecal near-infrared spectroscopy (fNIRS) potential to predict three external markers (Yb, Ti, and polyethylene glycol (PEG)) and dry matter digestibility (DMD) calculated from these markers and fiber fractions. A total of 192 fecal samples were collected from 576 Ross 308 [...] Read more.
This study evaluated fecal near-infrared spectroscopy (fNIRS) potential to predict three external markers (Yb, Ti, and polyethylene glycol (PEG)) and dry matter digestibility (DMD) calculated from these markers and fiber fractions. A total of 192 fecal samples were collected from 576 Ross 308 male chicks supplemented with TiO2 (2 g/kg), Yb2O3 (50 mg/kg), and PEG (5 g/kg) for 8 d. Reference values for Ti and Yb were obtained using an inductively coupled plasma–optical emission spectrometer, for fiber fractions via ANKOM, and for PEG content using an ad hoc fNIRS model. Prediction models were developed in external validation with 25% of the samples. Good and fair prediction models were built for Ti and Yb, respectively, and considered adequate for rough screening. The DMD models based on Yb and ADF were unreliable, whereas the model based on Ti was suitable for rough screening. The PEG prediction model built during the adaptation period performed exceptionally well; however, the DMD prediction based on PEG highlighted limitations due to diet differences during both the adaptation and experimental periods. In conclusion, fNIRS shows promise for screening Ti and Yb fecal content and DMD using Ti. However, tailored PEG prediction equations need to be developed for each specific diet. Full article
(This article belongs to the Section Poultry)
Show Figures

Graphical abstract

18 pages, 11678 KiB  
Article
Inclusions, Chemical Composition, and Spectral Characteristics of Pinkish-Purple to Purple Spinels from Mogok, Myanmar
by Danyu Guo, Geng Li, Liqun Weng, Meilun Zhang and Fabian Dietmar Schmitz
Crystals 2025, 15(7), 659; https://doi.org/10.3390/cryst15070659 - 19 Jul 2025
Viewed by 220
Abstract
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical [...] Read more.
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical analytical techniques. Raman analysis reveals that these spinels commonly contain octahedral inclusions composed of calcite, dolomite, magnesite, and graphite. Chemically, the samples are primarily magnesia-alumina spinels. Color variation is influenced by trace elements: increasing Cr and V contents enhance the red hue, while higher Fe concentrations intensify the purple tone. UV–Vis spectra show that Cr3+ and V3+ jointly contribute to absorptions at 388 nm and 548 nm, with Fe2+ and Fe3+ responsible for the bands at 371 nm and 457 nm, respectively, together controlling the pink-to-purple color variation. Most samples display four Cr3+-related peaks near 700 nm; however, these are absent in deeply purple spinels. In contrast, light pink spinels show weaker absorption at 371 nm and 457 nm, attributed to Fe2+ and Fe3+. Fluorescence spectra confirm characteristic Cr3+ emission bands at 673 nm, 684 nm, 696 nm, 706 nm, and 716 nm, indicating a strong crystal field environment. Raman spectra have peaks mainly around 312 cm−1, 406 cm−1, 665 cm−1, and 768 cm−1. The peaks of the infrared spectrum mainly appear around 840 cm−1, 729 cm−1, 587 cm−1, 545 cm−1, and 473 cm−1. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

