Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,558)

Search Parameters:
Keywords = nativism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1210 KB  
Article
From Establishment to Expansion: Changing Drivers of Acacia spp. Invasion in Mainland Central Portugal
by Matilde Salgueiro, Carla Mora and César Capinha
Forests 2026, 17(1), 135; https://doi.org/10.3390/f17010135 (registering DOI) - 19 Jan 2026
Abstract
Land abandonment and recurrent wildfires are major drivers of landscape transformation in Mediterranean Europe, creating favorable conditions for the spread of non-native invasive woody species. Among these, Australian wattles (genus Acacia) are particularly widespread and problematic in Portugal. This work analyzed the [...] Read more.
Land abandonment and recurrent wildfires are major drivers of landscape transformation in Mediterranean Europe, creating favorable conditions for the spread of non-native invasive woody species. Among these, Australian wattles (genus Acacia) are particularly widespread and problematic in Portugal. This work analyzed the spatiotemporal dynamics of Acacia spp. in two municipalities of central Portugal (Sertã and Pedrógão-Grande) by combining multitemporal photointerpretation of aerial imagery (2004–2021), generalized additive models (GAMs), and local perception surveys. Results reveal a 417% increase in occupied area over the last two decades. Modeling outcomes indicate a temporal shift in invasion drivers: from an establishment phase (2004–2010), mainly constrained by altitude and proximity to primary introduction sites, to a disturbance-driven expansion phase (2010–2021), influenced by fire recurrence, slope, and land-use context. Spatial clustering persisted throughout, underscoring the role of founder populations. Surveys confirmed high public awareness of Acacia invasiveness and identified abandonment and wildfire as the main perceived triggers of spread. By integrating ecological and social dimensions, this study provides a socioecological perspective on Acacia spp. expansion in Mediterranean rural landscapes and highlights the urgent need for integrated, landscape-scale management strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
11 pages, 699 KB  
Article
Comparison of Radiographic and Patient-Reported Outcomes in Robotic-Assisted Versus Manual Total Knee Arthroplasty Using Medial-Congruent Bearing
by Wen-Chien Wang, Yu-Tsung Lin, Kun-Hui Chen, Cheng-Hung Lee, Cheng-Chi Wang, Chung-Yuh Tzeng and Kelly Vince
J. Clin. Med. 2026, 15(2), 806; https://doi.org/10.3390/jcm15020806 (registering DOI) - 19 Jan 2026
Abstract
Background: Total knee arthroplasty (TKA) effectively relieves pain in end-stage osteoarthritis, yet a proportion of patients remain dissatisfied despite advances in surgical technique. Medial-congruent (MC) bearings are designed to recreate native medial-pivot kinematics, which depend on appropriate medial compartment soft tissue tension. [...] Read more.
Background: Total knee arthroplasty (TKA) effectively relieves pain in end-stage osteoarthritis, yet a proportion of patients remain dissatisfied despite advances in surgical technique. Medial-congruent (MC) bearings are designed to recreate native medial-pivot kinematics, which depend on appropriate medial compartment soft tissue tension. Robotic-assisted TKA (RA-TKA) has been shown to improve the accuracy and soft tissue balance. However, evidence of its additional benefits in MC TKA remains limited. Methods: We retrospectively identified consecutive primary TKAs with the same MC bearing performed between April 2022 and June 2024 at a tertiary center. After performing 1:1 propensity score matching to reduce baseline imbalance, 36 patients who received RA-TKA and 36 who underwent manual TKA (M-TKA) were included. Primary outcomes were evaluated with the 12-month Oxford Knee Score (OKS) and KOOS-JR. Secondary outcomes included radiographic alignment parameters, outlier rates, operative time, liner thickness, and hospital stay. Results: Baseline characteristics and liner thickness were comparable, and operative time was longer in the RA-TKA group than in the M-TKA group. Both RA-TKA and M-TKA produced significant 12-month improvements in OKS and KOOS-JR with no difference in mean scores. RA-TKA had fewer posterior tibial slope outliers (mean slope 4.3° ± 1.8 vs. 5.9° ± 3.1; outlier rate 16.7% vs. 41.7%; p = 0.02), whereas coronal alignment parameters did not differ between groups. Conclusions: RA-TKA with MC bearing provides functional outcomes comparable to M-TKA and may decrease sagittal alignment variability; long-term follow-up studies are needed to determine whether this potential benefit translates into sustained functional gains or improved implant survivorship. Full article
Show Figures

