Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = natural time (NT) analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 31209 KB  
Article
Characterisation of GPS Horizontal Positioning Errors and Dst Using Recurrence Plot Analysis in Sub-Equatorial Ionospheric Conditions
by Lucija Žužić, Luka Škrlj, Aleksandar Nešković and Renato Filjar
Urban Sci. 2025, 9(11), 451; https://doi.org/10.3390/urbansci9110451 - 31 Oct 2025
Viewed by 598
Abstract
The Global Navigation Satellite System (GNSS) positioning performance may be degraded due to the effects of various natural and adversarial causes, most notably those related to space weather, geomagnetic, and ionospheric conditions and disturbances. Here we present a contribution to understanding the nature [...] Read more.
The Global Navigation Satellite System (GNSS) positioning performance may be degraded due to the effects of various natural and adversarial causes, most notably those related to space weather, geomagnetic, and ionospheric conditions and disturbances. Here we present a contribution to understanding the nature of geomagnetic and ionospheric conditions in terms of the effects on the GPS positioning performance through the comparative time-series analysis of the long-term annual (Year 2014) non-linear properties of Disturbance storm-time (Dst) index, an indicator of geomagnetic conditions, and the single-frequency commercial-grade GPS horizontal positioning errors as derived from raw single-frequency commercial-grade GPS observations taken at the International GNSS Service (IGS) reference station at Darwin, Northern Territory (NT), Australia. The analysis reveals candidate non-linear property indicators for future assessments and modelling, as potential descriptors of the long-term non-linear association between geomagnetic/ionospheric disturbances and GNSS positioning performance degradation: recurrence rate (RR), total number of lines in the recurrent plot, Shannon entropy, and trapping time (TT). The inference presented may serve as a framework for introducing advanced GNSS PNT correction procedures to mitigate environmental ionospheric effects on GNSS positioning performance, thereby offering more resilient and robust PNT services for GNSS applications in urban mobility, systems, and services. Full article
(This article belongs to the Special Issue Human, Technologies, and Environment in Sustainable Cities)
Show Figures

Graphical abstract

12 pages, 592 KB  
Article
Twenty-Five Years After the Chi-Chi Earthquake in the Light of Natural Time Analysis
by Panayiotis A. Varotsos, Nicholas V. Sarlis, Efthimios S. Skordas, Qinghua Huang, Jann-Yenq Liu, Masashi Kamogawa and Toshiyasu Nagao
Geosciences 2025, 15(6), 198; https://doi.org/10.3390/geosciences15060198 - 24 May 2025
Viewed by 928
Abstract
Almost two years after the devastating 1999 MW7.6 Chi-Chi earthquake, a new concept of time termed natural time (NT) was introduced in 2001 that reveals unique dynamic features hidden behind the time series of complex systems. In particular, NT analysis enables [...] Read more.
Almost two years after the devastating 1999 MW7.6 Chi-Chi earthquake, a new concept of time termed natural time (NT) was introduced in 2001 that reveals unique dynamic features hidden behind the time series of complex systems. In particular, NT analysis enables the study of the dynamical evolution of a complex system and identifies when the system enters a critical stage. Since the observed earthquake scaling laws indicate the existence of phenomena closely associated with the proximity of the system to a critical point, here we apply NT analysis to seismicity that preceded the 3 April 2024 MW7.4 Hualien earthquake. We find that in the beginning of September 2023 the order parameter of seismicity exhibited a clearly detectable minimum. Such a minimum demonstrates that seismic electric signal (SES) activity initiated which comprises several low-frequency transient changes of the electric field of the Earth preceding major earthquakes. Full article
Show Figures

