Effects of Ultra-Weak Fractal Electromagnetic Signals on Malassezia furfur
Abstract
:1. Introduction
2. Results
2.1. Effect of uwf-EMF Treatment on Malassezia furfur Invasivity
2.2. Effect of uwf-EM Signals on HaCaT Cells Exposed to Malassezia furfur
2.3. Effect of uwf-EM Signals on the Proinflammatory Response of HaCaT Cells Infected with Malassezia furfur
2.4. Effect of uwf-EM Signals on hBD-2
3. Discussion
4. Materials and Methods
4.1. Microorganisms and Culture Media
4.2. Cell Culture and Treatments
4.3. MTT Cell Proliferation Assay
4.4. Microorganisms and Culture Media
4.5. Invasion Assay for Malassezia furfur
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Hormesis in Low-Intensity EM Fields and Its Relation to QED
References
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, baaa062. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=55194 (accessed on 23 April 2021). [CrossRef] [PubMed]
- Harada, K.; Saito, M.; Sugita, T.; Tsuboi, R. Malassezia species and their associated skin diseases. J. Dermatol. 2015, 42, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Ashbee, H.R. Update on the genus Malassezia. Med. Mycol. 2007, 45, 287–303. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Difonzo, E.M.; Faggi, E.; Bassi, A.; Campisi, E.; Arunachalam, M.; Pini, G.; Scarfì, F.; Galeone, M. Malassezia skin diseases in humans. Giorn. Ital. Dermatol. Venereol. 2013, 148, 609–619. [Google Scholar]
- Clausen, M.L.; Agner, T. Antimicrobial Peptides, Infections and the Skin Barrier. Curr. Probl. Dermatol. 2016, 49, 38–46. [Google Scholar] [CrossRef]
- Kesavan, S.; Walters, C.E.; Holland, K.T.; Ingham, E. The effects of Malassezia on pro-inflammatory cytokine production by human peripheral blood mononuclear cells in vitro. Med. Mycol. 1998, 36, 97–106. [Google Scholar] [CrossRef][Green Version]
- Niyonsaba, F.; Ushio, H.; Nakano, N.; Ng, W.; Sayama, K.; Hashimoto, K.; Nagaoka, I.; Okumura, K.; Ogawa, H. Antimicrobial peptides human-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Investig. Dermatol. 2007, 127, 594–604. [Google Scholar] [CrossRef][Green Version]
- Ishibashi, Y.; Sugita, T.; Nishikawa, A. Cytokine secretion profile of human keratinocytes exposed to Malassezia yeasts. FEMS Immunol. Med. Microbiol. 2006, 48, 400–409. [Google Scholar] [CrossRef][Green Version]
- Baroni, A.; Orlando, M.; Donnarumma, G.; Farro, P.; Iovene, M.R.; Tufano, M.A.; Buommino, E. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch. Dermatol. Res. 2006, 297, 280–288. [Google Scholar] [CrossRef]
- Hazlett, L.; Wu, M. Defensins in innate immunity. Cell Tissue Res. 2010, 343, 175–188. [Google Scholar] [CrossRef]
- Wainwright, M.; Maisch, T.; Nonell, S.; Plaetzer, K.; Almeida, A.; Tegos, G.P.; Hamblin, M.R. Photoantimicrobials—Are we afraid of the light? Lancet Infect. Dis. 2017, 17, e49–e55. [Google Scholar] [CrossRef]
- Mattson, M.P. Hormesis defined. Ageing Res Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef]
- Ayrapetyan, S.N.; Markov, M.S. Bioelectromagnetics Current Concepts. In NATO Security through Science Series; Series B. Springer: Dodrecht, The Netherlands, 2006. [Google Scholar] [CrossRef][Green Version]
- Becker, R.O.; Marino, A.A. Electromagnetism and Life; New York State University Press: Albany, NY, USA, 1982; ISBN 978-0981-8549-08. [Google Scholar]
- Koenig, H.L.; Krueger, A.P.; Lang, S.; Sonning, W. Biologic Effects of Environmental Electromagnetism; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Marha, K.; Musil, J.; Tuha, H. Electromagnetic Fields and the Life Environment; San Francisco Press: San Francisco, CA, USA, 1971; ISBN 91-1302-13-7. [Google Scholar]