22 pages, 1405 KiB  
Review
Knee Osteoarthritis Diagnosis: Future and Perspectives
by Henri Favreau, Kirsley Chennen, Sylvain Feruglio, Elise Perennes, Nicolas Anton, Thierry Vandamme, Nadia Jessel, Olivier Poch and Guillaume Conzatti
Biomedicines 2025, 13(7), 1644; https://doi.org/10.3390/biomedicines13071644 - 4 Jul 2025
Viewed by 615
Abstract
The risk of developing symptomatic knee osteoarthritis (KOA) during a lifetime, i.e., pain, aching, or stiffness in a joint associated with radiographic KOA, was estimated in 2008 to be around 40% in men and 47% in women. The clinical and scientific communities lack [...] Read more.
The risk of developing symptomatic knee osteoarthritis (KOA) during a lifetime, i.e., pain, aching, or stiffness in a joint associated with radiographic KOA, was estimated in 2008 to be around 40% in men and 47% in women. The clinical and scientific communities lack an efficient diagnostic method to effectively monitor, evaluate, and predict the evolution of KOA before and during the therapeutic protocol. In this review, we summarize the main methods that are used or seem promising for the diagnosis of osteoarthritis, with a specific focus on non- or low-invasive methods. As standard diagnostic tools, arthroscopy, magnetic resonance imaging (MRI), and X-ray radiography provide spatial and direct visualization of the joint. However, discrepancies between findings and patient feelings often occur, indicating a lack of correlation between current imaging methods and clinical symptoms. Alternative strategies are in development, including the analysis of biochemical markers or acoustic emission recordings. These methods have undergone deep development and propose, with non- or minimally invasive procedures, to obtain data on tissue condition. However, they present some drawbacks, such as possible interference or the lack of direct visualization of the tissue. Other original methods show strong potential in the field of KOA monitoring, such as electrical bioimpedance or near-infrared spectrometry. These methods could permit us to obtain cheap, portable, and non-invasive data on joint tissue health, while they still need strong implementation to be validated. Also, the use of Artificial Intelligence (AI) in the diagnosis seems essential to effectively develop and validate predictive models for KOA evolution, provided that a large and robust database is available. This would offer a powerful tool for researchers and clinicians to improve therapeutic strategies while permitting an anticipated adaptation of the clinical protocols, moving toward reliable and personalized medicine. Full article
Show Figures

Figure 1

29 pages, 3391 KiB  
Article
Near-Infrared and Sono-Enhanced Photodynamic Therapy of Prostate Cancer Cells Using Phyto-Second Harmonic Generation Nanoconjugates
by Efrat Hochma, Michael A. Firer and Refael Minnes
Polymers 2025, 17(13), 1831; https://doi.org/10.3390/polym17131831 - 30 Jun 2025
Viewed by 385
Abstract
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm [...] Read more.
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm pulses. Under CW NIR light, BT/rhein nanoconjugates reduced PC3 prostate cancer cell viability by 18% versus non-irradiated controls (p < 0.05), while BT/extract nanoconjugates exhibited 15% dark toxicity. The observed SHG signal matched theoretical predictions and previous CW laser studies. Reactive Oxygen Species (ROS) scavenger 1,3-diphenyl-isobenzofuran (DPBF) showed reduced absorbance at 410 nm upon NIR illumination, indirectly supporting SHG emission at 400 nm from nanoconjugates. Under fs-pulsed laser exposure, pronounced two-photon absorption (TPA) and SHG effects were observed in both nanoconjugate types. Our results demonstrate the effectiveness of BT/rhein nanoconjugates under both laser conditions, while the BT/extract nanoconjugates benefited from high-power pulsed excitation. These results highlight the potential of BT-based Phyto-SHG-PDT nanoconjugates for NIR and blue light applications, leveraging nonlinear optical effects for advanced photochemical cancer therapies. Full article
Show Figures