Figure 1

15 pages, 1213 KB  
Article
Chemical Profiling and Multimodal Anti-Inflammatory Activity of Eugenia pyriformis Leaves Essential Oil
by Larissa Saviani Ribeiro, Vitor Guimarães Lourenço, Kaique Gonçalves de Souza, Yasmin Cometti Sardinha, Kevin Costa Miranda, Francisco Paiva Machado, Rômulo Augusto de Abreu Franchini, Mariana Toledo Martins Pereira, Leandro Rocha, Vinicius D’Avila Bitencourt Pascoal and Aislan Cristina Rheder Fagundes Pascoal
Molecules 2026, 31(2), 342; https://doi.org/10.3390/molecules31020342 - 19 Jan 2026
Abstract
Eugenia pyriformis Cambess., popularly known as uvaia, is a native Brazilian species belonging to the Myrtaceae family that has attracted pharmacological interest due to its richness in bioactive secondary metabolites. Previous studies have reported antimicrobial and antioxidant activities of the essential oil obtained [...] Read more.
Eugenia pyriformis Cambess., popularly known as uvaia, is a native Brazilian species belonging to the Myrtaceae family that has attracted pharmacological interest due to its richness in bioactive secondary metabolites. Previous studies have reported antimicrobial and antioxidant activities of the essential oil obtained from its leaves, reinforcing its therapeutic potential. In this context, the present study aimed to extract and characterize the essential oil from E. pyriformis leaves cultivated in the mountainous region of Rio de Janeiro, Brazil, and to evaluate its anti-inflammatory potential through in vitro and in vivo models. Gas chromatography mass spectrometry (GC–MS) analysis revealed a predominance of sesquiterpene hydrocarbons, mainly γ-muurolene, δ-cadinene, and β-caryophyllene. The oil exhibited significant anti-edematogenic activity in carrageenan-, prostaglandin E2-, and bradykinin-induced paw edema models in adult female Swiss mice, suggesting modulation of inflammatory mediators, possibly through inhibition of the cyclooxygenase (COX) pathway. Conversely, no effect was observed in the compound 48/80-induced model, indicating the absence of activity on histamine- and serotonin-mediated processes. In vitro assays demonstrated that the oil reduced TNF-α and IL-1β gene expression in RAW 264.7 macrophages, confirming its ability to modulate pro-inflammatory cytokines. Taken together, these findings demonstrate that the essential oil of E. pyriformis exerts anti-inflammatory activity through multiple targets. Full article
(This article belongs to the Special Issue Essential Oils: Chemical Composition, Bioactive, and Application)
Show Figures

Graphical abstract

15 pages, 2074 KB  
Article
Research on Encryption and Decryption Technology of Microservice Communication Based on Block Cipher
by Shijie Zhang, Xiaolan Xie, Ting Fan and Yu Wang
Electronics 2026, 15(2), 431; https://doi.org/10.3390/electronics15020431 - 19 Jan 2026
Abstract
The efficiency optimization of encryption and decryption algorithms in cloud environments is addressed in this study, where the processing speed of encryption and decryption is enhanced through the application of multi-threaded parallel technology. In view of the high-concurrency and distributed storage characteristics of [...] Read more.
The efficiency optimization of encryption and decryption algorithms in cloud environments is addressed in this study, where the processing speed of encryption and decryption is enhanced through the application of multi-threaded parallel technology. In view of the high-concurrency and distributed storage characteristics of cloud platforms, a multi-threaded concurrency mechanism is adopted for the direct processing of data streams. Compared with the traditional serial processing mode, four distinct encryption algorithms, namely AES, DES, SM4 and Ascon, are employed, and different data units are processed concurrently by means of multithreaded technology. Based on multi-dimensional performance evaluation indicators (including throughput, memory footprint and security level), comparative analyses are carried out to optimize the design scheme; accordingly, multi-threaded collaborative encryption is realized to improve the overall operation efficiency. Experimental results indicate that, in comparison with the traditional serial encryption method, the encryption and decryption latency of the algorithm is reduced by around 50%, which significantly lowers the time overhead associated with encryption and decryption processes. Simultaneously, the throughput of AES and DES algorithms is observed to be doubled, which leads to a remarkable improvement in communication efficiency. Moreover, under the premise that the original secure communication capability is guaranteed, system resource overhead is effectively reduced by SM4 and Ascon algorithms. On this basis, a quantitative reference basis is provided for cloud platforms to develop targeted encryption strategies tailored to diverse business demands. In conclusion, the proposed approach is of profound significance for advancing the synergistic optimization of security and performance in cloud-native data communication scenarios. Full article
(This article belongs to the Special Issue AI for Wireless Communications and Security)
Show Figures

