Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (426)

Search Parameters:
Keywords = natural herbicides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3664 KB  
Review
Global Distribution and Dispersal Pathways of Riparian Invasives: Perspectives Using Alligator Weed (Alternanthera philoxeroides (Mart.) Griseb.) as a Model
by Jia Tian, Jinxia Huang, Yifei Luo, Maohua Ma and Wanyu Wang
Plants 2026, 15(2), 251; https://doi.org/10.3390/plants15020251 - 13 Jan 2026
Viewed by 76
Abstract
In struggling against invasive species ravaging riverscape ecosystems, gaps in dispersal pathway knowledge and fragmented approaches across scales have long stalled effective riparian management worldwide. To reduce these limitations and enhance invasion management strategies, selecting appropriate alien species as models for in-depth pathway [...] Read more.
In struggling against invasive species ravaging riverscape ecosystems, gaps in dispersal pathway knowledge and fragmented approaches across scales have long stalled effective riparian management worldwide. To reduce these limitations and enhance invasion management strategies, selecting appropriate alien species as models for in-depth pathway analysis is essential. Alternanthera philoxeroides (Mart.) Griseb. (alligator weed) emerges as an exemplary model species, boasting an invasion record of around 120 years spanning five continents worldwide, supported by genetic evidence of repeated introductions. In addition, the clonal reproduction of A. philoxeroides supports swift establishment, while its amphibious versatility allows occupation of varied riparian environments, with spread driven by natural water-mediated dispersal (hydrochory) and human-related vectors at multiple scales. Thus, leveraging A. philoxeroides, this review proposes a comprehensive multi-scale framework, which integrates monitoring with remote sensing, environmental DNA, Internet of Things, and crowdsourcing for real-time detection. Also, the framework can further integrate, e.g., MaxEnt (Maximum Entropy Model) for climatic suitability and mechanistic simulations of hydrodynamics and human-mediated dispersal to forecast invasion risks. Furthermore, decision-support systems developed from the framework can optimize controls like herbicides and biocontrol, managing uncertainties adaptively. At the global scale, the dispersal paradigm can employ AI-driven knowledge graphs for genetic attribution, multilayer networks, and causal inference to trace pathways and identify disruptions. Based on the premise that our multi-scale framework can bridge invasion ecology with riverscape management using A. philoxeroides as a model, we contend that the implementation of the proposed framework tackles core challenges, such as sampling biases, shifting environmental dynamics, eco–evolutionary interactions using stratified sampling, and adaptive online algorithms. This methodology is purposed to offer scalable tools for other aquatic invasives, evolving management from reactive measures to proactive, network-based approaches that effectively interrupt dispersal routes. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

27 pages, 2254 KB  
Article
Allelopathic Potential and Cytotoxic, Genotoxic, and Antigenotoxic Effects of Tecoma stans Flowers (Bignoniaceae)
by Thaís Paula Rodrigues Gonçalves, Lucas Santos Azevedo, Mariana Guerra de Aguilar, Lúcia Pinheiro Santos Pimenta, Ana Hortência Fonsêca Castro and Luciana Alves Rodrigues dos Santos Lima
Horticulturae 2026, 12(1), 88; https://doi.org/10.3390/horticulturae12010088 - 13 Jan 2026
Viewed by 65
Abstract
Weed control is mainly carried out using synthetic herbicides, which represent 62.6% of the total pesticides sold. However, some plants produce allelochemicals that inhibit the growth of other plants, and these substances can be isolated and used as natural herbicides. This study aimed [...] Read more.
Weed control is mainly carried out using synthetic herbicides, which represent 62.6% of the total pesticides sold. However, some plants produce allelochemicals that inhibit the growth of other plants, and these substances can be isolated and used as natural herbicides. This study aimed to evaluate the allelopathic, cytotoxic, genotoxic, and antigenotoxic potential of the ethanol extract (EE), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA) and hydroethanol (HE) fractions obtained from Tecoma stans flowers. Nuclear magnetic resonance (NMR) was used to characterize the compounds present in the samples. The allelopathic activity was tested using Allium cepa and Lactuca sativa seeds, and the cytotoxicity, genotoxicity and antigenotoxicity were evaluated using A. cepa seeds. The saturated and unsaturated fatty acids ω-3 and ω-6, terpenes, flavonoids, and phenolic acids with coumaroyl or glycosyl derivatives were characterized in the samples. The HEX and DCM fractions significantly inhibited germination and root growth, effects associated with fatty acids and phenolic compounds. The EA fraction exhibits genotoxic potential at higher concentrations tested. The extract and fractions reduced the genotoxicity induced by glyphosate and atrazine, reversing chromosomal abnormalities. These results demonstrate the possible use of the extract and fractions as natural sources of allelochemicals, but safe dosage validation is required. Full article
Show Figures