Figure 1

10 pages, 2546 KB  
Brief Report
Humoral and Cell-Mediated Immunity Against SARS-CoV-2 in Healthcare Personnel Who Received Multiple mRNA Vaccines: A 4-Year Observational Study
by Hideaki Kato, Kaori Sano, Kei Miyakawa, Takayuki Kurosawa, Kazuo Horikawa, Yayoi Kimura, Atsushi Goto and Akihide Ryo
Infect. Dis. Rep. 2025, 17(3), 42; https://doi.org/10.3390/idr17030042 - 29 Apr 2025
Viewed by 1521
Abstract
Background/Objectives: The long-term effects of multiple updated vaccinations against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have not been clarified. Humoral or cellular immunity dynamics in healthcare workers for four years were analyzed. Methods: Blood samples were collected at five time points from April [...] Read more.
Background/Objectives: The long-term effects of multiple updated vaccinations against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have not been clarified. Humoral or cellular immunity dynamics in healthcare workers for four years were analyzed. Methods: Blood samples were collected at five time points from April 2021 to January 2024. Humoral immunity was analyzed using the 50% neutralizing titer (NT50) against the original Omicron XBB and Omicron BA.2.86 strains and cellular immunity were analyzed using the ELISpot interferon-gamma releasing assay. NT50s and the spot-forming count (SFC) of the ELISpot assay were compared in the SARS-CoV-2 Omicron XBB-, Omicron-infected, and uninfected subjects. Results: 32 healthcare workers (median age, 47 years) who received 3–7 vaccine doses were enrolled. The NT50s against the original strain decreased after the second vaccination but were maintained after the third vaccine dose. NT50s against the Omicron XBB and BA.2.86 strains were detected before the Omicron vaccine was introduced and increased following the updated vaccination. The NT50s against the Omicron XBB and BA.2.86 strains were elevated after natural infection by the Omicron strain, albeit without differences compared with the findings in uninfected subjects. Multivariate regression analysis revealed no confounder that affected the antibody titer against the BA.2.86 strain at the fifth blood sampling. The median number of SFCs ranged from 78 to 208 after the first two doses. Conclusions: Multiple vaccinations induced the production of antibodies with divergent activity against emerging mutant strains and enhanced protective effects against the original strain. This finding supported the importance of updated vaccination. Full article
Show Figures

Figure 1

15 pages, 2815 KB  
Article
Computational Study of Time-Fractional Kawahara and Modified Kawahara Equations with Caputo Derivatives Using Natural Homotopy Transform Method
by Muhammad Nadeem, Loredana Florentina Iambor, Ebraheem Alzahrani and Azeem Hafiz P. Ajmal
Fractal Fract. 2025, 9(4), 247; https://doi.org/10.3390/fractalfract9040247 - 15 Apr 2025
Cited by 1 | Viewed by 883
Abstract
This article presents a computational analysis of approximate solutions for the time-fractional nonlinear Kawahara problem (KP) and the modified Kawahara problem (modified KP). This study utilizes the natural homotopy transform scheme (NHTS), which integrates the natural transform (NT) with the homotopy perturbation scheme [...] Read more.
This article presents a computational analysis of approximate solutions for the time-fractional nonlinear Kawahara problem (KP) and the modified Kawahara problem (modified KP). This study utilizes the natural homotopy transform scheme (NHTS), which integrates the natural transform (NT) with the homotopy perturbation scheme (HPS). We derive the algebraic expression of nonlinear terms through the implementation of HPS. The fractional derivatives are considered in the Caputo form. Numerical results and visualizations present the practical interest and effectiveness of the fractional derivatives. The accuracy of the approximate results, coupled with their precise outcomes, emphasizes the reliability of the method. These findings demonstrate that NHTS is a robust and effective approach for solving time-fractional problems through series expansions. Full article
Show Figures