- Marino, A.A. Modern Bioelectricity; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar] [CrossRef]
- Markov, M.S. Electromagnetic Fields in Biology and Medicine; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Presman, A.S. Electromagnetic Fields and Life; Springer: New York, NY, USA, 1970. [Google Scholar] [CrossRef]
- Smith, C.W.; Best, S. Electromagnetic Man—Health and Hazard in the Electrical Environment; St. Martin’s Press: New York, NY, USA, 1989; ISBN 978-0312-0373-07. [Google Scholar]
- Zhadin, M.N. Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics. 2001, 22, 27–45. [Google Scholar] [CrossRef]
- Binhi, V.N. Принципы электрoмагнитнoй биoфизики (Principles of Electromagnetic Biophysics–in Russian); FIZMATLIT: Moscow, Russian, 2011; ISBN 978-5-9221-1333-5. [Google Scholar]
- Schroedinger, E. What Is Life? The Physical—Aspect of the Living Cell, 13th ed.; Cambridge University Press: Cambridge, UK, 1944; ISBN 978-1-107-60466-7. [Google Scholar]
- Tedeschi, A. Is the Living Dynamics able to Change the Properties of Water? Int. J. Design. Nat. Ecodyn. 2010, 5, 60–67. [Google Scholar] [CrossRef]
- Del Giudice, E.; De Filippis, A.; Del Giudice, N.; Del Giudice, M.; d’Elia, I.; Iride, L.; Menghi, E.; Tedeschi, A.; Cozza, V.; Baroni, A.; et al. Evaluation of a Method Based on Coherence in Aqueous Systems and Resonance-Based Isotherapeutic Remedy in the Treatment of Chronic Psoriasis Vulgaris. Curr. Top. Med. Chem. 2015, 15, 542–548. [Google Scholar] [CrossRef]
- Voeikov, V.; Del Giudice, E. Water respiration: The base of the living state. Water 2009, 1, 52–75. [Google Scholar] [CrossRef]
- Madl, P.; De Filippis, A.; Tedeschi, A. Effects of ultra-weak fractal electromagnetic signals on the aqueous phase in living systems: A test-case analysis of molecular rejuvenation markers in fibroblasts. Electromagn. Biol. Med. 2020, 39, 227–238. [Google Scholar] [CrossRef]
- Vitiello, G. Fractals, coherent states and self-similarity induced noncommutative geometry. Phys. Lett. A 2012, 376, 2527–2532. [Google Scholar] [CrossRef][Green Version]
- Calabrese, E.J. Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Hum. Experim. Tox. 2010, 29, 980–1015. [Google Scholar] [CrossRef]
- Schiller, M.; Metze, D.; Luger, T.A.; Grabbe, S.; Gunzer, M. Immune response modifiers—Mode of action. Exp. Dermatol. 2006, 15, 331–341. [Google Scholar] [CrossRef][Green Version]
- Liu, L.; Roberts, A.A.; Ganz, T. By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J. Immunol. 2003, 170, 575–580. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baroni, A.; Perfetto, B.; Paoletti, I.; Ruocco, E.; Canozo, N.; Orlando, M.; Buommino, E. Malassezia furfur invasiveness in a keratinocyte cell line (HaCaT): Effects on cytoskeleton and on adhesion molecule and cytokine expression. Arch. Dermatol. Res. 2001, 293, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Elsbach, P. What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? J. Clin. Investig. 2003, 111, 1643–1645. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zanotti, F.; Trentini, M.; Zanolla, I.; Tiengo, E.; Mantarro, C.; Dalla Paola, L.; Tremoli, E.; Sambataro, M.; Sambado, L.; Picari, M.; et al. Playing with Biophysics: How a Symphony of Different Electromagnetic Fields Acts to Reduce the Inflammation in Diabetic Derived Cells. Int. J. Mol. Sci. 2023, 24, 1754. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, L.; Chistè, O.; Poggi, C.; Mantarrom, M.; Gervino, G.P.; Morando, C. Procedimento e Relativo Dispositivo Basati sull’uso di Campo Elettromagnetico Atti a Contrastare la Diffusione di Virus di Tipo “Corona” in un Organismo (Procedure and Related Device Based on the Use of Electromagnetic Field to Counteract the Spread of Corona-Like Viruses in an Organism). Italian Patent No. 102021000003284, 15 February 2021. [Google Scholar]