Graphical abstract

21 pages, 10526 KiB  
Article
Long-Term Spatiotemporal Variability and Source Attribution of Aerosols over Xinjiang, China
by Chenggang Li, Xiaolu Ling, Wenhao Liu, Zeyu Tang, Qianle Zhuang and Meiting Fang
Remote Sens. 2025, 17(13), 2207; https://doi.org/10.3390/rs17132207 - 26 Jun 2025
Cited by 1 | Viewed by 330
Abstract
Aerosols play a critical role in modulating the land–atmosphere energy balance, influencing regional climate dynamics, and affecting air quality. Xinjiang, a typical arid and semi-arid region in China, frequently experiences dust events and complex aerosol transport processes. This study provides a comprehensive analysis [...] Read more.
Aerosols play a critical role in modulating the land–atmosphere energy balance, influencing regional climate dynamics, and affecting air quality. Xinjiang, a typical arid and semi-arid region in China, frequently experiences dust events and complex aerosol transport processes. This study provides a comprehensive analysis of the spatiotemporal evolution and potential source regions of aerosols in Xinjiang from 2005 to 2023, based on Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products (MCD19A2), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) vertical profiles, ground-based PM2.5 and PM10 concentrations, MERRA-2 and ERA5 reanalysis datasets, and HYSPLIT backward trajectory simulations. The results reveal pronounced spatial and temporal heterogeneity in aerosol optical depth (AOD). In Northern Xinjiang (NXJ), AOD exhibits relatively small seasonal variation with a wintertime peak, while Southern Xinjiang (SXJ) shows significant seasonal and interannual variability, characterized by high AOD in spring and a minimum in winter, without a clear long-term trend. Dust is the dominant aerosol type, accounting for 96.74% of total aerosol content, and AOD levels are consistently higher in SXJ than in NXJ. During winter, aerosols are primarily deposited in the near-surface layer as a result of local and short-range transport processes, whereas in spring, long-range transport at higher altitudes becomes more prominent. In NXJ, air masses are primarily sourced from local regions and Central Asia, with stronger pollution levels observed in winter. In contrast, springtime pollution in Kashgar is mainly influenced by dust emissions from the Taklamakan Desert, exceeding winter levels. These findings provide important scientific insights for atmospheric environment management and the development of targeted dust mitigation strategies in arid regions. Full article
Show Figures

Graphical abstract

18 pages, 4853 KiB  
Article
Origin Identification of Table Salt Using Flame Atomic Absorption and Portable Near-Infrared Spectrometries
by Larissa Rodrigues Zanela Lima, Luana Dalagrana dos Santos, Isabella Taglieri, David Cabral, Letícia Estevinho, Fábio Luiz Melquiades, Luís Guimarães Dias and Evandro Bona
Chemosensors 2025, 13(7), 231; https://doi.org/10.3390/chemosensors13070231 - 24 Jun 2025
Viewed by 485
Abstract
The mineral composition of table salt can be indicative of its origin. This work evaluated the possibility of identifying the origin of salt from four countries: Brazil, Spain, France, and Portugal. Eight metals were quantified through flame atomic absorption/emission spectroscopy (FAAS). The possibility [...] Read more.
The mineral composition of table salt can be indicative of its origin. This work evaluated the possibility of identifying the origin of salt from four countries: Brazil, Spain, France, and Portugal. Eight metals were quantified through flame atomic absorption/emission spectroscopy (FAAS). The possibility of using portable near-infrared spectroscopy (NIR) as a faster and lower-cost alternative for identifying salt provenance was also evaluated. The content of Ca, Mg, Fe, Mn, and Cu was identified as possible markers to differentiate the salt origin. One-class classifiers using FAAS data and DD-SIMCA could discriminate the salt origin with few misclassifications. For NIR spectroscopy, it was possible to highlight the importance of controlling the humidity and granulometry before the spectra acquisition. After drying and milling the samples, it was possible to discriminate between samples based on the interaction between the water of hydration and the presence of the cations in the sample. The Mg, Mn, and Cu are important in identifying the origin of salt using NIR spectra. The DD-SIMCA model using NIR spectra could classify the origin with the same performance as observed in FAAS. However, it is important to emphasize that NIR spectroscopy requires less sample preparation, is faster, and has low-cost instrumentation. Full article
(This article belongs to the Special Issue Chemometrics Tools Used in Chemical Detection and Analysis)
Show Figures

