Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (786)

Search Parameters:
Keywords = natural cavities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3914 KiB  
Article
Biomechanical Analysis of Different Pacifiers and Their Effects on the Upper Jaw and Tongue
by Luca Levrini, Luigi Paracchini, Luigia Ricci, Maria Sparaco, Stefano Saran and Giulia Mulè
Appl. Sci. 2025, 15(15), 8624; https://doi.org/10.3390/app15158624 (registering DOI) - 4 Aug 2025
Viewed by 155
Abstract
Aim: Pacifiers play a critical role in the early stages of craniofacial and palate development during infancy. While they provide comfort and aid in soothing, their use can also have significant impacts on the growth and function of the oral cavity. This study [...] Read more.
Aim: Pacifiers play a critical role in the early stages of craniofacial and palate development during infancy. While they provide comfort and aid in soothing, their use can also have significant impacts on the growth and function of the oral cavity. This study aimed to simulate and predict the behavior of six different types of pacifiers and their functional interaction with the tongue and palate, with the goal of understanding their potential effects on orofacial growth and development. Materials and Methods: Biomechanical analysis using Finite Element Analysis (FEA) mathematical models was employed to evaluate the behavior of six different commercial pacifiers in contact with the palate and tongue. Three-dimensional solid models of the palate and tongue were based on the mathematical framework from a 2007 publication. This allowed for a detailed investigation into how various pacifier designs interact with soft and hard oral tissues, particularly the implications on dental and skeletal development. Results: The findings of this study demonstrate that pacifiers exhibit different interactions with the oral cavity depending on their geometry. Anatomical–functional pacifiers, for instance, tend to exert lateral compressions near the palatine vault, which can influence the hard palate and contribute to changes in craniofacial growth. In contrast, other pacifiers apply compressive forces primarily in the anterior region of the palate, particularly in the premaxilla area. Furthermore, the deformation of the tongue varied significantly across different pacifier types: while some pacifiers caused the tongue to flatten, others allowed it to adapt more favorably by assuming a concave shape. These variations highlight the importance of selecting a pacifier that aligns with the natural development of both soft and hard oral tissues. Conclusions: The results of this study underscore the crucial role of pacifier geometry in shaping both the palate and the tongue. These findings suggest that pacifiers have a significant influence not only on facial bone growth but also on the stimulation of oral functions such as suction and feeding. The geometry of the pacifier affects the soft tissues (tongue and muscles) and hard tissues (palate and jaw) differently, which emphasizes the need for careful selection of pacifiers during infancy. Choosing the right pacifier is essential to avoid potential negative effects on craniofacial development and to ensure that the benefits of proper oral function are maintained. Therefore, healthcare professionals and parents should consider these biomechanical factors when introducing pacifiers to newborns. Full article
Show Figures

Figure 1

31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 135
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

24 pages, 3598 KiB  
Article
State of the Art on Empirical and Numerical Methods for Cave Stability Analysis: Application in Al-Badia Lava Tube, Harrat Al-Shaam, Jordan
by Ronald Herrera, Daniel Garcés, Abdelmadjid Benrabah, Ahmad Al-Malabeh, Rafael Jordá-Bordehore and Luis Jordá-Bordehore
Appl. Mech. 2025, 6(3), 56; https://doi.org/10.3390/applmech6030056 - 31 Jul 2025
Viewed by 106
Abstract
Empirical and numerical methodologies for the geomechanical assessment of underground excavations have evolved in recent years to adapt to the geotechnical and structural conditions of natural caves, enabling stability evaluation and ensuring safe conditions for speleological exploration. This study analyzes the evolution of [...] Read more.
Empirical and numerical methodologies for the geomechanical assessment of underground excavations have evolved in recent years to adapt to the geotechnical and structural conditions of natural caves, enabling stability evaluation and ensuring safe conditions for speleological exploration. This study analyzes the evolution of the state of the art of these techniques worldwide, assessing their reliability and application context, and identifying the most suitable methodologies for determining the stability of the Al-Badia lava tube. The research was conducted through bibliographic analysis and rock mass characterization using empirical geomechanical classifications. Subsequently, the numerical boundary element method (BEM) was applied to compare the obtained results and model the stress–strain behavior of the cavity. The results allowed the classification of the Al-Badia lava tube into stable, transition, and unstable zones, using empirical support charts and determining the safety factors of the surrounding rock mass. The study site highlights that empirical methods are rather conservative, and numerical results align better with observed conditions. Full article
Show Figures