Figure 1

19 pages, 1214 KB  
Article
Primary Fermentation in Wine Production Influence on Phenolic Retention and Valorization Potential of Berry Skin By-Products
by Audrone Ispiryan and Elvyra Jarienė
Plants 2026, 15(2), 296; https://doi.org/10.3390/plants15020296 - 19 Jan 2026
Abstract
Berry skins are rich in phenolic compounds but are commonly discarded as low-value waste during berry wine production. The present study evaluated how primary alcoholic fermentation affects the retention and transformation of phenolics in berry skins of blackcurrant (Ribes nigrum L.), black [...] Read more.
Berry skins are rich in phenolic compounds but are commonly discarded as low-value waste during berry wine production. The present study evaluated how primary alcoholic fermentation affects the retention and transformation of phenolics in berry skins of blackcurrant (Ribes nigrum L.), black chokeberry (Aronia melanocarpa L.), lingonberry (Vaccinium vitis-idaea L.), rowanberry (Sorbus aucuparia L.), and cranberry (Vaccinium macrocarpon L.). Non-fermented and fermented skin fractions were analysed using Folin–Ciocalteu and HPLC to determine total and individual phenolic profiles. Primary fermentation induced significant species-dependent changes in phenolic composition. Blackcurrant, lingonberry, and rowanberry skins exhibited substantial decreases in total phenolics (−66%, −26%, and −57%, respectively), driven by strong losses of flavan-3-ols and hydroxycinnamic acids. In contrast, cranberry and chokeberry skins showed net increases in phenolic content (+47% and +18%, respectively), associated with the release of bound phenolics and the appearance of new low-molecular-weight phenolic acids such as gallic acid. Across all species, fermentation enhanced biotransformation into simpler phenolics while reducing major native anthocyanins and catechins. These results demonstrate that the influence of primary fermentation on berry skins is not uniform but dictated by their inherent phenolic architecture. Berries rich in polymeric or conjugated phenolics benefit from fermentation through increased phenolic extractability. The findings provide a comparative basis for optimizing fermentation and post-processing strategies to enhance the valorization potential of berry by-products in food and nutraceutical applications. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

11 pages, 1355 KB  
Brief Report
Limitations of the Double-Observer Method for Estimating Population Size: A Case Study on the Southern Greater Glider (Petauroides volans)
by Xander Kremer, Ana Gracanin, David B. Lindenmayer and Kara N. Youngentob
Conservation 2026, 6(1), 12; https://doi.org/10.3390/conservation6010012 - 19 Jan 2026
Abstract
Monitoring the size of wildlife populations is crucial for the effective implementation of conservation management strategies, and a variety of methods have been developed for this purpose. One such approach is the double-observer method, which has recently gained prominence in monitoring programs for [...] Read more.
Monitoring the size of wildlife populations is crucial for the effective implementation of conservation management strategies, and a variety of methods have been developed for this purpose. One such approach is the double-observer method, which has recently gained prominence in monitoring programs for the southern greater glider (Petauroides volans), an iconic nocturnal arboreal marsupial native to Australia. While this method has been successfully applied at lower population densities, its reliability and applicability at higher-density sites has not been evaluated. This case study represents the first instance of an investigation and discussion on the application of the double-observer method in greater glider monitoring at higher-density sites. We found that in higher-density areas, the proximity of individuals makes it more difficult to reliably distinguish unique (individual) animals between observers, and the increased number of observations per transect extends the time required for data recording. Transects with more animal observations showed significantly longer delays between observers (z = 5.062, p < 0.001). Additionally, discrepancies in the number of animal observations between observers significantly altered the intended 15–20 min interval (z = 2.71, p = 0.007). Deviations from the standard 15–20 min interval between observers were common, occurring at 44 of the 66 sites, where actual time-lags ranged from 0 to 64 min. Consequently, longer intervals increased the potential for animal movement, while shorter intervals risked observer independence. These factors, combined with our experience applying the double-observer method across sites with markedly different greater glider densities, suggest that the critical non-movement assumption may be violated more frequently than previously recognised. We discuss the limitations of applying the double-observer method to survey high-density populations and recommend prioritising research on greater glider movement patterns and alternative survey techniques to improve the accuracy and reliability of monitoring programs at higher-density sites. Full article
Show Figures