Graphical abstract

17 pages, 3516 KiB  
Article
Is the Greener Approach Better? Application of Electrochemistry in the Synthesis of Perylenediimides
by Patrycja Filipek, Agata Szlapa-Kula, Stanisław Krompiec, Krzysztof Zemlak, Bartłomiej Kula, Karol Erfurt and Michał Filapek
Molecules 2025, 30(13), 2683; https://doi.org/10.3390/molecules30132683 - 21 Jun 2025
Viewed by 301
Abstract
Perylenediimides are an interesting group of compounds that are finding more and more applications. However, the synthetic route of obtaining and modifying them is usually very complicated, costly, and time-consuming. Therefore, the conducted research aimed to develop new, greener, electrochemical methods of obtaining [...] Read more.
Perylenediimides are an interesting group of compounds that are finding more and more applications. However, the synthetic route of obtaining and modifying them is usually very complicated, costly, and time-consuming. Therefore, the conducted research aimed to develop new, greener, electrochemical methods of obtaining unknown perylenediimides (containing 2-ethylhexyl at the nitrogen atom). For the products obtained in this way, optical and electrochemical studies were conducted and compared with DFT results (i.e., energy gaps and HOMO and LUMO levels). Asa result of optical studies, different emission wavelengths of two isomers originating from the same excitation wavelength were observed. Electrochemical studies also confirmed significant differences in properties between the obtained isomers. Spectroelectrochemical measurements were also performed; they revealed the electrochromic properties of the obtained isomers in the visible and near-infrared range. Considering all the properties (optical and (spectro)electrochemical), the obtained compounds have a high potential for use in optoelectronic devices. Moreover, unprecedented pi-expansion of cis-DBPDI via 1,2-bis(p-bromophenyl)acetylene Diels–Alder cycloaddition into the bay region was also realized successfully. Summing up, electrosynthesis and further pi-expansion via cycloaddition offer a sea of opportunities for obtaining nanographenes. Full article
Show Figures

Graphical abstract

15 pages, 3748 KiB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Viewed by 476
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

10 pages, 968 KiB  
Article
Computational-Chemistry-Based Prediction of Near-Infrared Rhodamine Fluorescence Peaks with Sub-12 nm Accuracy
by Qinlin Yuan, Hanwei Wang, Pingping Sun, Chaoyuan Zeng and Weijie Chi
Photochem 2025, 5(2), 15; https://doi.org/10.3390/photochem5020015 - 12 Jun 2025
Viewed by 649
Abstract
Near-infrared (NIR) rhodamine dyes are pivotal for bioimaging due to the minimal tissue interference. Yet, their rational design is hindered by unreliable computational methods for excited-state property prediction. We benchmarked the time-dependent density functional theory (TDDFT) with the linear-response (LR) and state-specific (SS) [...] Read more.
Near-infrared (NIR) rhodamine dyes are pivotal for bioimaging due to the minimal tissue interference. Yet, their rational design is hindered by unreliable computational methods for excited-state property prediction. We benchmarked the time-dependent density functional theory (TDDFT) with the linear-response (LR) and state-specific (SS) solvation models across five functionals (CAM-B3LYP, M06-2X, ωB97X-D, B3LYP, MN15) and optimized the ground/excited states for 42 rhodamine derivatives. A robust linear calibration framework was established by connecting the computed and experimental wavelengths, which was rigorously validated through six-fold cross-validation. The key metrics included the mean absolute error (MAE) and R2 to assess the prediction robustness. CAM-B3LYP combined with LR solvation achieved the highest accuracy (absorption: MAE = 6 nm, R2 = 0.94; emission: MAE = 12 nm, R2 = 0.72). By integrating the TDDFT with a calibrated linear-response solvation model, we achieved sub-12 nm accuracy in predicting the NIR fluorescence peaks. This framework enabled the rational design of nine novel rhodamine derivatives with emissions beyond 700 nm, offering a paradigm shift in bioimaging probe development. Full article
Show Figures