Figure 1

13 pages, 3716 KiB  
Article
Mineralogy and Preparation of High-Purity Quartz: A Case Study from Pegmatite in the Eastern Sector of the North Qinling Orogenic Belt
by Deshui Yu, Yameng Ma, Shoujing Wang, Chi Ma and Fushuai Wei
Minerals 2025, 15(8), 788; https://doi.org/10.3390/min15080788 - 27 Jul 2025
Viewed by 285
Abstract
High-purity quartz (HPQ), an indispensable industrial mineral, serves as a critical raw material for advanced technology sectors. Derived from natural quartz precursors through processing, HPQ preparation efficiency fundamentally depends on raw material selection. Two pegmatite samples (muscovite pegmatite and two-mica pegmatite) sampled from [...] Read more.
High-purity quartz (HPQ), an indispensable industrial mineral, serves as a critical raw material for advanced technology sectors. Derived from natural quartz precursors through processing, HPQ preparation efficiency fundamentally depends on raw material selection. Two pegmatite samples (muscovite pegmatite and two-mica pegmatite) sampled from the eastern sector of the North Qinling Orogenic Belt were investigated through a suite of analytical techniques, as well as processing and purification, to evaluate their potential as raw materials for high-purity quartz. Muscovite pegmatite is predominantly composed of quartz, plagioclase, K-feldspar, muscovite, and garnet, with accessory phases including limonite and kaolinite. However, in addition to quartz, plagioclase, K-feldspar, muscovite, garnet, and limonite, two-mica pegmatite contains minerals such as biotite and calcite. The fluid inclusions in both muscovite and two-mica pegmatite quartz are small, but the former has fewer fluid inclusions. Compared with muscovite pegmatite, surface discontinuity (i.e., cracks, pits, cavities) development is more pronounced in two-mica pegmatite purified quartz, which may be related to its high content of fluid inclusions. Following purification, the total concentration of trace elements decreased significantly. However, the concentrations of Al and Ti appeared to remain the same. Titanium enrichment in purified two-mica pegmatite quartz likely derives from biotite, while Na and Ca concentrations may be related to fluid inclusions or microscopic mineral inclusions. The trace element content (27.69 ppm) in muscovite pegmatite is lower than that (45.28 ppm) of two-mica pegmatite, we thus suggest that muscovite pegmatite quartz is more likely to have the potential to produce high-purity quartz. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

13 pages, 1758 KiB  
Article
Microwave Based Non-Destructive Testing for Detecting Cold Welding Defects in Thermal Fusion Welded High-Density Polyethylene Pipes
by Zhen Wang, Chaoming Zhu, Jinping Pan, Ran Huang and Lianjiang Tan
Polymers 2025, 17(15), 2048; https://doi.org/10.3390/polym17152048 - 27 Jul 2025
Viewed by 251
Abstract
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose [...] Read more.
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose significant safety risks. Traditional non-destructive testing (NDT) methods face challenges in detecting cold welding defects due to the polymer’s complex structure and characteristics. This study presents a microwave-based NDT system for detecting cold welding defects in thermal fusion welds of HDPE pipes. The system uses a focusing antenna with a resonant cavity, connected to a vector network analyzer (VNA), to measure changes in microwave parameters caused by cold welding defects in thermal fusion welds. Experiments conducted on HDPE pipes welded at different temperatures demonstrated the system’s effectiveness in identifying areas with a lack of fusion. Mechanical and microstructural analyses, including tensile tests and scanning electron microscopy (SEM), confirmed that cold welding defects lead to reduced mechanical properties and lower material density. The proposed microwave NDT method offers a sensitive, efficient approach for detecting cold welds in HDPE pipelines, enhancing pipeline integrity and safety. Full article
(This article belongs to the Special Issue Additive Agents for Polymer Functionalization Modification)
Show Figures