Figure 1

14 pages, 1536 KB  
Article
Antistress Effects of Terpinen-4-ol and Compounds of Mimicked Yuzu Synthetic Fragrance in Humans and Mice
by Takuma Kitamoto, Takafumi Mizushige, Xiaonan Xie, Taisei Uematsu, Risako Ogura, Kakeru Sato, Yuki Yamazaki, Tsubasa Matsushita and Hiroshi Hasegawa
Foods 2024, 13(19), 3051; https://doi.org/10.3390/foods13193051 - 25 Sep 2024
Cited by 1 | Viewed by 2208
Abstract
This study investigated the antistress effects of yuzu synthetic fragrances by employing three experiments on humans and mice using two yuzu synthetic fragrances and five single compounds. We prepared two synthetic fragrances based on the component analysis of two natural yuzu essential oils [...] Read more.
This study investigated the antistress effects of yuzu synthetic fragrances by employing three experiments on humans and mice using two yuzu synthetic fragrances and five single compounds. We prepared two synthetic fragrances based on the component analysis of two natural yuzu essential oils extracted by cold-pressed and steam-distilled extraction methods. Chromogranin A (CgA) and heart rate (HR) were used as stress indices in human experiments. Immobility time during the forced swim test was used as a stress index in mice experiments. We analyzed brain mechanisms by measuring the expression of neurotrophic factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) in the mice experiments. Synthetic yuzu fragrance mimicked steam-distilled oil (SD) significantly reduced participants’ heart rate in experiment 1. In the forced swim test conducted in experiment 2, SD significantly reduced immobility time, and increased the expression of neurotrophic factors BDNF, NGF, and NT-3 in the hippocampus of mice. In experiment 3, focusing on single compounds, terpinen-4-ol significantly reduced immobility time in the forced swim test. These findings indicate that inhalation of SD and terpinen-4-ol has antistress effects. Terpinen-4-ol is a strong candidate for further investigation as a potential stress-reducing agent. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

19 pages, 21031 KB  
Article
Tobacco Transcription Factor NtWRKY70b Facilitates Leaf Senescence via Inducing ROS Accumulation and Impairing Hydrogen Sulfide Biosynthesis
by Xinshuang Zhang, Yan Sun, Hao Wu, Ying Zhu, Xin Liu and Songchong Lu
Int. J. Mol. Sci. 2024, 25(7), 3686; https://doi.org/10.3390/ijms25073686 - 26 Mar 2024
Cited by 12 | Viewed by 2256
Abstract
Leaf senescence is the terminal stage of leaf development, and its initiation and progression are closely controlled by the integration of a myriad of endogenous signals and environmental stimuli. It has been documented that WRKY transcription factors (TFs) play essential roles in regulating [...] Read more.
Leaf senescence is the terminal stage of leaf development, and its initiation and progression are closely controlled by the integration of a myriad of endogenous signals and environmental stimuli. It has been documented that WRKY transcription factors (TFs) play essential roles in regulating leaf senescence, yet the molecular mechanism of WRKY-mediated leaf senescence still lacks detailed elucidation in crop plants. In this study, we cloned and identified a tobacco WRKY TF gene, designated NtWRKY70b, acting as a positive regulator of natural leaf senescence. The expression profile analysis showed that NtWRKY70b transcript levels were induced by aging and hydrogen peroxide (H2O2) and downregulated upon hydrogen sulfide (H2S) treatment. The physiological and biochemical assays revealed that overexpression of NtWRKY70b (OE) clearly promoted leaf senescence, triggering increased levels of reactive oxygen species (ROS) and decreased H2S content, while disruption of NtWRKY70b by chimeric repressor silencing technology (SRDX) significantly delayed the onset of leaf senescence, leading to a decreased accumulation of ROS and elevated concentration of H2S. The quantitative real-time PCR analysis showed that the expression levels of various senescence-associated genes and ROS biosynthesis-related genes (NtRbohD and NtRbohE) were upregulated in OE lines, while the expression of H2S biosynthesis-related genes (NtDCD and NtCYSC1) were inhibited in OE lines. Furthermore, the Yeast one-hybrid analysis (Y1H) and dual luciferase assays showed that NtWRKY70b could directly upregulate the expression of an ROS biosynthesis-related gene (NtRbohD) and a chlorophyll degradation-related gene (NtPPH) by binding to their promoter sequences. Accordingly, these results indicated that NtWYKY70b directly activated the transcript levels of NtRbohD and NtPPH and repressed the expression of NtDCD and NtCYCS1, thereby promoting ROS accumulation and impairing the endogenous H2S production, and subsequently accelerating leaf aging. These observations improve our knowledge of the regulatory mechanisms of WRKY TFs controlling leaf senescence and provide a novel method for ensuring high agricultural crop productivity via genetic manipulation of leaf senescence in crops. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding: 4th Edition)
Show Figures