Graphical abstract

18 pages, 3261 KB  
Article
In Vitro Leaf-Based Method for Agrobacterium-Mediated Genetic Transformation of Sugar Beet
by Dmitry N. Miroshnichenko, Anna Klementyeva, Lilia Mourenets, Alexander S. Pushin, Aleksey P. Firsov and Sergey V. Dolgov
Crops 2026, 6(1), 12; https://doi.org/10.3390/crops6010012 - 13 Jan 2026
Viewed by 55
Abstract
Sugar beet, one of the most important natural sources of sugars in the world, is well known as a recalcitrant crop for genetic transformation. In the present study, several key components of Agrobacterium-mediated transformation of sugar beet have been studied. The correct [...] Read more.
Sugar beet, one of the most important natural sources of sugars in the world, is well known as a recalcitrant crop for genetic transformation. In the present study, several key components of Agrobacterium-mediated transformation of sugar beet have been studied. The correct choice of explant and plant regeneration potential of domestic breeding lines was evaluated; however, most attention was paid to the search for the most efficient selectable marker gene and selection agents. To produce transgenic plants, we applied a method based on the agrobacterial inoculation of wounded morphogenic structures previously initiated on in vitro cultivated leaves. Four selective marker genes conferring antibiotic or herbicide resistance were evaluated. In the case of selection using kanamycin or G418 (nptII gene controlled by the nos promoter), no transgenic plants were obtained, while the addition of the aminoglycoside antibiotic hygromycin (hpt gene, driven by the nos promoter) to the medium ensured the successful production of transgenic plants from three breeding lines with a frequency ranging from 1.5 to 5.1%. The selection of transgenic tissues using herbicides such as phosphinothricin and glyphosate after transformation with the bar and cp4-epsps genes (both controlled by the CaMV 35S promoter) also ensured the obtaining of transgenic plants, but the transformation efficiency was significantly low, reaching only 1.0 and 0.4%, respectively. Primary transgenic sugar beet plants grown in the greenhouse demonstrated enhanced resistance to herbicides in dosages commonly used in the field. In addition, after self-pollination of the primary T0 transgenic lines, homozygous T2 offspring were successfully selected, which demonstrated stable resistance to glyphosate due to the constitutive expression of the introduced cp4-epsps gene. Full article
(This article belongs to the Topic Genetic Engineering in Agriculture, 2nd Edition)
Show Figures