Figure 1

19 pages, 3207 KiB  
Article
Evaluation of Various Thiourea Derivatives as Reducing Agents in Two-Component Methacrylate-Based Materials
by Coralie Ohl, Estelle Thetiot, Laurence Charles, Yohann Catel, Pascal Fässler and Jacques Lalevée
Polymers 2025, 17(15), 2017; https://doi.org/10.3390/polym17152017 - 23 Jul 2025
Viewed by 337
Abstract
Two-component dental materials are commonly used by the dentist for various applications (cementation of indirect restorations, filling of a cavity without layering, etc.). These materials are cured by redox polymerization. The (hydro)peroxide/thiourea/copper salt redox initiator system is well established and can be found [...] Read more.
Two-component dental materials are commonly used by the dentist for various applications (cementation of indirect restorations, filling of a cavity without layering, etc.). These materials are cured by redox polymerization. The (hydro)peroxide/thiourea/copper salt redox initiator system is well established and can be found in a wide range of commercially available dental materials. The thiourea is a key component of the initiator system. This study explores the influence of the nature of the thiourea reducing agent on the reactivity and efficiency of redox initiator systems. In this work, six different thiourea structures were investigated, in combination with copper(II) acetylacetonate and cumene hydroperoxide (CHP), to understand their impact on polymerization kinetics and mechanical properties of methacrylate-based materials. Various experimental techniques, including mass spectrometry (MS) and spectroscopic analyses, were employed to elucidate the underlying mechanisms governing these redox systems. The results highlight that thiourea plays a dual role, acting both as a reducing agent and as a ligand in copper complexes, affecting radical generation and polymerization efficiency. Structural modifications of thiourea significantly influence the initiation process, demonstrating that reactivity is governed by a combination of factors rather than a single property. Self-cure dental flowable composites exhibiting excellent flexural strength (>100 MPa) and modulus (>6000 MPa) were obtained using hexanoyl thiourea, N-benzoylthiourea, or 1-(pyridin-2-yl)thiourea as a reducing agent. The adjustment of the Cu(acac)2 enables to properly set the working time in the range of 100 to 200 s. These findings provide valuable insights into the design of the next generation of redox initiating systems for mild and safe polymerization conditions. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Graphical abstract

20 pages, 2314 KiB  
Article
Effects of 2-Hydroxypropyl-β-Cyclodextrin on the Antioxidant Efficiency of Some Gallic Acid Derivatives in Soybean Oil-in-Water Emulsions
by Tamara Martínez-Senra, Sonia Losada-Barreiro and Carlos Bravo-Díaz
Antioxidants 2025, 14(7), 887; https://doi.org/10.3390/antiox14070887 - 18 Jul 2025
Viewed by 322
Abstract
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for [...] Read more.
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for the formation of host–guest complexes, modifying their physicochemical properties and their location in multiphasic systems. Here, we investigated the effects of 2-hydroxypropyl-β-cyclodextrin (HPCD) on the efficiency of a series of gallic acid derivatives (propyl (PG), butyl (BG), octyl (OG), and lauryl (LG) gallates) in inhibiting the oxidation of soybean oil-in-water emulsions. For this purpose, we investigated the effects of HPCD on both the kinetics of lipid oxidation and the distribution of antioxidants in the same intact emulsions. The results show that in an aqueous solution, the antioxidants form 1:1 inclusion complexes with HPCD, with inclusion constants ranging from 383 M−1 (PG) to 1946 M−1 (OG). The results also show that the addition of HPCD to emulsions containing antioxidants does not lead to significant changes in their antioxidant effectiveness, with their efficiency being similar to that when no HPCD molecules are present. The results are interpreted in terms of the blocking effect exerted by the Tween 20 molecules, which act as effective guest competitors capable of removing the antioxidants from the HPCD cavity. The Tween 20 surfactant molecules need to be employed to stabilize the emulsions kinetically. This blocking effect, as a primary consequence, indicates that the interfacial concentration of the antioxidants, which is the region where the inhibition reaction takes place, remains constant; thus, their efficiency is not altered. Full article
(This article belongs to the Special Issue Antioxidants for the Oxidative Stabilisation of Food Lipids)
Show Figures