Figure 1

18 pages, 7877 KB  
Article
Synchronized and Co-Located Ionospheric and Atmospheric Anomalies Associated with the 2023 Mw 7.8 Turkey Earthquake
by Syed Faizan Haider, Munawar Shah, Bofeng Li, Punyawi Jamjareegulgarn, José Francisco de Oliveira-Júnior and Changyu Zhou
Remote Sens. 2024, 16(2), 222; https://doi.org/10.3390/rs16020222 - 5 Jan 2024
Cited by 20 | Viewed by 4037
Abstract
Earth observations from remotely sensed data have a substantial impact on natural hazard surveillance, specifically for earthquakes. The rapid emergence of diverse earthquake precursors has led to the exploration of different methodologies and datasets from various satellites to understand and address the complex [...] Read more.
Earth observations from remotely sensed data have a substantial impact on natural hazard surveillance, specifically for earthquakes. The rapid emergence of diverse earthquake precursors has led to the exploration of different methodologies and datasets from various satellites to understand and address the complex nature of earthquake precursors. This study presents a novel technique to detect the ionospheric and atmospheric precursors using machine learning (ML). We examine the multiple precursors of different spatiotemporal nature from satellites in the ionosphere and atmosphere related to the Turkey earthquake on 6 February 2023 (Mw 7.8), in the form of total electron content (TEC), land surface temperature (LST), sea surface temperature (SST), air pressure (AP), relative humidity (RH), outgoing longwave radiation (OLR), and air temperature (AT). As a confutation analysis, we also statistically observe datasets of atmospheric parameters for the years 2021 and 2022 in the same epicentral region and time period as the 2023 Turkey earthquake. Moreover, the aim of this study is to find a synchronized and co-located window of possible earthquake anomalies by providing more evidence with standard deviation (STDEV) and nonlinear autoregressive network with exogenous inputs (NARX) models. It is noteworthy that both the statistical and ML methods demonstrate abnormal fluctuations as precursors within 6 to 7 days before the impending earthquake over the epicenter. Furthermore, the geomagnetic anomalies in the ionosphere are detected on the ninth day after the earthquake (Kp > 4; Dst < −70 nT; ap > 50 nT). This study indicates the relevance of using multiple earthquake precursors in a synchronized window from ML methods to support the lithosphere–atmosphere–ionosphere coupling (LAIC) phenomenon. Full article
Show Figures

Graphical abstract

11 pages, 1579 KB  
Article
Root Canal Preparation of a Commercial Artificial Tooth versus Natural Tooth—A MicroCT Study
by Tiago Reis, Cláudia Barbosa, Margarida Franco, Catarina Batista, Nuno Alves, Pablo Castelo-Baz, José Martin-Cruces and Benjamín Martin-Biedma
Appl. Sci. 2023, 13(16), 9400; https://doi.org/10.3390/app13169400 - 18 Aug 2023
Cited by 2 | Viewed by 1964
Abstract
This study aimed to evaluate by microCT the preparation of the artificial teeth (ATs), TrueTooth®, versus natural teeth (NTs): (1) the time and number of pecking movements needed for preparation; (2) the root canal volume increase; (3) if the pulp-colored medium [...] Read more.
This study aimed to evaluate by microCT the preparation of the artificial teeth (ATs), TrueTooth®, versus natural teeth (NTs): (1) the time and number of pecking movements needed for preparation; (2) the root canal volume increase; (3) if the pulp-colored medium has any effect on the 3D analysis. Material and Methods: Artificial and natural maxillary molars were used. Fourteen AT distobuccal canals and fourteen NT buccal canals were used for the first and second aim and fourteen AT mesiobuccal canals for the third aim. Results: No statistically significant differences were observed regarding the time and number of pecking movements (p > 0.05); for the root canal volume increase, a statistically significant difference was observed (p < 0.05) with a higher mean value for NTs; however, in the group of ATs, there was a volume decrease in three cases. The AT mesiobuccal root canal mean volume increase was also negative. Conclusions: There are no differences between the time and number of pecking movements between NTs and ATs, so TrueTooth® can potentially be used in endodontic training. The volume increase between ATs and NTs was higher in NTs. However, some samples showed negative values, also seen in the AT mesiobuccal canal, confirming that the pulp-colored medium has an effect on the 3D analysis. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