Figure 1

15 pages, 2150 KB  
Article
Liquid Metal Particles–Graphene Core–Shell Structure Enabled Hydrogel-Based Triboelectric Nanogenerators
by Sangkeun Oh, Yoonsu Lee, Jungin Yang, Yejin Lee, Seoyeon Won, Sang Sub Han, Jung Han Kim and Taehwan Lim
Gels 2026, 12(1), 86; https://doi.org/10.3390/gels12010086 (registering DOI) - 19 Jan 2026
Abstract
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a [...] Read more.
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a poly(acrylic acid) (PAA) hydrogel to create a high-performance triboelectric layer. The spontaneous interfacial reaction between gallium oxide of LMP and graphene oxide produces a conformal rGO shell while simultaneously removing the native insulating oxide layer onto the LMP surface, resulting in enhanced colloidal stability and a controllable semiconductive bandgap of 2.7 (0.01 wt%), 2.9 (0.005 wt%) and 3.2 eV (0.001 wt%). Increasing the GO content promotes more complete core–shell formation, leading to higher zeta potentials, stronger interfacial polarization, and higher electrical performance. After embedding in PAA, the LMP@rGO structures form hydrogen-bonding networks with the hydrogel nature, improving both dielectric constant and charge retention while notably preserving soft mechanical compliance. The resulting LMP@rGO/PAA hydrogels show enhanced triboelectric output, with the 2.0 wt/vol% composite generating sufficient power to illuminate more than half of 504 series-connected LEDs. All the results demonstrate the potential of LMP@rGO hydrogel composites as promising triboelectric layer materials for next-generation wearable and self-powered electronic systems. Full article
Show Figures

Figure 1

15 pages, 1635 KB  
Article
Chemical and Molecular Insights into the Arid Wild Plant Diversity of Saudi Arabia
by Najla A. Al Shaye
Plants 2026, 15(2), 295; https://doi.org/10.3390/plants15020295 - 19 Jan 2026
Abstract
Arid and semi-arid ecosystems harbor a wealth of underexplored plant biodiversity with untapped ecological and pharmacological potential. This study integrates morphological and molecular barcoding (ITS and rbcL) to confirm the identity of eight wild plant species native to the Saudi Arabian desert: Calligonum [...] Read more.
Arid and semi-arid ecosystems harbor a wealth of underexplored plant biodiversity with untapped ecological and pharmacological potential. This study integrates morphological and molecular barcoding (ITS and rbcL) to confirm the identity of eight wild plant species native to the Saudi Arabian desert: Calligonum crinitum, Tribulus terrestris, Cornulaca monacantha, Cleome pallida, Leptadenia pyrotechnica, Cyperus conglomeratus, Indigofera argentea, and Artemisia monosperma. High-resolution GC–MS analysis identified over 25 bioactive compounds across these taxa, grouped into functional classes including hydrocarbons, esters, fatty acids, quinones, terpenoids, and phenolics. Notable compounds such as n-hexadecanoic acid, 2,4-di-tert-butylphenol, lupeol, and D-limonene were linked to antioxidant activity, desiccation tolerance, and membrane protection under stress. L. pyrotechnica and A. monosperma emerged as chemical outliers with unique metabolite profiles, suggesting divergent strategies for climate resilience. Our results highlight the ecological and bioeconomic value of desert flora, positioning them as candidates for future research in metabolic engineering, dryland restoration, and plant-based pharmaceuticals. This integrative approach underscores the relevance of desert plants for sustainable development in the face of climate change. Full article
(This article belongs to the Special Issue Medicinal Plants: Phytochemistry and Pharmacology Studies)
Show Figures