Figure 1

19 pages, 31306 KiB  
Article
Cavitation Performance Analysis in the Runner Region of a Bulb Turbine
by Feng Zhou, Qifei Li, Lu Xin, Xiangyu Chen, Shiang Zhang and Yuqian Qiao
Processes 2025, 13(7), 2231; https://doi.org/10.3390/pr13072231 - 12 Jul 2025
Viewed by 289
Abstract
As a core component in renewable energy systems for grid regulation, hydropower units are increasingly exposed to flow conditions that elevate the risk of cavitation and erosion, posing significant challenges to the safe operation of flow-passage components. In this study, model testing and [...] Read more.
As a core component in renewable energy systems for grid regulation, hydropower units are increasingly exposed to flow conditions that elevate the risk of cavitation and erosion, posing significant challenges to the safe operation of flow-passage components. In this study, model testing and computational fluid dynamics (CFD) simulations are employed to investigate the hydraulic performance and cavitation behavior of a bulb turbine operating under rated head conditions and varying cavitation numbers. The analysis focuses on how changes in cavitation intensity affect flow characteristics and efficiency within the runner region. The results show that as the cavitation number approaches its critical value, the generation, growth, and collapse of vapor cavities increasingly disturb the main flow, causing a marked drop in blade hydraulic performance and overall turbine efficiency. Cavitation predominantly occurs on the blade’s suction side near the trailing edge rim and in the clearance zone near the hub, with bubble coverage expanding as the cavitation number decreases. A periodic inverse correlation between surface pressure and the cavitation area is observed, reflecting the strongly unsteady nature of cavitating flows. Furthermore, lower cavitation numbers lead to intensified pressure pulsations, aggravating flow unsteadiness and raising the risk of vibration. Full article
Show Figures

Figure 1

30 pages, 2664 KiB  
Article
Direct Numerical Simulation of the Differentially Heated Cavity and Comparison with the κ-ε Model for High Rayleigh Numbers
by Fernando Iván Molina-Herrera and Hugo Jiménez-Islas
Modelling 2025, 6(3), 66; https://doi.org/10.3390/modelling6030066 - 11 Jul 2025
Viewed by 244
Abstract
This study presents a numerical comparison between Direct numerical simulation (DNS) and the standard κ-ε turbulence model to evaluate natural convection in a two-dimensional, differentially heated, air-filled cavity over the Rayleigh number range 103 to 1010. The objective is to [...] Read more.
This study presents a numerical comparison between Direct numerical simulation (DNS) and the standard κ-ε turbulence model to evaluate natural convection in a two-dimensional, differentially heated, air-filled cavity over the Rayleigh number range 103 to 1010. The objective is to assess the predictive capabilities of both methods across laminar and turbulent regimes, with a particular emphasis on the quantitative comparison of thermal characteristics under high Rayleigh number conditions. The Navier–Stokes and energy equations were solved using the finite element method with Boussinesq approximation, employing refined meshes near the hot and cold walls to resolve thermal and velocity boundary layers. The results indicate that for Ra ≤ 106, the κ-ε model significantly underestimates temperature gradients, maximum velocities, and average Nusselt numbers, with errors up to 19.39%, due to isotropic assumptions and empirical formulation. DNS, in contrast, achieves global energy balance errors of less than 0.0018% across the entire range. As Ra increases, the κ-ε model predictions converge to DNS, with Nusselt number deviations dropping below 1.2% at Ra = 1010. Streamlines, temperature profiles, and velocity distributions confirm that DNS captures flow dynamics more accurately, particularly near the wall vortices. These findings validate DNS as a reference solution for high-Ra natural convection and establish benchmark data for assessing turbulence models in confined geometries Full article
Show Figures