Figure 1

16 pages, 3340 KB  
Article
Evaluation of the Unintended Effects of Herbicide-Resistant Soybean Seeds via TMT Quantitative Proteomics and Flavonoid-Targeted Metabolomics
by Zhanchao Wang, Ruizhe Wang, Mei Dong, Guihua Hu, Chaohua Miao, Yusong Wan, Weixiao Liu and Wujun Jin
Int. J. Mol. Sci. 2026, 27(2), 734; https://doi.org/10.3390/ijms27020734 - 11 Jan 2026
Viewed by 158
Abstract
Tandem mass tag (TMT) quantitative proteomic and flavonoid-targeted metabolomic analyses were applied to evaluate the unintended effects of five herbicide-resistant soybean varieties, in addition to three natural genotypic soybean varieties. A total of 65, 29, 56, 38, and 26 differentially expressed proteins (DEPs) [...] Read more.
Tandem mass tag (TMT) quantitative proteomic and flavonoid-targeted metabolomic analyses were applied to evaluate the unintended effects of five herbicide-resistant soybean varieties, in addition to three natural genotypic soybean varieties. A total of 65, 29, 56, 38, and 26 differentially expressed proteins (DEPs) were identified in ZLD6010, FD3003, JY2812, ZLD8001, and ZLD2426, respectively, compared with ZH13. Twenty-four and 16 DEPs were identified in ZLD2426 compared with JD12 and KS1, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that most of the DEPs were involved in ribosome, protein processing in the endoplasmic reticulum, and tropane, piperidine, and pyridine alkaloid biosynthesis. Proteomic analysis of the studied soybean seeds revealed no significant changes in herbicide-resistant soybean varieties compared with natural genotypic soybean varieties. Flavonoid-targeted metabolomics analysis detected and quantified 12 flavonoids. Daidzein, genistein/apigenin, taxifolin, and luteolin contents in the herbicide-resistant soybean variety seeds were significantly greater than those in the natural genotypic soybean variety seeds. Their contents in the seeds of three natural genotypic soybean varieties also significantly differed according to pairwise reciprocal comparisons. The introduction of 3-phosphoshikimate 1-carboxyvinyltransferase (EPSPS) might affect flavonoid accumulation of herbicide-resistant soybean varieties. The genetic background of soybean also influences its flavonoid metabolomic profile. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 1268 KB  
Review
Heracleum sosnowskyi Manden. in the Context of Sustainable Development: An Aggressive Invasive Species with Potential for Utilisation in the Extraction of Furanocoumarins and Essential Oils
by Ekaterina Sergeevna Osipova, Evgeny Aleksandrovich Gladkov and Dmitry Viktorovich Tereshonok
J. Xenobiot. 2026, 16(1), 6; https://doi.org/10.3390/jox16010006 - 1 Jan 2026
Viewed by 327
Abstract
Heracleum sosnowskyi Manden., or H. sosnowskyi, of the Apiaceae was first cultivated in the USSR in 1947 as a potential fodder plant. Due to the development of cold-resistant cultivars and the characteristics of H. sosnowskyi, it quickly became feral. As a [...] Read more.
Heracleum sosnowskyi Manden., or H. sosnowskyi, of the Apiaceae was first cultivated in the USSR in 1947 as a potential fodder plant. Due to the development of cold-resistant cultivars and the characteristics of H. sosnowskyi, it quickly became feral. As a result, H. sosnowskyi began to spread as an aggressive invasive species in the 1970s and 1980s. By the 90s it had become an ecological disaster. As well as forming monocultures and displacing native species, H. sosnowskyi contains furanocoumarins, photosensitizing compounds that increase skin sensitivity to ultraviolet rays and cause severe burns. In addition, furanocoumarins have cytotoxic, genotoxic, mutagenic and estrogenic effects. H. sosnowskyi also contains essential oils, which are particularly active during flowering and can irritate the mucous membranes of the eyes and respiratory tract, as well as cause allergic reactions in the form of bronchospasm in people with asthma and hypersensitivity. When released in high concentrations, these biologically active compounds have an allelopathic effect on native plant species, displacing them and reducing biodiversity. As H. sosnowskyi is not native; the biologically active compounds it secretes have a xenobiotic effect, causing serious damage to the ecosystems it occupies. However, in parallel with these negative properties, furanocoumarins have been found to be effective in the treatment of cancer and skin diseases. Furanocoumarins possess antimicrobial antioxidant osteo- and neuroprotective properties. Essential oils containing octyl acetate, carboxylic acid esters, and terpenes can be used in the pharmaceutical industry as antiseptic and anti-inflammatory agents. Additionally, essential oils can be used as biofumigants and natural herbicides. A comprehensive approach allows H. sosnowskyi to be viewed in two ways. On the one hand, it is an aggressive alien species that causes significant damage to ecosystems and poses a threat to human health. On the other hand, it is a potentially valuable natural resource whose biomass can be used within the principles of the circular economy. It is hoped that the use of H. sosnowskyi for economic interests can be a partial compensation for the problem of its aggressive invasion, which is of anthropogenic origin. Full article
(This article belongs to the Section Natural Products/Herbal Medicines)
Show Figures

Graphical abstract

20 pages, 2768 KB  
Article
Presence of Pesticides and Transformation Products and Associated Risk Assessment in Groundwater of a Region with an Intensive Agricultural Activity
by Eliseo Herrero-Hernández, José Manuel Ordax, Jesús M. Marín-Benito, Miguel del Nogal Sánchez and María Sonia Rodríguez-Cruz
Environments 2026, 13(1), 27; https://doi.org/10.3390/environments13010027 - 1 Jan 2026
Viewed by 302
Abstract
The protection of natural resources, particularly groundwater, is essential for the sustainability of rural environments, especially when urban centers rely on this water for consumption. The objective of this study was to evaluate the occurrence, seasonal distribution, and associated risk of pesticide residues [...] Read more.
The protection of natural resources, particularly groundwater, is essential for the sustainability of rural environments, especially when urban centers rely on this water for consumption. The objective of this study was to evaluate the occurrence, seasonal distribution, and associated risk of pesticide residues in groundwater in a region of intensive farming in the Duero river basin (Spain). A total of 40 pesticides and 7 degradation products were analyzed at 20 sampling points over four campaigns conducted in 2018. Overall, twenty-one compounds were detected, including three insecticides, three fungicides, ten herbicides, and five degradation products. Concentrations of eight compounds (one fungicide, five herbicides, and two degradation products) exceeded the limits established by the European Union (EU) for drinking water. Herbicides were the most frequently detected pesticides and were present at the highest concentrations (up to 3.416 μg L−1) across all sampling campaigns. Metolachlor, prosulfocarb, metribuzin, and metolachlor degradation products (ethanesulfonic acid (ESA)– and oxanilic acid (OA)–metolachlor) were detected in concentrations over 1.0 µg L−1. The sum of Toxic Units (∑Tui) showed that none of samples posed a high risk. None of compounds presented a high risk for the three aquatic organismstested; only prosulfocarb for algae and Daphnia magna; pendimethalin for algae and fish; and metribuzin, chlorotoluron, and desethyl-terbuthylazine (DETbz) for algae posed high risks. Full article
Show Figures