Graphical abstract

15 pages, 922 KiB  
Article
Searching for New Objects with the B[e] Phenomenon
by Aisha Zh. Naurzbayeva, Nazgul Sh. Alimgazinova, Anatoly S. Miroshnichenko, Corinne Rossi, Inna V. Reva, Raushan I. Kokumbayeva, Chingis T. Omarov, Sergei V. Zharikov, Nadine Manset, Ashish Raj, Arti Joshi, Richard J. Rudy, Richard C. Puetter, Raleigh B. Perry and Kunduz M. Turekhanova
Galaxies 2025, 13(3), 67; https://doi.org/10.3390/galaxies13030067 - 11 Jun 2025
Viewed by 1068
Abstract
Objects with the B[e] phenomenon, whose defining features are the presence of forbidden emission lines and infrared excess coming from circumstellar dust, represent a broad range of evolutionary stages from pre-main-sequence to planetary nebulae. They are important for understanding mechanisms of the circumstellar [...] Read more.
Objects with the B[e] phenomenon, whose defining features are the presence of forbidden emission lines and infrared excess coming from circumstellar dust, represent a broad range of evolutionary stages from pre-main-sequence to planetary nebulae. They are important for understanding mechanisms of the circumstellar matter formation and evolution. However, it is not easy to discover them, especially among faint stars, as forbidden emission lines are usually weak and hardly noticeable in low-resolution spectra. We developed photometric criteria to search for candidate objects with this phenomenon based on a combination of optical and near-infrared color indices and found nearly 40 objects that satisfy these criteria. Spectroscopy of the candidates allows us to make more confident conclusions on their classification. We present the results of our photometric and spectroscopic observations of six objects, which are part of a large list of ∼40 objects that satisfy our photometric selection criteria for candidate objects with the B[e] phenomenon. Forbidden lines of neutral oxygen were clearly detected in the optical spectrum of one object (VES 683) and suspected in three others. One object, AS 415, is most likely a binary system with components that exhibit partial eclipses but without the B[e] phenomenon, while IRAS 20402 + 4638 may be a luminous member of the FS CMa objects group. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

14 pages, 6320 KiB  
Article
Deep Reinforcement Learning-Guided Inverse Design of Transparent Heat Mirror Film for Broadband Spectral Selectivity
by Zhi Zeng, Haining Ji, Tianjian Xiao, Peng Long, Bin Liu, Shisong Jin and Yuxin Cao
Materials 2025, 18(12), 2677; https://doi.org/10.3390/ma18122677 - 6 Jun 2025
Viewed by 555
Abstract
With the increasing energy consumption of buildings, transparent heat mirror films have been widely used in building windows to enhance energy efficiency owing to their excellent spectrally selective properties. Previous studies have typically focused on spectral selectivity in the visible and near-infrared bands, [...] Read more.
With the increasing energy consumption of buildings, transparent heat mirror films have been widely used in building windows to enhance energy efficiency owing to their excellent spectrally selective properties. Previous studies have typically focused on spectral selectivity in the visible and near-infrared bands, as well as single-parameter optimization of film materials or thickness, without fully exploring the performance potential of the films. To address the limitations of traditional design methods, this paper proposes a deep reinforcement learning-based approach that employs an adaptive strategy network to optimize the thin-film material system and layer thickness parameters simultaneously. Through inverse design, a Ta2O5/Ag/Ta2O5/Ag/Ta2O5 (42 nm/22 nm/79 nm/22 nm/40 nm) thin-film structure with broadband spectral selectivity was obtained. The film exhibited an average reflectance of 75.5% in the ultraviolet band and 93.2% in the near-infrared band while maintaining an average visible transmittance of 87.0% and a mid- to far-infrared emissivity as low as 1.7%. Additionally, the film maintained excellent optical performance over a wide range of incident angles, making it suitable for use in complex lighting environments. Building energy simulations indicate that the film achieves a maximum energy-saving rate of 17.93% under the hot climatic conditions of Changsha and 16.81% in Guangzhou, demonstrating that the designed transparent heat mirror film provides a viable approach to reducing building energy consumption and holds significant potential for practical applications. Full article
(This article belongs to the Special Issue Machine Learning for Materials Design)
Show Figures