Graphical abstract

14 pages, 2414 KiB  
Review
Large Submandibular Duct Sialolith Removal Using a Diode Laser: Description of the Technique Based on Two Cases and Narrative Review of the Literature
by Giuseppe D’Albis, Marta Forte, Alfonso Manfuso, Alexandra Artin, Mariachiara Fioriello, Adriano Di Grigoli, Luisa Limongelli and Saverio Capodiferro
Surgeries 2025, 6(3), 53; https://doi.org/10.3390/surgeries6030053 - 7 Jul 2025
Viewed by 285
Abstract
Background/Objectives: The introduction of innovative technologies for the management of oral diseases has revolutionized treatment approaches, offering less invasive options and improved outcomes. Among oral cavity diseases, sialolithiasis is the most common disorder of the salivary glands. It involves the formation of [...] Read more.
Background/Objectives: The introduction of innovative technologies for the management of oral diseases has revolutionized treatment approaches, offering less invasive options and improved outcomes. Among oral cavity diseases, sialolithiasis is the most common disorder of the salivary glands. It involves the formation of calculi or stones within the salivary ducts, primarily affecting the submandibular gland due to its tortuous duct and the alkaline nature of its saliva. In particular, laser-assisted techniques have shown significant promise in enhancing the precision and safety in the management of sialolith removal. This article aims to present a case report and also explores the scientific evidence supporting these innovative methods, highlighting their benefits and limitations in clinical practice. Methods: This research was conducted using PubMed and Scopus search engines with a combination of relevant keywords, including laser, laser-assisted, laser treatment in combination with sialolith, sialolith removal, and sialoadenectomy. Selected articles were carefully reviewed to identify studies reporting data on the effectiveness of laser-assisted sialolith removal. Results: Results from the literature review indicate a growing interest in the application of diode laser and CO2, with evidence suggesting improved clinical outcomes and reduced postoperative pain compared to traditional methods. Conclusions: Although lasers offer enhanced safety and reduced morbidity and bleeding, which ensures optimal visibility, certain limitations must be considered, including the need for an adequate training period. Further randomized clinical trials and longer follow-up studies are needed to better evaluate their use in sialolith removal. Full article
(This article belongs to the Special Issue Oral Laser Surgery: Current Evidences and Perspectives)
Show Figures

Figure 1

20 pages, 3781 KiB  
Article
Thermal Impacts of Air Cavities Associated with Insulated Panels Deployed for Exterior Building Envelope Assemblies
by Utsav Dahal and Moncef Krarti
Energies 2025, 18(13), 3573; https://doi.org/10.3390/en18133573 - 7 Jul 2025
Viewed by 263
Abstract
This paper presents a comprehensive investigation to evaluate the impacts of air cavities between existing walls and insulated panels on the overall R-values of the retrofitted building envelope systems, addressing a key challenge in exterior envelope retrofitting. The effects of several factors are [...] Read more.
This paper presents a comprehensive investigation to evaluate the impacts of air cavities between existing walls and insulated panels on the overall R-values of the retrofitted building envelope systems, addressing a key challenge in exterior envelope retrofitting. The effects of several factors are considered including the air cavity thickness (ranging from 0.1 cm to 5 cm), airflow velocity (varying between 0.1 m/s and 1 m/s), and surface emissivity (set between 0.1 and 0.9), in addition to the thickness of the insulated panels (ranging from 1 cm to 7 cm). It is found that any increase in the air cavity thickness increases the overall R-values of the building envelope assemblies when air is trapped within the sealed cavity. However, when air convection is prevalent, the overall R-value of the retrofitted walls decreases with any increase in air velocity and air cavity thickness. For sealed air cavities, the analysis results show a 9% improvement in R-value of the retrofitted walls. However, the R-value of retrofitted walls with unsealed air cavities can degrade by 76% and 81% for natural and forced air flows, respectively. Emissivity adjustment is found to be the most effective in improving the thermal performance of building envelopes with sealed air cavities, increasing the R-value of retrofitted walls by 13.6% when reduced from 0.9 to 0.1. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings—2nd Edition)
Show Figures