15 pages, 4275 KB  
Article
Identification and Molecular Characterization of a Novel Carlavirus Infecting Chrysanthemum morifolium in China
by Jiapeng Li, Xiaoyin Wu, Hui Liu, Xiaomei Wang, Shaokui Yi, Xueting Zhong, Yaqin Wang and Zhanqi Wang
Viruses 2023, 15(4), 1029; https://doi.org/10.3390/v15041029 - 21 Apr 2023
Cited by 7 | Viewed by 3368
Abstract
Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, [...] Read more.
Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5′-untranslated region (UTR) and a 76-nt 3′-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes. Phylogenetic analyses based on full-length genome and coat protein sequences revealed that CiCV1-CN is in an evolutionary branch with chrysanthemum virus R (CVR) in the Carlavirus genus. Pairwise sequence identity analysis showed that, except for CiCV1, CiCV1-CN has the highest whole-genome sequence identity of 71.3% to CVR-X6. At the amino acid level, the highest identities of predicted proteins encoded by the ORF1, ORF2, ORF3, ORF4, ORF5, and ORF6 of CiCV1-CN were 77.1% in the CVR-X21 ORF1, 80.3% in the CVR-X13 ORF2, 74.8% in the CVR-X21 ORF3, 60.9% in the CVR-BJ ORF4, 90.2% in the CVR-X6 and CVR-TX ORF5s, and 79.4% in the CVR-X21 ORF6. Furthermore, we also found a transient expression of the cysteine-rich protein (CRP) encoded by the ORF6 of CiCV1-CN in Nicotiana benthamiana plants using a potato virus X-based vector, which can result in a downward leaf curl and hypersensitive cell death over the time course. These results demonstrated that CiCV1-CN is a pathogenic virus and C. morifolium is a natural host of CiCV1. Full article
(This article belongs to the Special Issue Next-Generation Sequencing in Plant Virology 2.0)
Show Figures

Figure 1

7 pages, 642 KB  
Brief Report
IDO1 Protein Is Expressed in Diagnostic Biopsies from Both Follicular and Transformed Follicular Patients
by Marie Beck Hairing Enemark, Emma Frasez Sørensen, Trine Engelbrecht Hybel, Maja Dam Andersen, Charlotte Madsen, Kristina Lystlund Lauridsen, Bent Honoré, Francesco d’Amore, Trine Lindhardt Plesner, Stephen Jacques Hamilton-Dutoit and Maja Ludvigsen
Int. J. Mol. Sci. 2023, 24(8), 7314; https://doi.org/10.3390/ijms24087314 - 15 Apr 2023
Cited by 2 | Viewed by 1943
Abstract
Follicular lymphoma (FL) is a lymphoid neoplasia characterized by an indolent clinical nature. Despite generally favorable prognoses, early progression and histological transformation (HT) to a more aggressive lymphoma histology remain the leading causes of death among FL patients. To provide a basis for [...] Read more.
Follicular lymphoma (FL) is a lymphoid neoplasia characterized by an indolent clinical nature. Despite generally favorable prognoses, early progression and histological transformation (HT) to a more aggressive lymphoma histology remain the leading causes of death among FL patients. To provide a basis for possible novel treatment options, we set out to evaluate the expression levels of indoleamine 2,3-dioxygenase 1 (IDO1), an immunoinhibitory checkpoint molecule, in follicular and transformed follicular biopsies. The expression levels of IDO1 were assessed using immunohistochemical staining and digital image analysis in lymphoma biopsies from 33 FL patients without subsequent HT (non-transforming FL, nt-FL) and 20 patients with subsequent HT (subsequently transforming FL, st-FL) as well as in paired high-grade biopsies from the time of HT (transformed FL, tFL). Despite no statistical difference in IDO1 expression levels seen between the groups, all diagnostic and transformed lymphomas exhibited positive expression, indicating its possible role in novel treatment regimens. In addition, IDO1 expression revealed a positive correlation with another immune checkpoint inhibitor, namely programmed death 1 (PD-1). In summary, we report IDO1 expression in all cases of FL and tFL, which provides the grounds for future investigations of anti-IDO1 therapy as a possible treatment for FL patients. Full article
(This article belongs to the Special Issue New Diagnostic Tools and Biomarkers in Oncological Diseases)
Show Figures