Figure 1

17 pages, 3130 KB  
Article
ColiFormer: A Transformer-Based Codon Optimization Model Balancing Multiple Objectives for Enhanced E. coli Gene Expression
by Saketh Baddam, Omar Emam, Abdelrahman Elfikky, Francesco Cavarretta, George Luka, Ibrahim Farag and Yasser Sanad
Bioengineering 2026, 13(1), 114; https://doi.org/10.3390/bioengineering13010114 - 19 Jan 2026
Abstract
Codon optimization is widely used to improve heterologous gene expression in Escherichia coli. However, many existing methods focus primarily on maximizing the codon adaptation index (CAI) and neglect broader aspects of biological context. In this study, we present ColiFormer, a transformer-based codon [...] Read more.
Codon optimization is widely used to improve heterologous gene expression in Escherichia coli. However, many existing methods focus primarily on maximizing the codon adaptation index (CAI) and neglect broader aspects of biological context. In this study, we present ColiFormer, a transformer-based codon optimization framework fine-tuned on 3676 high-expression E. coli genes curated from the NCBI database. Built on the CodonTransformer BigBird architecture, ColiFormer employs self-attention mechanisms and a mathematical optimization method (the augmented Lagrangian approach) to balance multiple biological objectives simultaneously, including CAI, GC content, tRNA adaptation index (tAI), RNA stability, and minimization of negative cis-regulatory elements. Based on in silico evaluations on 37,053 native E. coli genes and 80 recombinant protein targets commonly used in industrial studies, ColiFormer demonstrated significant improvements in CAI and tAI values, maintained GC content within biologically optimal ranges, and reduced inhibitory cis-regulatory motifs compared with established codon optimization approaches, while maintaining competitive runtime performance. These results represent computational predictions derived from standard in silico metrics; future experimental work is anticipated to validate these computational predictions in vivo. ColiFormer has been released as an open-source tool alongside the benchmark datasets used in this study. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

22 pages, 1962 KB  
Article
From Vine to Sparkle: An Analytical and Sensory Evaluation of Sparkling Wines from Some Romanian Native Grapes
by Dragoș-Florin Popa-Grosaru, Bettina-Cristina Buican, Camelia Elena Luchian, Lucia Cintia Colibaba, Elena Cristina Scutarașu, Marius Niculaua, Constantin Bogdan Nechita, George Ștefan Coman, Elena Cornelia Focea, Tiberiu Andrieș, Diana Ionela Popescu (Stegarus) and Valeriu V. Cotea
Foods 2026, 15(2), 353; https://doi.org/10.3390/foods15020353 - 18 Jan 2026
Abstract
The increasing global demand for sparkling wines has encouraged the exploration of alternative grape varieties and emerging production regions. This study evaluated the potential of three indigenous Romanian grape varieties (Fetească regală, Tămâioasă românească, and Fetească albă) for sparkling wine production using the [...] Read more.
The increasing global demand for sparkling wines has encouraged the exploration of alternative grape varieties and emerging production regions. This study evaluated the potential of three indigenous Romanian grape varieties (Fetească regală, Tămâioasă românească, and Fetească albă) for sparkling wine production using the méthode champenoise, with grapes sourced from the ullu Mare region. The wines were characterized at two aging intervals (9 and 36 months on lees), with analyses performed on both disgorged and undisgorged samples to assess changes in physicochemical parameters, color attributes, volatile composition, and sensory properties. All varieties exhibited relatively high acidity (6.12–6.53 g/L), particularly Fetească regală (6.37–6.53 g/L), supporting their suitability for sparkling wine production. Extended lees aging enhanced the development of complex tertiary and quaternary aromas while preserving intrinsic floral and fruity attributes. Volatile analysis revealed aging-related increases in higher alcohols and medium-chain fatty acids, with 1-pentanol reaching 106.8 mg L−1 and octanoic acid increasing from approximately 4.2 to 7.9 mg L−1 after 36 months. Principal component analysis explained over 70% of the total variance, discriminating wines according to grape variety and maturation time. This study aimed to provide a detailed characterization of these sparkling wines, integrating physicochemical, chromatic, volatile, and sensorial analyses to evaluate their quality and enological potential. Full article
(This article belongs to the Special Issue Wine and Alcohol Products: Volatile Compounds and Sensory Properties)
Show Figures