Figure 1

14 pages, 2876 KB  
Article
Study on the Adsorption Mechanism of Atrazine by Sesame Hull Biochar/Sepiolite Composite Material
by Hongyou Wan, Qiuye Yu, Luqi Yang, Shihao Liu, Yan Zhao, Dezheng Chang and Xinru Li
Toxics 2026, 14(1), 38; https://doi.org/10.3390/toxics14010038 - 29 Dec 2025
Viewed by 286
Abstract
Atrazine (ATZ), a typical triazine herbicide with a long half-life and recalcitrant biodegradation, contaminates water and soil, necessitating efficient removal technologies. Conventional adsorbents have limited capacity and stability, while sesame straw-derived biochar realizes agricultural waste recycling and provides an efficient, economical, and eco-friendly [...] Read more.
Atrazine (ATZ), a typical triazine herbicide with a long half-life and recalcitrant biodegradation, contaminates water and soil, necessitating efficient removal technologies. Conventional adsorbents have limited capacity and stability, while sesame straw-derived biochar realizes agricultural waste recycling and provides an efficient, economical, and eco-friendly adsorbent. Sepiolite, a natural mineral with a unique fibrous structure and a high specific surface area, has attracted widespread attention. Therefore, in this work, the agricultural waste of sesame hulls and sepiolite were used as precursors to prepare a composite material of sesame hull biochar/sepiolite (KNPB) through co-mixing heat treatment, followed by sodium hydroxide activation and pyrolysis. The results showed that, under the conditions of an adsorbent dosage of 3 g/L, pH of 6.8, and an adsorption time of 360 min, the removal rate of 3 mg/L ATZ by KNPB was 89.14%. Reusability experiments further demonstrated that KNPB has the potential for practical application in water treatment. Additionally, by integrating adsorption kinetics and isotherm analysis with a suite of characterization results from BET, FTIR, and XPS, the adsorption mechanism of KNPB for ATZ was further clarified to be primarily based on pore-filling, π–π interactions, and hydrogen bonding. This study not only provides a new idea for the resource utilization of waste sesame straw, but also provides scientific guidance for the solution of atrazine pollution, which has important environmental and economic significance. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

16 pages, 1153 KB  
Systematic Review
Glyphosate as an Emerging Environmental Pollutant and Its Effects on Breast Cancer Cell Proliferation: A Systematic Literature Review of Preclinical Evidence
by Mario A. Alcalá-Pérez, Gustavo A. Hernández-Fuentes, Idalia Garza-Veloz, Uriel Diaz-Llerenas, Margarita L. Martinez-Fierro, José Guzmán-Esquivel, Fabian Rojas-Larios, Ángel A. Ramos-Organillo, Kayim Pineda-Urbina, José M. Flores-Álvarez, Juan P. Mojica-Sánchez, Jorge A. Cárdenas-Magaña, Cesar A. Villa-Martínez and Iván Delgado-Enciso
Toxics 2026, 14(1), 26; https://doi.org/10.3390/toxics14010026 - 26 Dec 2025
Viewed by 595
Abstract
The widespread use of glyphosate-based herbicides (GBHs) has raised concerns about their potential role in hormone-sensitive cancers such as breast cancer. This systematic review aimed to evaluate preclinical evidence on the effects of glyphosate (pure compound) or glyphosate-based herbicide formulations (GBHs) exposure on [...] Read more.
The widespread use of glyphosate-based herbicides (GBHs) has raised concerns about their potential role in hormone-sensitive cancers such as breast cancer. This systematic review aimed to evaluate preclinical evidence on the effects of glyphosate (pure compound) or glyphosate-based herbicide formulations (GBHs) exposure on breast cancer cell proliferation and related molecular pathways. A structured search was conducted across PubMed, ScienceDirect, and Springer Nature Link, Web of Science databases, covering studies published up to 9 November 2025, following a PROSPERO-registered protocol (ID: CRD42021238350). Eligible studies included original in vitro and in vivo preclinical research using human breast cancer cell lines (e.g., MCF-7, T47D, MDA-MB-231, MCF-12A, and MCF-10A) or relevant animal models. Outcomes assessed included cell viability, proliferation, tumor growth, apoptosis, cell cycle regulation, and molecular markers associated with endocrine signaling. Two reviewers independently screened and extracted data, resolving disagreements via discussion or third-party adjudication. From an initial pool of 699 articles, seven in vitro studies met the inclusion and quality criteria. Glyphosate exposure demonstrated weak estrogenic activity in ER-positive breast cancer cells, primarily via ERα modulation and altered gene expression related to proliferation and DNA repair. GBHs showed greater cytotoxic and epigenetic effects in non-tumorigenic cells, often independent of ER signaling. No included study employed in vivo breast cancer models. Overall, preclinical evidence suggests glyphosate may act as a weak endocrine disruptor under specific conditions, but findings are limited by the short-term in vitro designs, heterogeneous methodologies, and lack of chronic or in vivo data. Further research using long-term exposure and animal models is needed to clarify potential risks and inform regulatory and public health decisions. Full article
(This article belongs to the Special Issue Emerging Environmental Pollutants and Their Impact on Human Health)
Show Figures