- Liboff, A.R. The Warburg hypothesis and weak ELF biointeractions. Electromagn. Biol. Med. 2020, 39, 45–48. [Google Scholar] [CrossRef]
- Davies, A.M.; Weinberg, U.; Palti, Y. Tumor treating fields: A new frontier in cancer therapy. Ann. N Y Acad. Sci. 2013, 1291, 86–95. [Google Scholar] [CrossRef]
- Rossi, C.; Foletti, A.; Magnani, A.; Lamponi, A. New perspectives in cell communication: Bioelectromagnetic interactions. Semin. Cancer Biol. 2011, 21, 207–214. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Donnarumma, G.; Buommino, E.; Baroni, A.; Auricchio, L.; De Filippis, A.; Cozza, V.; Msika, P.; Piccardi, N.; Tufano, M.A. Effects of AV119, a natural sugar from avocado, on Malassezia furfur invasiveness and on the expression of HBD-2 and cytokines in human keratinocytes. Exp. Dermatol. 2007, 16, 912–919. [Google Scholar] [CrossRef]
- Vaiserman, A.M. Hormesis and epigenetics: Is there a link? Ageing Res. Rev. 2011, 10, 413–421. [Google Scholar] [CrossRef]
- Kim, S.A.; Lee, Y.M.; Choi, J.Y.; Jacobs, D.R.; Lee, D.H. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environ. Poll. 2018, 233, 725–734. [Google Scholar] [CrossRef]
- Manni, V.; Lisi, A.; Pozzi, D.; Rieti, S.; Serafino, A.; Giuliani, L.; Grimaldi, S. Effects of ELF 50 Hz Magnetic Field on Morphological and Biochemical Properties of Human Keratinocytes. Bioelectromag 2002, 23, 298–305. [Google Scholar] [CrossRef]
- Manni, A.; Lisi, A.; Rieti, S.; Serafino, A.; Ledda, M.; Giuliani, L.; Sacco, D.; D’Emilia, E.; Grimaldi, S. Low Electromagnetic Field (50 Hz) Induces Differentiation on Primary Human Oral Keratinocytes (HOK). Bioelectromag 2004, 25, 118–126. [Google Scholar] [CrossRef]
- ICRP. Recommendations of the International Commission on Radiological Protection. ICRP 2007, 37, 1–332. Available online: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103 (accessed on 23 April 2021). [CrossRef]
- Stebbing, T. A Cybernetic View of Biological Growth—The Maia Hypothesis; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Hueppe, F.A.T. The Principles of Bacteriology; Open Court Publ: Chicago, MI, USA, 1899. [Google Scholar]
- Calabrese, E.J. Hormesis: A fundamental concept in biology. Microb. Cell 2014, 1, 145–149. [Google Scholar] [CrossRef][Green Version]
- Calabrese, E.J. Hormetic mechanisms. Crit. Rev. Toxicol. 2013, 43, 580–606. [Google Scholar] [CrossRef]
- Sanders, C.L. Accidents, Test and Incidents. In Radiation Hormesis and the Linear-No-Threshold Assumption; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Schmidt, R.F.; Thews, G. Humann Physiology, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar] [CrossRef]
- Jeans, J. Science and Music. Cambridge University Press: Cambridge, UK, 1937. [Google Scholar]
- Devyatkov, N.D. Influence of Millimeter-band Electromagnetic Radiation on Biological Objects. Sov. Phys. Uspekhi 1974, 16, 568–569. [Google Scholar] [CrossRef]
- Burda, H.; Begall, S.; Cervený, J.; Neef, J.; Nemec, P. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc. Natl. Acad. Sci. USA 2009, 106, 5708–5713. [Google Scholar] [CrossRef][Green Version]
- Ho, M.W.; Popp, F.A.; Warnke, U. Bioelectrodynamics and Biocommunication; World Scientific: Singapore, 1994. [Google Scholar] [CrossRef]
- Lai, H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn. Biol. Med. 2019, 38, 231–248. [Google Scholar] [CrossRef]