Figure 1

25 pages, 6614 KB  
Article
Timer-Based Digitization of Analog Sensors Using Ramp-Crossing Time Encoding
by Gabriel Bravo, Ernesto Sifuentes, Geu M. Puentes-Conde, Francisco Enríquez-Aguilera, Juan Cota-Ruiz, Jose Díaz-Roman and Arnulfo Castro
Technologies 2026, 14(1), 72; https://doi.org/10.3390/technologies14010072 (registering DOI) - 18 Jan 2026
Abstract
This work presents a time-domain analog-to-digital conversion method in which the amplitude of a sensor signal is encoded through its crossing instants with a periodic ramp. The proposed architecture departs from conventional ADC and PWM demodulation approaches by shifting quantization entirely to the [...] Read more.
This work presents a time-domain analog-to-digital conversion method in which the amplitude of a sensor signal is encoded through its crossing instants with a periodic ramp. The proposed architecture departs from conventional ADC and PWM demodulation approaches by shifting quantization entirely to the time domain, enabling waveform reconstruction using only a ramp generator, an analog comparator, and a timer capture module. A theoretical framework is developed to formalize the voltage-to-time mapping, derive expressions for resolution and error, and identify the conditions ensuring monotonicity and single-crossing behavior. Simulation results demonstrate high-fidelity reconstruction for both periodic and non-periodic signals, including real photoplethysmographic (PPG) waveforms, with errors approaching the theoretical quantization limit. A hardware implementation on a PSoC 5LP microcontroller confirms the practicality of the method under realistic operating conditions. Despite ramp nonlinearity, comparator delay, and sensor noise, the system achieves effective resolutions above 12 bits using only native mixed-signal peripherals and no conventional ADC. These results show that accurate waveform reconstruction can be obtained from purely temporal information, positioning time-encoded sensing as a viable alternative to traditional amplitude-based conversion. The minimal analog front end, low power consumption, and scalability of timer-based processing highlight the potential of the proposed approach for embedded instrumentation, distributed sensor nodes, and biomedical monitoring applications. Full article
Show Figures