Graphical abstract

23 pages, 1625 KB  
Article
Ecotoxicity Analysis of Bentazone Under the Albufera Lake Conditions Before and After Electrooxidation and Photoelectrooxidation Processes
by Teresa Girona Albuixech, Montserrat García Gabaldón, Carlos Domingo Torner, Valentín Pérez Herranz and Maria Teresa Montañés Sanjuan
Environments 2026, 13(1), 8; https://doi.org/10.3390/environments13010008 - 22 Dec 2025
Viewed by 314
Abstract
This study first analyzes the ecotoxicity of bentazone (BTZ), an herbicide detected in the Albufera Natural Park. BTZ exhibits an EC50 (5 days) towards Lactuca sativa of 900 mg L−1, showing a hormetic effect. The toxic effects of a BTZ, [...] Read more.
This study first analyzes the ecotoxicity of bentazone (BTZ), an herbicide detected in the Albufera Natural Park. BTZ exhibits an EC50 (5 days) towards Lactuca sativa of 900 mg L−1, showing a hormetic effect. The toxic effects of a BTZ, NaCl, and Na2SO4 mixture are generally lower than the individual toxic effects considered additively. However, possible synergy on ecotoxicity was observed at 600 mg L−1 of BTZ in the presence of 2.8 g L−1 of Na2SO4 and 0.8 g L−1 of NaCl. A statistical model was obtained to predict the ecotoxicity thresholds towards Lactuca sativa for combinations of the three compounds. In general, when the concentration of one compound increases, a lower concentration of the others is necessary for the mixture to be toxic. However, in the presence of NaCl, below 382 mg L−1 of BTZ, the concentrations of both compounds need to be increased. This is attributable to the hormetic behavior of BTZ. This BTZ concentration decreases as the Na2SO4 concentration increases. Secondly, the effectiveness of electrooxidation and photoelectrooxidation processes to eliminate BTZ was studied. A ceramic anode made of Sb-SnO2 and coated with a Bi2WO6 photocatalyst was used. The degradation and mineralization degrees achieved using a mixture of 0.46 g L−1 of NaCl and 1.3 g L−1 of Na2SO4 (like the Albufera lake conditions) show intermediate values between those achieved with pure electrolytes. Specifically, applying 0.6 A, they are very close to the maximum values achieved with pure NaCl. Moreover, the final effluent’s toxicity is significantly lower, especially when light is applied. Therefore, the photoelectrooxidation process applying 0.6 A with the mixed electrolyte is the most effective technique from the combined point of view of final degradation (90.9%), mineralization (62.4%), and toxicity. Full article
Show Figures

Graphical abstract

61 pages, 3374 KB  
Review
A Comprehensive Review on Atrazine Adsorption: From Environmental Contamination to Efficient Removal Technologies
by Yamil L. Salomón, Jordana Georgin, Daniel Gustavo Piccilli Allasia, Matias Schadeck Netto, Chukwunonso O. Aniagor, Joshua O. Ighalo and Dison S. P. Franco
Sustainability 2025, 17(23), 10455; https://doi.org/10.3390/su172310455 - 21 Nov 2025
Cited by 1 | Viewed by 958
Abstract
The expansion of global agriculture has intensified the use of herbicides such as atrazine (ATZ), resulting in widespread environmental contamination. Given its documented harmful effects, the development of effective treatment strategies is crucial. This review synthesizes the fundamental mechanisms behind ATZ adsorption, identifying [...] Read more.
The expansion of global agriculture has intensified the use of herbicides such as atrazine (ATZ), resulting in widespread environmental contamination. Given its documented harmful effects, the development of effective treatment strategies is crucial. This review synthesizes the fundamental mechanisms behind ATZ adsorption, identifying it as a spontaneous and energetically favorable process, predominantly governed by specific physicochemical interactions. The analysis reveals that adsorption efficiency is critically influenced by the pH of the medium, since this parameter determines the charge state of the adsorbent surface and the ATZ molecule itself, thus modulating the attractive forces. The high adsorption capacity observed in various materials is intrinsically linked to their porous architecture and surface area, which facilitate the capture and retention of molecules. The desorption process, in turn, demonstrates the reversible nature of certain interactions, allowing for the regeneration and reuse of materials. The unique contribution of this analysis lies in its mechanistic approach, which transcends the mere presentation of data to offer guiding principles for the design of adsorbents. By connecting operational parameters to molecular phenomena, the review establishes a critical basis for translating promising laboratory results into real-world applications, providing a roadmap for developing practical and sustainable solutions against ATZ contamination. Full article
Show Figures

Figure 1

17 pages, 2512 KB  
Article
Glyphosate-Induced Shifts in Edaphic Microbiota: A Comparative Study of Bacterial and Fungal Responses in Historical Milpa Soils
by María Alejandra Ocaña-Ek, Anell del Carmen García-Romero, Oscar Omar Álvarez-Rivera, Magnolia del Carmen Tzec-Gamboa, Héctor Estrada-Medina and Miriam M. Ferrer
Diversity 2025, 17(11), 803; https://doi.org/10.3390/d17110803 - 20 Nov 2025
Viewed by 767
Abstract
Glyphosate is the most widely used herbicide worldwide and in Mexico; however, its effects on soil microbiota in traditional agroecosystems remain unclear. We evaluated bacterial, archaeal, and fungal responses to commercial glyphosate in three representative karst soils of the Yucatán Peninsula (black Leptosol, [...] Read more.
Glyphosate is the most widely used herbicide worldwide and in Mexico; however, its effects on soil microbiota in traditional agroecosystems remain unclear. We evaluated bacterial, archaeal, and fungal responses to commercial glyphosate in three representative karst soils of the Yucatán Peninsula (black Leptosol, red Leptosol, and red Cambisol) historically associated with the Mayan milpa system. The high-throughput sequencing of the 16S rRNA V4 and ITS1 regions was used to assess diversity patterns and differential abundance. Glyphosate application did not significantly alter alpha or beta diversity; however, fifteen taxa classified at the genus level exhibited shifts in relative abundance. Most bacterial taxa were depauperated in treated soils, whereas others, such as Arthrobacter, were enriched after application, indicating the presence of tolerant or resistant bacteria that may play a role in glyphosate degradation. Cordyceps, an entomopathogenic fungus, was depleted, indicating potential for natural pest control. The similarity of the core microbiota between samples with and without glyphosate application indicates that these communities are resilient. Overall, under short-term exposure, glyphosate induced compositional shifts in specific taxa without major effects on community structure but with potential implications for soil functionality and resilience in the Mayan milpa. Full article
Show Figures

Figure 1

17 pages, 6618 KB  
Article
Sustainable Biochar–Alumina Composites for Electroanalytical Sensing of Herbicide and Antibiotic
by Nataša Jović-Jovičić, Tatjana Novaković, Tanja Barudžija, Marija Ajduković, Natalia Czerwinska, Chiara Giosuè and Zorica Mojović
J. Xenobiot. 2025, 15(6), 191; https://doi.org/10.3390/jox15060191 - 10 Nov 2025
Viewed by 460
Abstract
The problem of water pollution by various xenobiotics has gained a lot of interest due to their persistence, bioaccumulation potential, and toxic effects on ecosystems and humans. Electrochemical sensors offer a rapid, sensitive, and cost-effective method for on-site monitoring. In this research, an [...] Read more.
The problem of water pollution by various xenobiotics has gained a lot of interest due to their persistence, bioaccumulation potential, and toxic effects on ecosystems and humans. Electrochemical sensors offer a rapid, sensitive, and cost-effective method for on-site monitoring. In this research, an electrochemical sensor for xenobiotics based on a biochar–alumina composite is developed. The biochar–alumina composites were obtained by the air-limited pyrolysis of oak sawdust in the presence of alumina. Two types of alumina were mixed with oak sawdust in three ratios and subjected to thermal treatment. The resulting composites were characterized by SEM, N2 adsorption isotherm, XRD, and electrochemical characterization. The detection of the herbicide pendimethalin and the antibiotic ciprofloxacin was investigated, and the composite with the optimal biochar/alumina ratio was selected for each of the xenobiotics studied. A linear current response was obtained for pendimethalin in the concentration range 0.7 μM to 70.0 μM with an LOD of 0.5 μM. A linear current response was obtained for ciprofloxacin in the concentration range 1.6 μM to 55.4 μM with an LOD of 0.63 μM. A comparison of the characterization results with the electroanalytical performance implied the importance of the hydrophobic/hydrophilic nature of the electrode surface for detecting the analyte under investigation. Full article
Show Figures