Graphical abstract

20 pages, 5358 KiB  
Article
Machine Learning-Based Classification of Sulfide Mineral Spectral Emission in High Temperature Processes
by Carlos Toro, Walter Díaz, Gonzalo Reyes, Miguel Peña, Nicolás Caselli, Carla Taramasco, Pablo Ormeño-Arriagada and Eduardo Balladares
Big Data Cogn. Comput. 2025, 9(5), 130; https://doi.org/10.3390/bdcc9050130 - 14 May 2025
Viewed by 619
Abstract
Accurate classification of sulfide minerals during combustion is essential for optimizing pyrometallurgical processes such as flash smelting, where efficient combustion impacts resource utilization, energy efficiency, and emission control. This study presents a deep learning-based approach for classifying visible and near-infrared (VIS-NIR) emission spectra [...] Read more.
Accurate classification of sulfide minerals during combustion is essential for optimizing pyrometallurgical processes such as flash smelting, where efficient combustion impacts resource utilization, energy efficiency, and emission control. This study presents a deep learning-based approach for classifying visible and near-infrared (VIS-NIR) emission spectra from the combustion of high-grade sulfide minerals. A one-dimensional convolutional neural network (1D-CNN) was developed and trained on experimentally acquired spectral data, achieving a balanced accuracy score of 99.0% in a test set. The optimized deep learning model outperformed conventional machine learning methods, highlighting the effectiveness of deep learning for spectral analysis in high-temperature environments. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) was applied to enhance model interpretability and identify key spectral regions contributing to classification decisions. The results demonstrated that the model successfully distinguished spectral features associated with different mineral species, offering insights into combustion dynamics. These findings support the potential integration of deep learning for real-time spectral monitoring in industrial flash smelting operations, thereby enabling more precise process control and decision-making. Full article
(This article belongs to the Special Issue Machine Learning and AI Technology for Sustainable Development)
Show Figures

Figure 1

18 pages, 4707 KiB  
Article
Development of Wearable Wireless Multichannel f-NIRS System to Evaluate Activities
by Xiaojie Ma, Tianchao Miao, Fawen Xie, Jieyu Zhang, Lulu Zheng, Xiang Liu and Hangrui Hai
Micromachines 2025, 16(5), 576; https://doi.org/10.3390/mi16050576 - 14 May 2025
Viewed by 624
Abstract
Functional near-infrared spectroscopy is a noninvasive neuroimaging technique that uses optical signals to monitor subtle changes in hemoglobin concentrations within the superficial tissue of the human body. This technology has widespread applications in long-term brain–computer interface monitoring within both traditional medical domains and, [...] Read more.
Functional near-infrared spectroscopy is a noninvasive neuroimaging technique that uses optical signals to monitor subtle changes in hemoglobin concentrations within the superficial tissue of the human body. This technology has widespread applications in long-term brain–computer interface monitoring within both traditional medical domains and, increasingly, domestic settings. The popularity of this approach lies in the fact that new single-channel brain oxygen sensors can be used in a variety of scenarios. Given the diverse sensor structure requirements across applications and numerous approaches to data acquisition, the accurate extraction of comprehensive brain activity information requires a multichannel near-infrared system. This study proposes a novel distributed multichannel near-infrared system that integrates two near-infrared light emissions at differing wavelengths (660 nm, 850 nm) with a photoelectric receiver. This substantially improves the accuracy of regional signal sampling. Through a basic long-time mental arithmetic paradigm, we demonstrate that the accompanying algorithm supports offline analysis and is sufficiently versatile for diverse scenarios relevant to the system’s functionality. Full article
Show Figures