Figure 1

26 pages, 5532 KB  
Article
Euphorbia bicolor Xylene Extract Induces Mitochondrial and Endoplasmic Reticulum Stress-Mediated Apoptotic Pathways in MDA-MB-231 and T47D Cells
by Mafia Mahabub Rumpa, Nguyen Linh Ngo and Camelia Maier
Int. J. Mol. Sci. 2026, 27(2), 962; https://doi.org/10.3390/ijms27020962 (registering DOI) - 18 Jan 2026
Abstract
Breast cancer is a significant cause of death worldwide. Recent research has focused on identifying natural compounds for developing effective cancer treatments. Resiniferatoxin, a transient receptor potential vanilloid 1 (TRPV1) agonist, is a common diterpene in Euphorbia bicolor Engelm. & A. Gray (Euphorbiaceae), [...] Read more.
Breast cancer is a significant cause of death worldwide. Recent research has focused on identifying natural compounds for developing effective cancer treatments. Resiniferatoxin, a transient receptor potential vanilloid 1 (TRPV1) agonist, is a common diterpene in Euphorbia bicolor Engelm. & A. Gray (Euphorbiaceae), a plant native to the southern United States that has not been studied before. We investigated the antiproliferative activities and mechanisms of action of E. bicolor xylene extract in estrogen receptor-positive T47D and triple-negative MDA-MB-231 cell lines. The extract significantly reduced the viability of T47D and MDA-MB-231 cells in a dose-dependent manner. In MDA-MB-231 cells, the extract induced apoptosis via intracellular calcium overload, triggered by TRPV1 activation. This effect was diminished by the TRPV1 antagonist capsazepine and the calcium chelator BAPTA-AM. Intracellular calcium influx was confirmed through Fura-2 AM staining, revealing that E. bicolor phytochemicals activated TRPV1 in MDA-MB-231 cells. Treatment of T47D cells with E. bicolor xylene extract resulted in apoptosis associated with reactive oxygen species (ROS) generation (10-fold higher in T47D cells than in MDA-MB-231 cells) and mitochondrial calcium overload. These effects were significantly blocked when cells were pretreated with N-acetyl-l-cysteine (NAC), a ROS inhibitor. Both cell lines underwent apoptosis via multiple mitochondrial- and endoplasmic reticulum stress–mediated pathways. This was supported by the activation of caspases 3, 8, and 9; increased expression of FAS, XBP1s, and CHOP; upregulation of BAX; and downregulation of BCL-2. In addition, PI3K, AKT, and pAKT protein expressions were also reduced in both cell lines, indicating downregulation of PI3K/Akt signaling pathway. Phytochemicals in E. bicolor xylene extract could become promising ingredients for developing breast cancer therapeutics. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
16 pages, 4790 KB  
Article
A Deep Learning-Based Graphical User Interface for Predicting Corneal Ectasia Scores from Raw Optical Coherence Tomography Data
by Maziar Mirsalehi and Achim Langenbucher
Diagnostics 2026, 16(2), 310; https://doi.org/10.3390/diagnostics16020310 - 18 Jan 2026
Abstract
Background/Objectives: Keratoconus, a condition in which the cornea becomes thinner and steeper, can cause visual problems, particularly when it is progressive. Early diagnosis is important for preserving visual acuity. Raw data, unlike preprocessed data, are unaffected by software modifications. They retain their [...] Read more.
Background/Objectives: Keratoconus, a condition in which the cornea becomes thinner and steeper, can cause visual problems, particularly when it is progressive. Early diagnosis is important for preserving visual acuity. Raw data, unlike preprocessed data, are unaffected by software modifications. They retain their native structure across versions, providing consistency for analytical purposes. The objective of this study was to design a deep learning-based graphical user interface for predicting the corneal ectasia score using raw optical coherence tomography data. Methods: The graphical user interface was developed using Tkinter, a Python library for building graphical user interfaces. The user is allowed to select raw data from the cornea/anterior segment optical coherence tomography Casia2, which is generated in the 3dv format, from the local system. To view the predicted corneal ectasia score, the user must determine whether the selected 3dv file corresponds to the left or right eye. Extracted optical coherence tomography images are cropped, resized to 224 × 224 pixels and processed by the modified EfficientNet-B0 convolutional neural network to predict the corneal ectasia score. The predicted corneal ectasia score value is displayed along with a diagnosis: ‘No detectable ectasia pattern’ or ‘Suspected ectasia’ or ‘Clinical ectasia’. Performance metric values were rounded to four decimal places, and the mean absolute error value was rounded to two decimal places. Results: The modified EfficientNet-B0 obtained a mean absolute error of 6.65 when evaluated on the test dataset. For the two-class classification, it achieved an accuracy of 87.96%, a sensitivity of 82.41%, a specificity of 96.69%, a PPV of 97.52% and an F1 score of 89.33%. For the three-class classification, it attained a weighted-average F1 score of 84.95% and an overall accuracy of 84.75%. Conclusions: The graphical user interface outputs numerical ectasia scores, which improves other categorical labels. The graphical user interface enables consistent diagnostics, regardless of software updates, by using raw data from the Casia2. The successful use of raw optical coherence tomography data indicates the potential for raw optical coherence tomography data to be used, rather than preprocessed optical coherence tomography data, for diagnosing keratoconus. Full article
(This article belongs to the Special Issue Diagnosis of Corneal and Retinal Diseases)
Show Figures