Figure 1

32 pages, 15329 KB  
Article
Possible Pre-Seismic Indications Prior to Strong Earthquakes That Occurred in Southeastern Mediterranean as Observed Simultaneously by Three VLF/LF Stations Installed in Athens (Greece)
by Dimitrios Z. Politis, Stelios M. Potirakis, Sudipta Sasmal, Filopimin Malkotsis, Dionisis Dimakos and Masashi Hayakawa
Atmosphere 2023, 14(4), 673; https://doi.org/10.3390/atmos14040673 - 1 Apr 2023
Cited by 5 | Viewed by 2925
Abstract
In this work, we present the analysis of VLF/LF sub-ionospheric propagation data to study anomalies possibly related to very recent strong (M > 5.5) earthquakes (EQs) that occurred in the southeastern Mediterranean in September–October 2021 and January 2022. We used the signal of [...] Read more.
In this work, we present the analysis of VLF/LF sub-ionospheric propagation data to study anomalies possibly related to very recent strong (M > 5.5) earthquakes (EQs) that occurred in the southeastern Mediterranean in September–October 2021 and January 2022. We used the signal of one transmitter located at Negev in Israel (29.7 kHz) as received by three VLF/LF receivers (two of them using identical SW and HW) installed, at a close distance to each other, in Athens (Greece). This study employed multiple methods and techniques to analyze the reception amplitude data to identify any possible EQ-related anomalies. More specifically, first, we used both statistical and criticality analysis methods such as the “nighttime fluctuation method” (NFM), the “terminator time method” (TTM), and the “natural time” (NT) analysis method. These methods have satisfactorily been applied in the past in a series of other studies leading to interesting results. Moreover, we additionally used two more analysis techniques focusing on the signal’s amplitude characteristics. The first is the wavelet analysis of the nighttime part of the signal’s amplitude. It is based on the Morlet wavelet function, aiming to unveil the possible existence of atmospheric gravity waves (AGWs) before EQ. The second is named “long wavelength propagation capability” (LWPC), which simulates the amplitude of the signal and is based on the reflection parameters of ionosphere and by searching for increases or decreases of the electron density profile of the ionospheric D layer concerning the shifts of the minima of terminator times (TTs) in the diurnal variation of the signal. Finally, in this work, we summarize our findings and discuss possible “pre-”, “co-”, and “post-” seismic effects as observed from all the work. Full article
(This article belongs to the Special Issue Recent Advances in Ionosphere Observation and Investigation)
Show Figures