Figure 1

13 pages, 6485 KiB  
Article
Investigations on the NIR Fluorescence Band Modulation of Bi-Doped Silica-Based Glasses and Fibers
by Qianhong Zheng, Genying Zeng, Chenxing Liao, Huoming Huang, Weixiong You, Xinyu Ye and Liaolin Zhang
Inorganics 2025, 13(5), 153; https://doi.org/10.3390/inorganics13050153 - 7 May 2025
Viewed by 518
Abstract
Bi-doped glasses and fibers have been widely applied in solid-state and fiber lasers. However, the mechanism underlying near-infrared (NIR) luminescence remains unclear, and Bi-related luminescence centers (BLCs) are prone to alteration during fiber fabrication, making it challenging to achieve high-performance Bi-doped glass fibers. [...] Read more.
Bi-doped glasses and fibers have been widely applied in solid-state and fiber lasers. However, the mechanism underlying near-infrared (NIR) luminescence remains unclear, and Bi-related luminescence centers (BLCs) are prone to alteration during fiber fabrication, making it challenging to achieve high-performance Bi-doped glass fibers. In this work, Bi-, Bi-Al-, and Bi-Ge-doped silica glasses were investigated to elucidate the origin of NIR luminescence. Two broad NIR fluorescence bands were observed in silica glasses, originating from distinct BLCs. The longer-wavelength fluorescence band at 1423 nm, demonstrating sensitivity to Bi doping concentration and homogeneity, is attributed to Bi clusters (aggregates of Bi+ ions), whereas the shorter-wavelength emission, independent of Bi concentration, originates from isolated Bi+ ions. A vacuum-assisted melting-in-tube method with a single-step heating process was employed to fabricate Bi-doped silica-based glasses and fibers. The fluorescence bands of the fibers remained consistent with those of the precursor glasses, indicating no new BLCs were formed during fiber fabrication. The modulation of fluorescence bands was primarily governed by Bi cluster formation. Suppressing Bi clustering through co-doping with Al/Ge or optimizing fabrication conditions offers an effective route to tailor the fluorescence properties of Bi-doped glasses and fibers. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 7264 KiB  
Article
Selective and Sensitive Dual Chromogenic Cyanide and Fluorescent Azide Probe
by Yousef M. Hijji, Rajeesha Rajan, Amjad M. Shraim, Bassam Attili, Sisay Uota and Fasil Abebe
Photochem 2025, 5(2), 12; https://doi.org/10.3390/photochem5020012 - 6 May 2025
Cited by 1 | Viewed by 670
Abstract
IR-780 is a heptamethine cyanine dye that exhibits strong absorbance in the near-infrared region. Herein, we report IR-780 dye as a dual sensor for chromogenic cyanide detection and azide’s fluorogenic sensing in acetonitrile. Cyanide and hydroxide cause instant, dramatic color changes in the [...] Read more.
IR-780 is a heptamethine cyanine dye that exhibits strong absorbance in the near-infrared region. Herein, we report IR-780 dye as a dual sensor for chromogenic cyanide detection and azide’s fluorogenic sensing in acetonitrile. Cyanide and hydroxide cause instant, dramatic color changes in the dye solution from green to yellow and dramatic spectral changes in the UV-Vis spectrum. The interaction of cyanide and hydroxide with the dye caused a dramatic decrease in the intensity of the strong absorption band at 780 nm and a concomitant band appearance at 435 nm. Other monovalent ions, including fluoride, chloride, bromide, iodide, dihydrogen phosphate, thiocyanate, acetate, and dihydrogen arsenate, caused no significant color or spectral changes. UV-Vis studies showed that the IR-780 dye is sensitive and selective to both ions. The detection limits for cyanide and azide are 0.39 µM and 0.50 µM, respectively. Interestingly, the IR-780 dye exhibited strong fluorescence at 535nm upon interaction with azide, while its initial emission at 809 nm was quenched. Both UV-Vis and fluorescence spectroscopy accomplished the detection of cyanide and azide using IR-780. Furthermore, the sensor’s effectiveness in fluorescence imaging of intracellular CN⁻ ions is demonstrated in live HeLa cells. Full article
Show Figures

Figure 1

Back to TopTop