Figure 1

36 pages, 1401 KiB  
Review
Microbial Interconnections in One Health: A Critical Nexus Between Companion Animals and Human Microbiomes
by Stylianos Skoufos, Elisavet Stavropoulou, Christina Tsigalou and Chrysoula (Chrysa) Voidarou
Microorganisms 2025, 13(7), 1564; https://doi.org/10.3390/microorganisms13071564 - 3 Jul 2025
Viewed by 621
Abstract
The One Health approach is rapidly gaining the attention of the scientific community worldwide and is expected to be a major model of scientific reasoning in the 21st century, concerning medical, veterinary and environmental issues. The basic concept of One Health, that humans, [...] Read more.
The One Health approach is rapidly gaining the attention of the scientific community worldwide and is expected to be a major model of scientific reasoning in the 21st century, concerning medical, veterinary and environmental issues. The basic concept of One Health, that humans, animals and their environments are parts of the same natural world affecting each other, is rooted in most ethnic as well as in many religious traditions. Despite this unity and for historical reasons, medical, veterinary and environmental sciences developed independently. The One Health concept tries to reunite these and many other relevant sciences, aiming at a deeper understanding of the interconnection between the natural world, humans and animal health. The dynamic interplay between a host’s microbiome, the microbiomes of other hosts, and environmental microbial communities profoundly influences the host health, given the essential physiological functions the microbiome performs within the organism. The biodiversity of microbiomes is broad and complex. The different areas of the skin, the upper and lower respiratory systems, the ocular cavity, the oral cavity, the gastrointestinal tract and finally the urogenital system of pets and humans alike are niches where a multitude of microorganisms indigenous and transient—commensals and pathogens, thrive in a dynamic antagonistic balance of populations of different phyla, orders, genera and species. The description of these microbiomes attempted in this article is not meant to be exhaustive but rather demonstrative of their complexity. The study of microbiomes is a necessary step towards the One Health approach to pets and humans. Yet, despite the progress made on that subject, the scientific community faces challenges, such as the limitations of studies performed, the scarcity of studies concerning the microbiomes of cats, the multitude of environmental factors affecting the results and others. The two new terms proposed in this article, the “familiome” and the “oikiome”, will aid in the One Health theoretical analysis as well as in its practical approach. The authors strongly believe that new technological breakthroughs, like Big Data Analytics and Artificial Intelligence (AI), will significantly help to overcome these hazards. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

18 pages, 2465 KiB  
Case Report
Pancreatic Endometriosis Coexisting with a Splenic Mesothelial Cyst: A Rare Case Report and Review of the Literature
by Daniel Paramythiotis, Antonia Syrnioti, Dimitrios Tsavdaris, Aikaterini Smprini, Alexandros Mekras, Athanasios Apostolidis and Angeliki Cheva
Diseases 2025, 13(7), 203; https://doi.org/10.3390/diseases13070203 - 30 Jun 2025
Viewed by 390
Abstract
Endometriosis is a clinical entity affecting up to 10% of women of reproductive age, characterized by ectopic endometrial tissue outside the uterine cavity. While extrapelvic endometriosis has been documented, pancreatic endometriosis remains extremely rare and poses significant diagnostic challenges due to its similarity [...] Read more.
Endometriosis is a clinical entity affecting up to 10% of women of reproductive age, characterized by ectopic endometrial tissue outside the uterine cavity. While extrapelvic endometriosis has been documented, pancreatic endometriosis remains extremely rare and poses significant diagnostic challenges due to its similarity to other pancreatic diseases. At the same time, splenic mesothelial cysts are also rare and typically benign. This report presents a unique case of pancreatic endometriosis coexisting with a splenic mesothelial cyst in a 31-year-old woman. The patient presented to the emergency department with complaints of persistent epigastric and low back pain. She noted having similar symptoms approximately a year prior. Her past medical history was otherwise unremarkable, and there was no known family history of pancreatic disease or neoplasms. Initial imaging revealed a 3.8 cm cystic lesion in the pancreatic tail, with features suggestive of mucinous cystadenoma. Following clinical evaluation and confirmation of the cyst’s nature through endoscopic ultrasound-guided biopsy, the patient subsequently underwent laparoscopic distal pancreatectomy and splenectomy due to worsening symptoms. Gross examination revealed a multilocular pancreatic cyst with a smooth, hemorrhagic wall. Microscopic analysis showed the cyst to be lined by cuboidal to columnar epithelium, consistent with pancreatic endometriosis, confirmed by immunohistochemical staining. The spleen showed cystic formations, diagnosed as a multifaceted mesothelial cyst. In conclusion, this report is the first to document the coexistence of pancreatic endometriosis and splenic mesothelial cysts, highlighting the importance of accurate imaging and pathologic evaluation in the diagnosis of these rare conditions. Early diagnosis and surgical intervention lead to favorable outcomes, reinforcing the importance of comprehensive diagnostic strategies. Full article
Show Figures