Figure 1

12 pages, 1469 KB  
Article
A Mixed Methods Approach as a Channel to Interpret Outcomes Research and Lived Experience Enquiry of Upper Extremity Elective Surgery for Tetraplegia
by K. Anne Sinnott Jerram, Jennifer Dunn, Richard Smaill and James Middleton
J. Pers. Med. 2023, 13(3), 394; https://doi.org/10.3390/jpm13030394 - 23 Feb 2023
Cited by 2 | Viewed by 2445
Abstract
Cervical spinal cord injury (SCI) causing tetraplegia is extremely disabling. In such circumstances, restoration of upper extremity (UE) function is considered the highest priority. The advent of early nerve transfer (NT) procedures, in addition to more traditional tendon transfers (TT), warranted in-depth consideration [...] Read more.
Cervical spinal cord injury (SCI) causing tetraplegia is extremely disabling. In such circumstances, restoration of upper extremity (UE) function is considered the highest priority. The advent of early nerve transfer (NT) procedures, in addition to more traditional tendon transfers (TT), warranted in-depth consideration given the time-limited nature of NT procedures. Potential surgery candidates may not yet have come to terms with the permanence of their disability. A mixed methods convergent design was utilized for concurrent analysis of the Aotearoa/New Zealand upper limb registry data from the clinical assessments of all individuals considering UE surgery, regardless of their final decision. The International Classification of Functioning, Disability and Health (ICF) taxonomy guided data interpretation during the three-phased study series. It was the integration of the findings using the Stewart Model of care drawn from palliative health that enabled the interpretation of higher order messages. It is clear the clinical assessment and selection processes in use require reconsideration given the complexities individuals face following onset of SCI. We draw attention to the higher order cognitive demands placed on individuals, the requirement for SCI peer involvement in decision making and the need for acknowledgment of interdependence as a relational construct when living with tetraplegia. Full article
(This article belongs to the Section Personalized Therapy in Clinical Medicine)
Show Figures

Figure 1

17 pages, 1925 KB  
Article
Effects of Ultra-Weak Fractal Electromagnetic Signals on Malassezia furfur
by Pierre Madl, Roberto Germano, Alberto Tedeschi and Herbert Lettner
Int. J. Mol. Sci. 2023, 24(4), 4099; https://doi.org/10.3390/ijms24044099 - 17 Feb 2023
Cited by 1 | Viewed by 2956
Abstract
Malassezia spp. are dimorphic, lipophilic fungi that are part of the normal human cutaneous commensal microbiome. However, under adverse conditions, these fungi can be involved in various cutaneous diseases. In this study, we analysed the effect of ultra-weak fractal electromagnetic (uwf-EMF) field exposure [...] Read more.
Malassezia spp. are dimorphic, lipophilic fungi that are part of the normal human cutaneous commensal microbiome. However, under adverse conditions, these fungi can be involved in various cutaneous diseases. In this study, we analysed the effect of ultra-weak fractal electromagnetic (uwf-EMF) field exposure (12.6 nT covering 0.5 to 20 kHz) on the growth dynamics and invasiveness of M. furfur. The ability to modulate inflammation and innate immunity in normal human keratinocytes was also investigated. Using a microbiological assay, it was possible to demonstrate that, under the influence of uwf-EMF, the invasiveness of M. furfur was drastically reduced (d = 2.456, p < 0.001), while at the same time, its growth dynamic after 72 h having been in contact with HaCaT cells both without (d = 0.211, p = 0.390) and with (d = 0.118, p = 0.438) uwf-EM exposure, were hardly affected. Real-time PCR analysis demonstrated that a uwf-EMF exposure is able to modulate human-β-defensin-2 (hBD-2) in treated keratinocytes and at the same time reduce the expression of proinflammatory cytokines in human keratinocytes. The findings suggest that the underlying principle of action is hormetic in nature and that this method might be an adjunctive therapeutic tool to modulate the inflammatory properties of Malassezia in related cutaneous diseases. The underlying principle of action becomes understandable by means of quantum electrodynamics (QED). Given that living systems consist mainly of water and within the framework of QED, this water, as a biphasic system, provides the basis for electromagnetic coupling. The oscillatory properties of water dipoles modulated by weak electromagnetic stimuli not only affect biochemical processes, but also pave the way for a more general understanding of the observed nonthermal effects in biota. Full article
Show Figures