- Barnes, F.; Greenenbaum, B. Some Effects of Weak Magnetic Fields on Biological Systems: RF fields can change radical concentrations and cancer cell growth rates. IEEE Power Electron. Mag 2016, 3, 60–68. [Google Scholar] [CrossRef]
- Bersani, F. Electricity and Magnetism in Biology and Medicine; Kluwer Academic: New York, NY, USA, 1999. [Google Scholar]
- Marino, A.A. Modern Bioelectricity; Dekker Inc.: New York, NY, USA, 1988. [Google Scholar]
- Batchelor, S.N.; Kay, C.W.M.; McLauchlan, K.A.; Shkrob, I.A. Time-resolved and modulation methods in the study of the effects of magnetic fields on the yields of free-radical reactions. J. Phys. Chem. 1993, 97, 13250–13258. [Google Scholar] [CrossRef]
- Pazur, A.K.H.; Schimek, C.; Galland, P. Magnetoreception in microorganisms and fungi. Open Life Sci. 2007, 2, 597–659. [Google Scholar] [CrossRef]
- Stebbing, A.R.D. Hormesis--the stimulation of growth by low levels of inhibitors. Sci. Total Environ. 1982, 22, 213–234. [Google Scholar] [CrossRef] [PubMed]
- Pazur, A.K.H.; Scheer, H. The Growth of Freshwater Green Algae in Weak Alternating Magnetic Fields of 7.8 Hz Frequency. Z. Für Nat. C 1992, 47, 690–694. [Google Scholar] [CrossRef][Green Version]
- Galland, P.; Pazur, A.K.H. Magnetoreception in plants. J. Plant Res. 2005, 118, 371–389. [Google Scholar] [CrossRef]
- Pazur, A.K.H.; Rassadina, V. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana. BMC Plant Biol. 2009, 9, 47. [Google Scholar] [CrossRef][Green Version]
- Pazur, A.K.H. Calcium ion cyclotron resonance in dissipative water structures. Electromag. Biol. Med. 2018, 37, 100–113. [Google Scholar] [CrossRef]
- Preparata, G. QED Coherence in Matter; World Scientific: Singapore, 1995. [Google Scholar] [CrossRef]
- Arani, R.; Bono, I.; Del Giudice, E.; Preparata, G. QED coherence and the thermodynamics of water. Int. J. Mod. Phys. B 1995, 9, 1813–1841. [Google Scholar] [CrossRef]
- Garbelli, A. Proprietà Termodinamiche e Dielettriche Dell’acqua Alla Luce Della Teoria Complessa Delle Interazioni Molecolari Elettrodinamiche ed Elettrostatiche (Thermodynamic and Dielectric Properties of Water in the Light of the Complex Theory of Electrodinamic and Electrostatic Molecular Interactions). Ph.D. Thesis, University of Milan, Milano, Italy, 2000. [Google Scholar]
- Binhi, V.N.; Rubin, A.B. Magnetobiology: The kT paradox and possible solutions. Electromagn. Biol. Med. 2007, 26, 45–62. [Google Scholar] [CrossRef]
- Del Giudice, E.; Giuliani, L. Coherence in water and the kt problem in living matter. In Thermal Effects and Mechanisms of Interaction between Electromagnetic Fields and Living Matter; Giuliani, L., Soffritti, M., Eds.; National Institute for the Study and Control of Cancer and Environmental Diseases “Bernardo Ramazzini Institute”: Bologna, Italy, 2010; pp. 7–23. [Google Scholar]
- Kaiser, F. External signals and internal oscillation dynamics: Biophysical aspects and modelling approaches for interactions of weak electromagnetic fields at the cellular level. Bioelectrochem. Bioenerg. 1996, 41, 3–18. [Google Scholar] [CrossRef]
- De Ninno, A.; De Francesco, M. ATR-FTIR study of the isosbestic point in water solution of electrolytes. Chem. Phys. 2018, 513, 266–272. [Google Scholar] [CrossRef]
- Huang, C.; Wikfeldt, K.T.; Tokushima, T.; Nordlund, D.; Harada, Y.; Bergmann, U.; Niebuhr, M.; Weiss, T.M.; Horikawa, Y.; Leetmaa, M.; et al. The inhomogeneous structure of water at ambient conditions. Proc. Natl. Acad. Sci. USA 2009, 106, 15214–15218. [Google Scholar] [CrossRef][Green Version]
- Marchettini, N.; Del Giudice, E.; Voeikov, V.; Tiezzi, E. Water: A medium where dissipative structures are produced by a coherent dynamics. J. Theor. Biol. 2010, 265, 511–516. [Google Scholar] [CrossRef][Green Version]
- Montagnier, L.; Aıssa, J.; Del Giudice, E.; Lavallee, C.; Tedeschi, A.; Vitiello, G. DNA waves and water. J. Phys. Conf. Ser. 2011, 306, 012007. [Google Scholar] [CrossRef]
- Smith, C.W. Electromagnetic and magnetic vector potential bio-information and water. In Ultra High Dilution: Physiology and Physics; Endler, P.C., Schulte, J., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1994; pp. 187–201. [Google Scholar]
48 h (CFU × 106) | Trial 1 | Trial 2 | Trial 3 | Average ± STDev |
---|---|---|---|---|
uwf-EM off | 832 | 762 | 866 | 820 ± 53.0 |
uwf-EM on | 466 | 584 | 550 | 533 ± 60.7 |
HaCaT + uwf-EM off | 789 | 714 | 641 | 715 ± 74.0 |
HaCaT + uwf-EM on | 534 | 467 | 395 | 465 ± 69.5 |
Time [h] | HaCaT Ctrl | HaCaT + M. furfur | HaCaT + M. furfur + uwf-EM |
---|---|---|---|
0 | 0.881 ± 0.026 | 0.848 ± 0.039 | 0.884 ± 0.009 |
24 | 1.071 ± 0.057 | 1.395 ± 0.016 | 1.307 ± 0.047 |
48 | 1.450 ± 0.040 | 1.595 ± 0.123 | 1.494 ± 0.047 |
72 | 1.670 ± 0.143 | 1.705 ± 0.088 | 1.643 ± 0.179 |
Gene | HaCaT | HaCaT + M. furfur | HaCaT + M. furfur + uwf-EM |
---|---|---|---|
IL-6 | 0.047 ± 0.014 | 0.160 ± 0.016 | 0.100 ± 0.016 |
IL-8 | 0.029 ± 0.007 | 0.143 ± 0.028 | 0.080 ± 0.016 |
IL-1α | 0.034 ± 0.007 | 0.093 ± 0.012 | 0.073 ± 0.013 |
Gene | HaCaT | HaCaT + M. furfur | HaCaT + M. furfur + uwf-EM |
---|---|---|---|
hBD-2 | 0.060 ± 0.005 | 0.110 ± 0.004 | 0.143 ± 0.006 |
Gene | Primer Sequence | Conditions | Product Size (bp) |
---|---|---|---|
IL-6 | 5′-CTC CAG CAT CCG ACA AGA AGC-3′ 5′-GAG GTC GTA GGC TGT TCT TCG-3′ | 1′ at 94 °C, 1′ at 63 °C, 1′ at 72 °C for 33 cycles | 234 |
IL-8 | 5′-ATG ACT TTC AAG CTG GCC GTG-3′ 5′-TGA ATT CTC AGC CCT CTT CAA AAA CTT CTC-3′ | 1′ at 94 °C, 1′ at 56 °C, 1′ at 72 °C for 33 cycles | 297 |
hBD-2 | 5′-CCA GCC ATC AGC CAT GAG GGT -3′ 5′-AAC CGG TAG TCG GTA CTC CCA-3′ | 1′ at 94 °C, 1′ at 63 °C, 1′ at 72 °C for 33 cycles | 254 |
IL-1α | 5′-CCG ACT ACT ACG CCA AGG AGG TCA CGT-3′ 5′-AGG CCG GTT CAT GCC ATG AAT GGT GCA-3′ | 1′ at 94 °C, 1′ at 60 °C, 2′ at 72 °C for 32 cycles | 439 |
β-actin | 5′-TGA CGG GGT CAC CCA CAC TGT GCC CAT CTA-3′ 5′-CTA GAA GCA TTG CGG GTG GAC GAT GGA GGG-3′ | 30″ at 95 °C, 1″ at 56 °C, 30″ at 72 °C for 35 cycles | 661 |
Trials | Min | Max | Avg | Stdev | 95th%ile | Unit |
---|---|---|---|---|---|---|
Backgnd. | 0.500 ± 0.001 | 3.033 ± 0.808 | 0.967 ± 0.023 | 0.377 ± 0.040 | 1.680 ± 0.125 | [nT] |
uwf-EM | 7.133 ± 0.379 | 12.567 ± 0.208 | 9.310 ± 0.141 | 0.580 ± 0.040 | 10.260 ± 0.185 | [nT] |
ANOVA | F | p | Fcrit |
---|---|---|---|
IL-6 | 22.750 | 0.002 | 5.143 |
IL1-α | 14.978 | 0.005 | 5.143 |
IL-8 | 17.124 | 0.003 | 5.143 |
hBD-2 | 119.647 | <0.001 | 5.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madl, P.; Germano, R.; Tedeschi, A.; Lettner, H. Effects of Ultra-Weak Fractal Electromagnetic Signals on Malassezia furfur. Int. J. Mol. Sci. 2023, 24, 4099. https://doi.org/10.3390/ijms24044099
Madl P, Germano R, Tedeschi A, Lettner H. Effects of Ultra-Weak Fractal Electromagnetic Signals on Malassezia furfur. International Journal of Molecular Sciences. 2023; 24(4):4099. https://doi.org/10.3390/ijms24044099
Chicago/Turabian StyleMadl, Pierre, Roberto Germano, Alberto Tedeschi, and Herbert Lettner. 2023. "Effects of Ultra-Weak Fractal Electromagnetic Signals on Malassezia furfur" International Journal of Molecular Sciences 24, no. 4: 4099. https://doi.org/10.3390/ijms24044099