Graphical abstract

27 pages, 1563 KB  
Review
Microbial Degradation of Herbicide Residues in Australian Soil: An Overview of Mechanistic Insights and Recent Advancements
by Imtiaz Faruk Chowdhury, Gregory S. Doran, Benjamin J. Stodart, Chengrong Chen and Hanwen Wu
Toxics 2025, 13(11), 949; https://doi.org/10.3390/toxics13110949 - 3 Nov 2025
Cited by 1 | Viewed by 2524
Abstract
Herbicides are chemical compounds that are toxic to weed plants. Modern agriculture relies heavily on herbicides for the control of weeds to maximize crop yields. Herbicide usage in the Australian grains industry is estimated to have increased by more than 65% from 2014 [...] Read more.
Herbicides are chemical compounds that are toxic to weed plants. Modern agriculture relies heavily on herbicides for the control of weeds to maximize crop yields. Herbicide usage in the Australian grains industry is estimated to have increased by more than 65% from 2014 to 2024, which equates to more than AUD 2.50 billion dollars per year. The increased popularity of herbicides in farming systems has raised concerns about their negative impacts on the environment, human health and agricultural sustainability due to the rapid evolution of herbicide resistance, as well as their behaviour and fate in the soil. Due to excessive use of herbicides, soil and water pollution, reduced biodiversity and depression in soil heterotrophic bacteria (including denitrifying bacteria) and fungi are becoming increasingly common. Biological degradation governed by microorganisms serves as a major natural remediation process for a variety of pollutants including herbicides. This review provides a brief overview of the present status of herbicide residues in Australian farming systems, with a focus on the microbial degradation of herbicides in soil. It highlights key bacterial and fungal strains involved and the environmental factors influencing the biodegradation process. Recent advancements, including the application of omics technologies, are outlined to provide a comprehensive understanding of the biodegradation process. Full article
Show Figures

Graphical abstract

15 pages, 3722 KB  
Article
Elucidating the Mechanism of Liver and Kidney Damage in Rats Caused by Exposure to 2,4-Dichlorophenoxyacetic Acid and the Protective Effect of Lycium barbarum Polysaccharides Based on Network Toxicology and Molecular Docking
by Xiaoqi Luo, Yixuan Wei, Jinyu Luo, Xiaoning Meng, Yating Yang, Na Liu, Huifang Yang and Jian Zhou
Int. J. Mol. Sci. 2025, 26(21), 10685; https://doi.org/10.3390/ijms262110685 - 3 Nov 2025
Viewed by 888
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide, yet its potential to induce hepatorenal injury via oxidative stress and apoptosis raises significant health concerns. Lycium barbarum polysaccharides (LBP) possess recognized antioxidant and anti-apoptotic properties, but their protective mechanisms against 2,4-D toxicity, particularly through [...] Read more.
2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide, yet its potential to induce hepatorenal injury via oxidative stress and apoptosis raises significant health concerns. Lycium barbarum polysaccharides (LBP) possess recognized antioxidant and anti-apoptotic properties, but their protective mechanisms against 2,4-D toxicity, particularly through a multi-target network, remain inadequately explored. This study aimed to systematically investigate the mechanisms of 2,4-D-induced hepatorenal injury and the protective efficacy of LBP by integrating network toxicology, molecular docking, and experimental validation. An integrated approach was employed. Core targets and pathways were identified via network toxicology. Molecular docking predicted interactions between 2,4-D and these targets. In vivo validation was conducted on Sprague-Dawley rats treated with 2,4-D (75 mg/kg) and/or LBP (50 mg/kg) for 28 days, assessing histopathology, serum oxidative stress markers superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and cellular apoptosis (TUNEL staining). Network analysis identified PPARG, NFKB1, PPARA, NFE2L2, and SERPINE1 as core targets, with molecular docking confirming strong binding affinities (binding energies: −5.1 to −6.3 kcal·mol−1) and KEGG enrichment implicating cAMP, Ca2+, and PPAR signaling pathways. Experimentally, 2,4-D exposure induced significant histopathological damage, suppressed SOD/GSH-Px activities (p < 0.001), elevated MDA levels (p < 0.001), and markedly increased renal apoptosis (p < 0.01). Crucially, LBP intervention substantially mitigated these alterations, ameliorating tissue injury, restoring antioxidant defenses, increasing SOD/GSH-Px (p < 0.01), reducing MDA (p < 0.001) and significantly decreasing renal apoptosis (p < 0.05). This study elucidates a multi-target mechanism for 2,4-D-induced hepatorenal injury centered on oxidative stress–apoptosis dysregulation and demonstrates that LBP confers significant protection likely via modulation of this network. These findings underscore the potential of LBP as a natural protective agent against pesticide-induced organ damage and highlight the utility of integrated network approaches in toxicological research. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