Figure 1

19 pages, 1638 KB  
Article
Effectiveness of Protected Areas in the Conservation of Nothofagus antarctica Forests in Santa Cruz, Argentina
by Rocío L. Arcidiácono, Nirvana N. Churquina, Julián Rodríguez-Souilla, Juan M. Cellini, María Vanessa Lencinas, Francisco Ferrer, Pablo L. Peri and Guillermo Martínez Pastur
Land 2026, 15(1), 178; https://doi.org/10.3390/land15010178 - 18 Jan 2026
Abstract
Protected areas (PAs) constitute a fundamental strategy for mitigating biodiversity loss. The land–sparing approach has expanded in response to international agreements, but expansion of PAs does not guarantee conservation objectives. The objective was to assess PA effectiveness in conserving Nothofagus antarctica forests in [...] Read more.
Protected areas (PAs) constitute a fundamental strategy for mitigating biodiversity loss. The land–sparing approach has expanded in response to international agreements, but expansion of PAs does not guarantee conservation objectives. The objective was to assess PA effectiveness in conserving Nothofagus antarctica forests in Santa Cruz (Argentina), evaluating human impacts associated with fires, animal uses, and harvesting. The research was conducted within pure native forests in Santa Cruz, Argentina. This province encompasses 52 protected areas, representing the highest concentration of conservation units within the forested landscapes across Argentina. At least eight PAs included N. antarctica forests. Three land tenure categories were evaluated: protected areas (PAs), a buffer of 15 km from PA boundaries on private lands (BL), and private lands (PL) outside the buffer. In total, 103 stands were sampled, where 38 variables were assessed (impacts, soil, forest structure, understory, and animal use). Three indices were developed to analyze ecosystem integrity: forest structure (FI), soil (SI), and animal use (AI). PAs presented the highest FI (0.64 for PA, 0.44 for BL, and 0.30 for PL) and AI (0.60 for PA, 0.55 for BL, and 0.52 for PL), and together with buffer areas, the highest SI (0.43 for PA, 0.47 for BL, and 0.32 for PL). PAs were clearly distinct from private lands; however, sustained actions for livestock exclusion, harvest regulation, and fire management remain necessary for future sustainable planning at the landscape level. Full article
Show Figures

Figure 1

17 pages, 8308 KB  
Article
Exploratory LA-ICP-MS Imaging of Foliar-Applied Gold Nanoparticles and Nutrients in Lentil Leaves
by Lucia Nemček, Martin Šebesta, Shadma Afzal, Michaela Bahelková, Tomáš Vaculovič, Jozef Kollár, Matúš Maťko and Ingrid Hagarová
Appl. Sci. 2026, 16(2), 974; https://doi.org/10.3390/app16020974 (registering DOI) - 18 Jan 2026
Abstract
Gold nanoparticles (Au-NP) are frequently used as model nanomaterials to study nanoparticle behavior in plants due to their analytical detectability and negligible natural background in plant tissues. However, the feasibility of visualizing the spatial distribution of foliar-applied Au-NP at low exposure levels using [...] Read more.
Gold nanoparticles (Au-NP) are frequently used as model nanomaterials to study nanoparticle behavior in plants due to their analytical detectability and negligible natural background in plant tissues. However, the feasibility of visualizing the spatial distribution of foliar-applied Au-NP at low exposure levels using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) remains insufficiently explored. In this study, commercially sourced Au-NP were applied to lentil leaves (Lens culinaris var. Beluga) at a low concentration of 0.5 mg·L−1 using a controlled leaf submersion approach. Leaves were sampled at 1 h, 24 h, and 96 h post-exposure and analyzed by LA-ICP-MS imaging to assess time-dependent changes in gold-associated spatial signals, and to compare elemental distribution patterns with non-exposed controls. Untreated control leaves showed no detectable gold at any sampling time point, confirming negligible native Au background. In treated leaves, LA-ICP-MS imaging revealed an initially localized Au hotspot at 1 h, followed by progressive Au redistribution toward the leaf margins and petiole region by 24 h and 96 h. Gold signals persisted over the full 96 h period, indicating stable association of Au-NP with leaf tissue. Comparative elemental mapping of Ca, Mg, K, P, Fe, Zn, and Cu showed no persistent differences in spatial distribution patterns between treated and control leaves as detectable by LA-ICP-MS. This study demonstrates the feasibility of LA-ICP-MS imaging for visualizing the deposition and temporal spatial redistribution of low-dose foliar-applied nanoparticles in intact leaves. The results provide a methodological reference for future hypothesis-driven studies that apply nanoparticles under more controlled conditions, include increased replication, and combine multiple analytical techniques. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in the Environmental Sciences)
Show Figures

Figure 1

Back to TopTop