Graphical abstract

10 pages, 278 KB  
Review
Endogenous miRNA-Based Innate-Immunity against SARS-CoV-2 Invasion of the Brain
by Walter J. Lukiw and Aileen I. Pogue
Int. J. Mol. Sci. 2023, 24(4), 3363; https://doi.org/10.3390/ijms24043363 - 8 Feb 2023
Cited by 1 | Viewed by 3104
Abstract
The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a [...] Read more.
The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a 5′-methyl cap (m7GpppN), a 3′- and 5′-untranslated region (3′-UTR, 5′-UTR), and a poly-adenylated (poly-A+) tail. As such, the SARS-CoV-2 ssvRNA is susceptible to targeting by small non-coding RNA (sncRNA) and/or microRNA (miRNA), as well as neutralization and/or inhibition of its infectivity via the human body’s natural complement of about ~2650 miRNA species. Depending on host cell and tissue type, in silico analysis, RNA sequencing, and molecular-genetic investigations indicate that, remarkably, almost every single human miRNA has the potential to interact with the primary sequence of SARS-CoV-2 ssvRNA. Individual human variation in host miRNA abundance, speciation, and complexity among different human populations and additional variability in the cell and tissue distribution of the SARS-CoV-2 angiotensin converting enzyme-2 (ACE2) receptor (ACE2R) appear to further contribute to the molecular-genetic basis for the wide variation in individual host cell and tissue susceptibility to COVID-19 infection. In this paper, we review recently described aspects of the miRNA and ssvRNA ribonucleotide sequence structure in this highly evolved miRNA–ssvRNA recognition and signaling system and, for the first time, report the most abundant miRNAs in the control superior temporal lobe neocortex (STLN), an anatomical area involved in cognition and targeted by both SARS-CoV-2 invasion and Alzheimer’s disease (AD). We further evaluate important factors involving the neurotropic nature of SARS-CoV-2 and miRNAs and ACE2R distribution in the STLN that modulate significant functional deficits in the brain and CNS associated with SARS-CoV-2 infection and COVID-19’s long-term neurological effects. Full article
(This article belongs to the Special Issue Molecular Interactions and Mechanisms of COVID-19 Inhibition 2.0)
29 pages, 5452 KB  
Article
Comparison of Standardized Methods for Determining the Diffusion Coefficient of Chloride in Concrete with Thermodynamic Model of Migration
by Zofia Szweda, Jacek Gołaszewski, Pratanu Ghosh, Petr Lehner and Petr Konečný
Materials 2023, 16(2), 637; https://doi.org/10.3390/ma16020637 - 9 Jan 2023
Cited by 17 | Viewed by 3838
Abstract
This research paper is the result of observations made during tests according to various standards carried out on behalf of industry. The article presents diffusion coefficient values calculated according to the thermodynamic migration model for twenty different concrete mixes and some selected mixes [...] Read more.
This research paper is the result of observations made during tests according to various standards carried out on behalf of industry. The article presents diffusion coefficient values calculated according to the thermodynamic migration model for twenty different concrete mixes and some selected mixes of the codified approaches known as ASTM 1202, NT BUILD 443, NT BUILD 492, ASTM 1556. The method used here, according to the thermodynamic model of migration, allows determination of the value of the diffusion coefficient after short studies of the migration of chloride ions into concrete and was described in earlier works by one of the authors. Unfortunately, when using standard methods, the values of diffusion coefficients differ significantly from each other. In each concrete, diffusion tests were carried out in the conditions of long-term natural diffusion to verify the values determined by standard methods and according to the thermodynamic model of migration. The analysis conducted for this research paper reveals that the chloride permeability test method according to the standard ASTM C1202-97 has an almost 2.8-fold greater dispersion of the obtained results compared to the thermodynamic model of migration. It was observed that the standard NT BUILD 492 has a 3.8-fold dispersion of results compared to the method with the thermodynamic model of migration. The most time-consuming method is the standard method NT BUILD 443. The largest 3.5-fold dispersion of values concerning the reference value are observed in that method. Moreover, a method based on a thermodynamic migration model seems to be the best option of all analyzed methods. It is a quite quick, but laborious, method that should be tested for a larger number of concrete mixes. A great advantage of this method is that it is promising for a wide range of concrete mixtures, both plain concrete and concrete with various additives and admixtures, as well as high-performance concrete. Full article
Show Figures

Figure 1

Back to TopTop