27 pages, 7879 KB  
Article
Melittin Nanoparticles Mitigate Glyphosate-Induced Nephrotoxicity via Cytokine Modulation and Bax/Nrf2 Pathways
by Amany M. Hamed, Zeyad Elsayed Eldeeb Mohana, Azza M. A. Abouelella, Wafaa A. Abdellah, Dalia A. Elbahy, Noha A. R. Fouda, Dina M. Monir, Safaa S. Soliman, Ahmed Mohamed Mahmoud Abdelfattah Elkassas, Elsayed Eldeeb Mehana Hamouda, Hany M. R. Abdel-Latif, Ahmed R. H. Ahmed and Nadia S. Mahrous
Biomedicines 2025, 13(11), 2607; https://doi.org/10.3390/biomedicines13112607 - 24 Oct 2025
Viewed by 1793
Abstract
Background/Objectives: Glyphosate-based herbicides (GBHs) are widely used agrochemicals implicated in nephrotoxicity through mechanisms involving oxidative stress, inflammation, and tissue remodeling. Natural peptides such as melittin possess potent anti-inflammatory and antioxidant properties; however, their therapeutic use is limited by instability and toxicity. Nanotechnology-based encapsulation [...] Read more.
Background/Objectives: Glyphosate-based herbicides (GBHs) are widely used agrochemicals implicated in nephrotoxicity through mechanisms involving oxidative stress, inflammation, and tissue remodeling. Natural peptides such as melittin possess potent anti-inflammatory and antioxidant properties; however, their therapeutic use is limited by instability and toxicity. Nanotechnology-based encapsulation presents a promising approach to overcoming these challenges. Objective: This study aimed to evaluate the protective effects of melittin-loaded chitosan–TPP nanoparticles (MEL-NPs) against glyphosate-induced nephrotoxicity in rats, with emphasis on oxidative, inflammatory, and apoptotic pathways. Methods: Female Wistar rats were divided into four groups: control, glyphosate (5 mg/kg/day, 25 days), glyphosate + free melittin, and glyphosate + MEL-NPs (40 µg/kg, orally, 3 times/week). Renal function biomarkers, oxidative stress parameters (MDA, GSH, SOD, CAT, NO), cytokines (TNF-α, IL-6), and serum protein/iron indices were assessed. Western blotting (Nrf2, NGAL), histopathology (H&E), and immunohistochemistry (Bax) were performed. Nanoparticles were characterized by TEM, FTIR, and UV–Vis spectroscopy. Results: Glyphosate exposure caused renal dysfunction, including elevated plasma urea and creatinine levels, and reduced creatinine clearance, indicating impaired glomerular filtration efficiency, oxidative stress (↑increased MDA, NO; ↓decreased GSH, SOD), and upregulation of pro-inflammatory cytokines. Histology revealed tubular degeneration and inflammatory infiltration, while NGAL and Bax were strongly induced. Nrf2 expression was elevated as a compensatory response. Free melittin partially ameliorated these alterations, whereas MEL-NPs provided superior protection, restoring renal function, normalizing oxidative balance, reducing NGAL and Bax expression, and preserving renal histoarchitecture. Conclusions: Melittin nanoparticles confer robust renoprotection against glyphosate-induced nephrotoxicity in rats by modulating oxidative stress, suppressing inflammation, and regulating Nrf2/Bax signaling. These findings highlight nano-melittin as a promising therapeutic platform for managing herbicide-related renal disorders. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

Back to TopTop