Figure 1

17 pages, 1570 KiB  
Article
Overcoming Scaling Challenges in Sol–Gel Synthesis: A Microwave-Assisted Approach for Iron-Based Energy Materials
by Judith González-Lavín, Ana Arenillas and Natalia Rey-Raap
Microwave 2025, 1(2), 6; https://doi.org/10.3390/microwave1020006 - 30 Jun 2025
Viewed by 319
Abstract
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal [...] Read more.
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal aerogels, specifically iron-based aerogels, is studied using a microwave-assisted sol–gel methodology in an open-system multimode device as a potential route to scale-up production. Different approaches were tested to evaluate the best way to increase yield per batch, with different vessel shapes and volumes. It is shown that the shape and size of the vessel can be determinant in the interaction with microwaves and, thus, in the heating process, influencing the sol–gel reactions and the characteristics and homogeneity of the obtained nanomaterials. It has been found that a wide vessel is preferable to a tall and narrow one since the heating process is more homogeneous in the former and the sol–gel and cross-linking reactions take place earlier, which improves the mechanical properties of the final nanomaterial. For mass production of nanomaterials, the interaction of the reagents with the microwave field must be considered, and this depends not only on their nature but also on their volume, shape, and arrangement inside the cavity. Full article
Show Figures

Graphical abstract

20 pages, 5356 KiB  
Article
Structure–Function Analysis of the Steroid-Hydroxylating Cytochrome P450 109 (CYP109) Enzyme Family
by Siphesihle M. Msweli, Tiara Padayachee, Thembeka Khumalo, David R. Nelson, David C. Lamb and Khajamohiddin Syed
Int. J. Mol. Sci. 2025, 26(13), 6219; https://doi.org/10.3390/ijms26136219 - 27 Jun 2025
Viewed by 439
Abstract
Steroids are found in bacteria and eukaryotes, and genes potentially encoding steroid metabolic enzymes have also been identified in giant viruses. For decades, hydroxylated steroids have been utilized in medicine to treat various human diseases. The hydroxylation of steroids can be achieved using [...] Read more.
Steroids are found in bacteria and eukaryotes, and genes potentially encoding steroid metabolic enzymes have also been identified in giant viruses. For decades, hydroxylated steroids have been utilized in medicine to treat various human diseases. The hydroxylation of steroids can be achieved using microbial enzymes, especially cytochrome P450 monooxygenases (CYPs/P450s) and is well documented. Understanding the structural determinants that govern the regio- and stereoselectivity of steroid hydroxylation by P450s is essential in order to fully exploit their potential. Herein, we present a comprehensive analysis of the steroid-hydroxylating CYP109 family across the domains of life and delineate the structural determinants that govern steroid hydroxylation. Data mining, annotation, and phylogenetic analysis revealed that CYP109 family members are highly populated in bacteria, and indeed, these members passed from bacteria to archaea by horizontal gene transfer, leading to the evolution of P450s in archaea. Analysis of twelve CYP109 crystal structures revealed large, flexible, and dynamic active site cavities that can accommodate multiple ligands. The correct positioning and orientation of the steroid in the active site cavity and the nature of the C17 substituent on the steroid molecule influence catalysis. In an analogous fashion to the CYP107 family, the amino acid residues within the CYP109 binding pocket involve hydrophilic and hydrophobic interactions, influencing substrate orientations and anchoring and determining the site of hydroxylation and catalytic activity. A handful of amino acids, such as Val84, Val292, and Ser387 in CYP109B4, have been found to play a role in determining the catalytic regiospecificity, and a single amino acid, such as Arg74 in CYP109A2, has been found to be essential for the enzymatic activity. This work serves as a reference for the precise understanding of CYP109 structure–function relationships and for P450 enzymes in general. The findings will guide the genetic engineering of CYP109 enzymes to produce valuable steroid molecules of medicinal and biotechnological importance. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop