Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = national hydrogen strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 1344 KiB  
Article
Strengthening Smart Specialisation Strategies (S3) Through Network Analysis: Policy Insights from a Decade of Innovation Projects in Aragón
by David Rodríguez Ochoa, Nieves Arranz and Marta Fernandez de Arroyabe
Economies 2025, 13(8), 218; https://doi.org/10.3390/economies13080218 - 26 Jul 2025
Viewed by 294
Abstract
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, [...] Read more.
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, and European calls, the study uncovers how all types of local actors organise themselves around key specialisation areas. Moreover, a comparative benchmark is introduced by analysing more than 33,000 Horizon 2020 and Horizon Europe initiatives without Aragonese partners, revealing how to fill structural gaps and enrich the regional ecosystem through international collaboration. Results show strong funding concentration in four fields—Energy, Health, Agri-Food, and Advanced Technologies—while other historically strategic areas like Hydrogen and Water remain underrepresented. Although leading institutions (UNIZAR, CIRCE, ITA, AITIIP) play central roles in connecting academia and industry, direct collaboration among them is limited, pointing to missed synergies. Expanding previous SNA-based assessments, this study introduces a diagnostic tool to guide policy, proposing targeted actions such as challenge-driven calls, dedicated support programs, and cross-border consortia with top EU partners. Applied to two contrasting specialisation areas, the method offers sector-specific recommendations, helping policymakers align Aragón’s innovation capabilities with EU priorities and strengthen its position in both established and emerging domains. Full article
Show Figures

Figure 1

22 pages, 5450 KiB  
Article
Optimization of a Heavy-Duty Hydrogen-Fueled Internal Combustion Engine Injector for Optimum Performance and Emission Level
by Murat Ozkara and Mehmet Zafer Gul
Appl. Sci. 2025, 15(15), 8131; https://doi.org/10.3390/app15158131 - 22 Jul 2025
Viewed by 367
Abstract
Hydrogen is a promising zero-carbon fuel for internal combustion engines; however, the geometric optimization of injectors for low-pressure direct-injection (LPDI) systems under lean-burn conditions remains underexplored. This study presents a high-fidelity optimization framework that couples a validated computational fluid dynamics (CFD) combustion model [...] Read more.
Hydrogen is a promising zero-carbon fuel for internal combustion engines; however, the geometric optimization of injectors for low-pressure direct-injection (LPDI) systems under lean-burn conditions remains underexplored. This study presents a high-fidelity optimization framework that couples a validated computational fluid dynamics (CFD) combustion model with a surrogate-assisted multi-objective genetic algorithm (MOGA). The CFD model was validated using particle image velocimetry (PIV) data from non-reacting flow experiments conducted in an optically accessible research engine developed by Sandia National Laboratories, ensuring accurate prediction of in-cylinder flow structures. The optimization focused on two critical geometric parameters: injector hole count and injection angle. Partial indicated mean effective pressure (pIMEP) and in-cylinder NOx emissions were selected as conflicting objectives to balance performance and emissions. Adaptive mesh refinement (AMR) was employed to resolve transient in-cylinder flow and combustion dynamics with high spatial accuracy. Among 22 evaluated configurations including both capped and uncapped designs, the injector featuring three holes at a 15.24° injection angle outperformed the baseline, delivering improved mixture uniformity, reduced knock tendency, and lower NOx emissions. These results demonstrate the potential of geometry-based optimization for advancing hydrogen-fueled LPDI engines toward cleaner and more efficient combustion strategies. Full article
Show Figures

Figure 1

21 pages, 933 KiB  
Article
Economic and Environmental Evaluation of Implementing CCUS Supply Chains at National Scale: Insights from Different Targeted Criteria
by Tuan B. H. Nguyen and Grazia Leonzio
Sustainability 2025, 17(13), 6141; https://doi.org/10.3390/su17136141 - 4 Jul 2025
Viewed by 346
Abstract
The establishment of carbon capture, utilization, and storage supply chains at the national level is crucial for meeting global decarbonization targets: they have been suggested as a solution to maintain the global temperature rise below 2 °C relative to preindustrial levels. Optimizing these [...] Read more.
The establishment of carbon capture, utilization, and storage supply chains at the national level is crucial for meeting global decarbonization targets: they have been suggested as a solution to maintain the global temperature rise below 2 °C relative to preindustrial levels. Optimizing these systems requires a balance of economic viability with environmental impact, but this is a challenge due to diverse operational limitations. This paper introduces an optimization framework that integrates life cycle assessment with a source-sink model while combining the geographical storage and conversion pathways of carbon dioxide into high-value chemicals. This study explores the economic and environmental outcomes of national carbon capture, utilization, and storage networks, considering several constraints, such as carbon dioxide reduction goals, product market demand, and renewable hydrogen availability. The framework is utilized in Germany as a case study, presenting three case studies to maximize overall annual profit and life cycle greenhouse gas reduction. In all analyzed scenarios, the results indicate a clear trade-off between profitability and emission reductions: profit-driven strategies are characterized by increased emissions, while environmental strategies have higher costs despite the environmental benefit. In addition, cost-optimal cases prefer high-profit utilization routes (e.g., gasoline through methane reforming) and cost-effective capture technologies, leading to significant profitability. On the other hand, climate-optimal approaches require diversification, integrating carbon dioxide storage with conversion pathways that exhibit lower emissions (e.g., gasoline, acetic acid, methanol through carbon dioxide hydrogenation). The proposed method significantly contributes to developing and constructing more sustainable, large-scale carbon projects. Full article
(This article belongs to the Special Issue Carbon Capture, Utilization, and Storage (CCUS) for Clean Energy)
Show Figures

Figure 1

15 pages, 430 KiB  
Article
Child and Adolescent Suicide in the Broader Area of Athens, Greece: A 13-Year Retrospective Forensic Case-Series Analysis
by Kallirroi Fragkou, Maria Alexandri, Konstantinos Dimitriou, Athina Tatsioni, Flora Bacopoulou, Panagiotis Ferentinos, Laurent Martrille and Stavroula Papadodima
Pediatr. Rep. 2025, 17(4), 72; https://doi.org/10.3390/pediatric17040072 - 1 Jul 2025
Viewed by 587
Abstract
Purpose: Suicide is a leading cause of death among children and adolescents worldwide. This study examined the prevalence and characteristics of suicides among children and adolescents (aged ≤ 19 years) over a 13-year period in the broader area of Athens, Greece. Key aspects [...] Read more.
Purpose: Suicide is a leading cause of death among children and adolescents worldwide. This study examined the prevalence and characteristics of suicides among children and adolescents (aged ≤ 19 years) over a 13-year period in the broader area of Athens, Greece. Key aspects analyzed included victim demographics, circumstances surrounding the incidents, and methods employed. Methods: A retrospective analysis was conducted on autopsy cases performed at the Department of Forensic Medicine and Toxicology, National and Kapodistrian University of Athens, from 1 January 2011, to 31 December 2023. Results: Out of 5819 autopsies conducted between 2011 and 2023, 371 were classified as suicides. Among these, 12 cases (representing 3.2% of suicides) involved children and adolescents aged ≤ 19 years and met the study’s inclusion criteria for detailed forensic analysis. The average age of the victims was 17.7 ± 2.1 years (range: 14–19), with males representing 58.3% of cases. Hanging was the most common method of suicide (9 cases, 75.0%), followed by firearm use, falls from height, and hydrogen sulfide inhalation (one case each). Death occurred in the home in 10 cases (83.3%), with 6 specifically taking place in the bedroom. Scars indicative of prior self-harming behavior were present in two cases (16.7%), while suicide notes were found in three cases (25.0%). Toxicological analysis revealed alcohol and cannabis use in one case, cannabis alone in one case, and alcohol alone in two cases. Four victims (33.3%) had a documented psychiatric diagnosis, with two of them under antidepressant treatment at the time of death. Conclusions: This study highlights the forensic value of autopsy-based investigations in unveiling hidden patterns of adolescent suicidality and informs targeted prevention strategies. Integrating medico-legal findings into public health responses may enhance early identification and intervention in vulnerable youth populations. Full article
(This article belongs to the Special Issue Mental Health and Psychiatric Disorders of Children and Adolescents)
31 pages, 15627 KiB  
Article
Quantitative Assessment of Coal Phaseouts and Retrofit Deployments for Low-Carbon Transition Pathways in China’s Coal Power Sector
by Xinxu Zhao, Li Zhang, Xutao Wang, Kun Wang, Jun Pan, Xin Tian, Liming Yang, Yaoxuan Wang, Yu Ni and Chenghang Zheng
Sustainability 2025, 17(13), 5766; https://doi.org/10.3390/su17135766 - 23 Jun 2025
Viewed by 499
Abstract
Accelerating the low-carbon transition of China’s coal-fired power sector is essential for advancing national sustainability goals and fulfilling global climate commitments. This study introduces an integrated, data-driven analytical framework to facilitate the sustainable transformation of the coal power sector through coordinated unit-level retirements, [...] Read more.
Accelerating the low-carbon transition of China’s coal-fired power sector is essential for advancing national sustainability goals and fulfilling global climate commitments. This study introduces an integrated, data-driven analytical framework to facilitate the sustainable transformation of the coal power sector through coordinated unit-level retirements, new capacity planning, and targeted retrofits. By combining a comprehensive unit-level database with a multi-criteria evaluation framework, the analysis incorporates environmental, technical, and economic factors into decision-making for retirement scheduling. Scenario analyses based on the China Energy Transformation Outlook (CETO 2024) delineate both baseline and ideal carbon neutrality pathways. Optimization algorithms are employed to identify cost-effective retrofit strategies or portfolios, minimizing levelized carbon reduction costs. The findings reveal that cumulative emissions can be reduced by 10–14.9 GtCO2 by 2060, with advanced technologies like CCUS and co-firing contributing over half of retrofit-driven mitigation. The estimated transition cost of 6.2–6.7 trillion CNY underscores the scale of sustainable investment required. Sensitivity analyses further highlight the critical role of reducing green hydrogen costs to enable deep decarbonization. Overall, this study provides a robust and replicable planning tool to support policymakers in formulating strategies that align coal power sector transformation with long-term sustainability and China’s carbon neutrality commitments. Full article
Show Figures

Figure 1

21 pages, 1205 KiB  
Article
Development of an Innovative Landfill Gas Purification System in Latvia
by Laila Zemite, Davids Kronkalns, Andris Backurs, Leo Jansons, Nauris Eglitis, Patrick Cnubben and Sanda Lapuke
Sustainability 2025, 17(13), 5691; https://doi.org/10.3390/su17135691 - 20 Jun 2025
Viewed by 404
Abstract
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national [...] Read more.
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national strategies to enhance circularity, untreated LFG is underutilized due to inadequate purification infrastructure, particularly in meeting biomethane standards. This study addressed this gap by proposing and evaluating an innovative, multistep LFG purification system tailored to Latvian conditions, with the aim of enabling the broader use of LFG for energy cogeneration and potentially biomethane injection. The research objective was to design, describe, and preliminarily assess a pilot-scale LFG purification prototype suitable for deployment at Latvia’s largest landfill facility—Landfill A. The methodological approach combined chemical composition analysis of LFG, technical site assessments, and engineering modelling of a five-step purification system, including desulfurization, cooling and moisture removal, siloxane filtration, pumping stabilization, and activated carbon treatment. The system was designed for a nominal gas flow rate of 1500 m3/h and developed with modular scalability in mind. The results showed that raw LFG from Landfill A contains high concentrations of hydrogen sulfide, siloxanes, and volatile organic compounds (VOCs), far exceeding permissible thresholds for biomethane applications. The designed prototype demonstrated the technical feasibility of reducing hydrogen sulfide (H2S) concentrations to <7 mg/m3 and siloxanes to ≤0.3 mg/m3, thus aligning the purified gas with EU biomethane quality requirements. Infrastructure assessments confirmed that existing electricity, water, and sewage capacities at Landfill A are sufficient to support the system’s operation. The implications of this research suggest that properly engineered LFG purification systems can transform landfills from passive waste sinks into active energy resources, aligning with the EU Green Deal goals and enhancing local energy resilience. It is recommended that further validation be carried out through long-term pilot operation, economic analysis of gas recovery profitability, and adaptation of the system for integration with national gas grids. The prototype provides a transferable model for other Baltic and Eastern European contexts, where LFG remains an underexploited asset for sustainable energy transitions. Full article
Show Figures

Figure 1

30 pages, 4703 KiB  
Article
Governance-Centred Industrial Symbiosis for Circular Economy Transitions: A Rural Forest Biomass Hub Framework Proposal
by Joel Joaquim de Santana Filho, Pedro Dinis Gaspar, Arminda do Paço and Sara M. Marcelino
Sustainability 2025, 17(12), 5659; https://doi.org/10.3390/su17125659 - 19 Jun 2025
Viewed by 453
Abstract
This study examines the establishment of a Hub for Circular Economy and Industrial Symbiosis (HUB-CEIS) centred on a forest biomass waste plant in Fundão, Portugal, presenting an innovative model for rural industrial symbiosis, circular economy governance, and sustainable waste management. Designed as a [...] Read more.
This study examines the establishment of a Hub for Circular Economy and Industrial Symbiosis (HUB-CEIS) centred on a forest biomass waste plant in Fundão, Portugal, presenting an innovative model for rural industrial symbiosis, circular economy governance, and sustainable waste management. Designed as a strategic node within a reverse supply chain, the hub facilitates the conversion of solid waste into renewable energy and high-value co-products, including green hydrogen, tailored for industrial and agricultural applications, with an estimated 120 ktCO2/year reduction and 60 direct jobs. Aligned with the United Nations (UN) Sustainable Development Goals (SDGs) and the Paris Agreement, this initiative addresses global challenges such as decarbonization, resource efficiency, and the energy transition. Employing a mixed research methodology, this study integrates a comprehensive literature review, in-depth stakeholder interviews, and comparative case study analysis to formulate a governance framework fostering regional partnerships between industry, government, and local communities. The findings highlight Fundão’s potential to become a benchmark for rural industrial symbiosis, offering a replicable model for circularity in non-urban contexts, with a projected investment of USD 60 M. Special emphasis is placed on the green hydrogen value chain, positioning it as a key enabler for regional sustainability. This research underscores the importance of cross-sectoral collaboration in achieving scalable and efficient waste recovery processes. By delivering practical insights and a robust governance structure, the study contributes to the circular economy literature, providing actionable strategies for implementing rural reverse supply chains. Beyond validating waste valorization and renewable energy production, the proposed hub establishes a blueprint for sustainable rural industrial development, promoting long-term industrial symbiosis integration. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

25 pages, 1077 KiB  
Review
Proactive Regulation for Hydrogen Supply Chains: Enhancing Logistics Frameworks in Australia
by Philip Y. L. Wong, Kinson C. C. Lo, Joseph H. K. Lai and Tiffany T. Y. Wong
Energies 2025, 18(12), 3056; https://doi.org/10.3390/en18123056 - 10 Jun 2025
Viewed by 567
Abstract
The rapid growth of Australia’s hydrogen economy highlights the pressing need for innovative regulatory strategies that address the distinct characteristics of hydrogen supply chains. This study focuses on the supply-side dynamics of the hydrogen energy sector, emphasizing the importance of tailored frameworks to [...] Read more.
The rapid growth of Australia’s hydrogen economy highlights the pressing need for innovative regulatory strategies that address the distinct characteristics of hydrogen supply chains. This study focuses on the supply-side dynamics of the hydrogen energy sector, emphasizing the importance of tailored frameworks to ensure the safe, efficient, and reliable movement of hydrogen across the supply chain. Key areas of analysis include the regulatory challenges associated with various transportation and storage methods, particularly during long-distance transport and extended storage periods. The research identifies notable gaps and inconsistencies within the current regulatory systems across Australian states, which inhibit the development of a unified hydrogen economy. To address these challenges, the concept of Proactive Regulation for Hydrogen Supply (PRHS) is introduced. PRHS emphasizes anticipatory governance that adapts alongside technological advancements to effectively manage hydrogen transportation and storage. The study advocates for harmonizing fragmented state frameworks into a cohesive national regulatory system to support the sustainable and scalable expansion of hydrogen logistics. Furthermore, the paper examines the potential of blockchain technology to enhance safety, accountability, and traceability across the hydrogen supply chain, offering practical solutions to current regulatory and operational barriers. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

20 pages, 5240 KiB  
Article
Sustainable Reduction of Strontium Sulfate Using Bioethanol: A Pathway to Carbon-Neutral SrS Production
by Javier E. Morales-Mendoza, Jorge L. Domínguez-Arvizu, Alma B. Jasso-Salcedo, Blanca C. Hernández-Majalca, José L. Bueno-Escobedo, Alejandro López-Ortiz and Virginia H. Collins-Martínez
Reactions 2025, 6(2), 28; https://doi.org/10.3390/reactions6020028 - 21 Apr 2025
Viewed by 872
Abstract
Achieving net-zero carbon emissions, this study introduces a sustainable pathway for reducing strontium sulfate (SrSO4) and celestite ore to strontium sulfide (SrS) using biofuels (biomethane, bioethanol) derived from agro-industrial waste and green hydrogen. Traditional SrSO4 reduction methods, which rely on [...] Read more.
Achieving net-zero carbon emissions, this study introduces a sustainable pathway for reducing strontium sulfate (SrSO4) and celestite ore to strontium sulfide (SrS) using biofuels (biomethane, bioethanol) derived from agro-industrial waste and green hydrogen. Traditional SrSO4 reduction methods, which rely on fossil-derived reductants like coal and operate at energy-intensive temperatures (1100–1200 °C), generate significant greenhouse gases and toxic byproducts, highlighting the need for eco-friendly alternatives. Experimental results demonstrate that bioethanol outperformed other reductants, achieving 97% conversion of synthetic SrSO4 at 950 °C within 24 min and 74% conversion of natural celestite ore over 6 h. Remarkably, this bioethanol-driven process matches the energy efficiency of the conventional black ash method while enabling carbon neutrality through renewable feedstock utilization, reducing CO2 emissions by 30–50%. By valorizing agro-industrial waste streams, this strategy advances circular economy principles and aligns with Mexico’s national agenda for sustainable industrial practices, including its commitment to decarbonizing heavy industries. This study contributes to sustainable development goals and offers a scalable solution for decarbonizing strontium compound production in the chemical industry. Full article
Show Figures

Figure 1

24 pages, 2403 KiB  
Article
Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia
by Zac Cesaro, Rasmus Bramstoft, René Bañares-Alcántara and Matthew C. Ives
Energy Storage Appl. 2025, 2(2), 4; https://doi.org/10.3390/esa2020004 - 21 Mar 2025
Cited by 1 | Viewed by 1826
Abstract
Green hydrogen and ammonia are forecast to play key roles in the deep decarbonization of the global economy. Here we explore the potential of using green hydrogen and ammonia to couple the energy, agriculture, and industrial sectors with India’s national-scale electricity grid. India [...] Read more.
Green hydrogen and ammonia are forecast to play key roles in the deep decarbonization of the global economy. Here we explore the potential of using green hydrogen and ammonia to couple the energy, agriculture, and industrial sectors with India’s national-scale electricity grid. India is an ideal test case as it currently has one of the most ambitious hydrogen programs in the world, with projected electricity demands for hydrogen and ammonia production accounting for over 1500 TWh/yr or nearly 25% of India’s total electricity demand by 2050. We model the ambitious deep decarbonization of India’s electricity grid and half of its steel and fertilizer industries by 2050. We uncover modest risks for India from such a strategy, with many benefits and opportunities. Our analysis suggests that a renewables-based energy system coupled with ammonia off-take sectors has the potential to dramatically reduce India’s greenhouse emissions, reduce requirements for expensive long-duration energy storage or firm generating capacity, reduce the curtailment of renewable energy, provide valuable short-duration and long-duration load-shifting and system resilience to inter-annual weather variations, and replace tens of billions of USD in ammonia and fuel imports each year. All this while potentially powering new multi-billion USD green steel and maritime fuel export industries. The key risk for India in relation to such a strategy lies in the potential for higher costs and reduced benefits if the rest of the world does not match their ambitious investment in renewables, electrolyzers, and clean storage technologies. We show that such a pessimistic outcome could result in the costs of green hydrogen and ammonia staying high for India through 2050, although still within the range of their gray counterparts. If on the other hand, renewable and storage costs continue to decline further with continued global deployment, all the above benefits could be achieved with a reduced levelized cost of hydrogen and ammonia (10–25%), potentially with a modest reduction in total energy system costs (5%). Such an outcome would have profound global implications given India’s central role in the future global energy economy, establishing India’s global leadership in green shipping fuel, agriculture, and steel, while creating an affordable, sustainable, and secure domestic energy supply. Full article
Show Figures

Graphical abstract

32 pages, 4979 KiB  
Article
Climate Neutrality Strategies for the Chemical Industry Using a Novel Carbon Boundary: An Austrian Case Study
by Maedeh Rahnama Mobarakeh and Thomas Kienberger
Energies 2025, 18(6), 1421; https://doi.org/10.3390/en18061421 - 13 Mar 2025
Viewed by 981
Abstract
The chemical industry is a key driver of economic growth and innovation but remains one of the largest contributors to greenhouse gas (GHG) emissions. Achieving sustainability demands advancements in green chemistry and cleaner production methods. This study investigates emission reduction strategies across Scope [...] Read more.
The chemical industry is a key driver of economic growth and innovation but remains one of the largest contributors to greenhouse gas (GHG) emissions. Achieving sustainability demands advancements in green chemistry and cleaner production methods. This study investigates emission reduction strategies across Scope 1, Scope 2, and Scope 3 by applying both top-down and bottom-up approaches within four system boundaries. The Austrian chemical sector, with a focus on ammonia, methanol, and olefins, serves as a case study. Results highlight the potential of abatement technologies and alternative feedstocks—such as low-carbon hydrogen and methanol—to significantly reduce emissions. Hydrogen-based production for ammonia and methanol, along with low-carbon methanol in olefin production, could reduce Scope 1 and Scope 2 emissions by approximately 80% compared to conventional methods. However, Scope 3 emissions remain challenging due to embedded carbon in feedstocks and CO2 use in production, particularly in product use and end-of-life phases. A comprehensive life cycle assessment is crucial to addressing these impacts. To evaluate Scope 3 emissions, this study explores three decarbonization scenarios: the reference scenario—relies on fossil-based production with high emissions; the geogenic scenario—integrates abatement technologies and geogenic CO2 feedstock, reducing emissions by about 46%; and the bio-based scenario—combines abatement technologies with biogenic CO2 feedstock, achieving an 80% reduction in total emissions at the national level. The findings emphasize the need for a system-wide approach that integrates bio-based solutions and circular economy strategies to achieve climate neutrality. However, uncertainties in climate policy, bio-resource availability, and data gaps in Scope 3 emissions must be addressed to ensure effective decarbonization and alignment with climate goals. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 1998 KiB  
Review
Low-Carbon Production in China’s Iron and Steel Industry: Technology Choices, Economic Assessment, and Policy
by Qian Li, Pengtao Wang, Feiyin Wang, Yixiang Zhang, Haoyu Wang, Qingchuang Xu, Mao Xu and Limei Bai
Atmosphere 2025, 16(3), 252; https://doi.org/10.3390/atmos16030252 - 23 Feb 2025
Cited by 1 | Viewed by 2207
Abstract
The iron and steel industry (ISI) plays a significant role in carbon emissions, contributing approximately 15% of the nation’s total emissions in China. Transitioning to low-carbon practices is crucial for achieving the country’s carbon neutrality goals. This paper reviews the current state of [...] Read more.
The iron and steel industry (ISI) plays a significant role in carbon emissions, contributing approximately 15% of the nation’s total emissions in China. Transitioning to low-carbon practices is crucial for achieving the country’s carbon neutrality goals. This paper reviews the current state of China’s ISI and assesses the feasibility of various decarbonization technologies, including hydrogen utilization, biomass substitution, zero-carbon electricity, Carbon Capture, Utilization, and Storage (CCUS), as well as their combinations. The blast furnace–basic oxygen furnace (BF-BOF) process currently dominates the industry with an overwhelming share of around 90%, presenting significant challenges for decarbonization. In contrast, the Direct Reduced Iron–Electric Arc Furnace (DRI-EAF) process is still at the demonstration project stage, but it is rapidly growing and shows great potential for achieving net-zero emissions. Electric arc furnaces (EAFs) that use scrap steel account for about 9% of production and have the lowest energy consumption. However, their production capacity is limited by the availability of scrap steel. Among numerous options, blue hydrogen, carbon-neutral biomass, and CCUS technologies have relatively low costs and high technological maturity. Nevertheless, no single technology can currently achieve deep decarbonization while significantly reducing costs. The nation needs to select the most suitable decarbonization strategies based on geographical location, infrastructure, and economic conditions. The government should enact corresponding policies, provide economic incentives, and ensure mitigation of the environmental and social impacts during the decarbonization transition. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

31 pages, 9139 KiB  
Article
UK Hydrogen Roadmap: Financial and Strategic Insights into Oil and Gas Industry’s Transition
by Ahmed Eltweri, Wa’el Al-karaki, Yuan Zhai, Khadijah Abdullah and Alessio Faccia
Sustainability 2025, 17(1), 113; https://doi.org/10.3390/su17010113 - 27 Dec 2024
Viewed by 1959
Abstract
Inspired by the announcement of the new Hydrogen Strategy for the UK in 2021, this study aimed to determine how the oil and gas industry responds and adapts to the changes. This paper analyses qualitative and quantitative data from the companies’ annual and [...] Read more.
Inspired by the announcement of the new Hydrogen Strategy for the UK in 2021, this study aimed to determine how the oil and gas industry responds and adapts to the changes. This paper analyses qualitative and quantitative data from the companies’ annual and energy reports. Four oil and gas companies involved in hydrogen projects in the UK were selected as case studies. The responses from the companies were collected using the content analysis research strategy in 2019–2021. A steady increase was observed based on the code frequency, reflecting the increasing discussions and actions the companies took regarding this hydrogen pathway. Although only one company appears to be at the forefront of this transition progress, with a score of almost 90% based on the strategy management analysis, other companies continue to demonstrate their commitment to supporting the national target. Full article
Show Figures

Figure 1

17 pages, 2835 KiB  
Article
A Preliminary Economic Analysis of the Process of Decarbonising an Oil-Exporting Country: The Case of Libya
by Abdulwahab Rawesat and Pericles Pilidis
Wind 2024, 4(4), 395-411; https://doi.org/10.3390/wind4040020 - 6 Dec 2024
Cited by 1 | Viewed by 947
Abstract
This paper offers a basic analysis for strategic decision-makers of the process when an economy shifts from oil to non-carbon energy exports and zero carbon emissions. The fundamental concept is how to offer environmental performance without causing an economic contraction. The costs and [...] Read more.
This paper offers a basic analysis for strategic decision-makers of the process when an economy shifts from oil to non-carbon energy exports and zero carbon emissions. The fundamental concept is how to offer environmental performance without causing an economic contraction. The costs and feasibility of solar, wind, and helium closed-cycle technologies are thoroughly and independently compared. Solar panels make up 0.67% of the USD 1.14 trillion total cost of solar energy, which is the capital investment, with panels accounting for 0.51%. Future technical developments are expected to bring down the cost of such solar farms to USD 0.74 trillion. Turbines comprise 66% of the estimated USD 0.67 trillion wind energy costs. At USD 0.36 trillion, helium closed-cycle gas turbines—which account for 0.78% of the overall cost—are essential for stabilising energy output. With a focus on cost viability, this analysis offers direction for Libya’s transition to energy self-sufficiency and export, in support of global carbon reduction targets. It also offers unique insights into areas not previously covered by other studies. This paper’s unique contribution is its economic analysis of the decarbonisation of an entire oil-exporting nation. Full article
Show Figures

Figure 1

20 pages, 459 KiB  
Article
Brazil’s New Green Hydrogen Industry: An Assessment of Its Macroeconomic Viability Through an Input–Output Approach
by Patricia Helena dos Santos Martins, André Luiz Marques Serrano, Gabriel Arquelau Pimenta Rodrigues, Guilherme Fay Vergara, Gabriela Mayumi Saiki, Raquel Valadares Borges, Guilherme Dantas Bispo, Maria Gabriela Mendonça Peixoto and Vinícius Pereira Gonçalves
Economies 2024, 12(12), 333; https://doi.org/10.3390/economies12120333 - 5 Dec 2024
Cited by 5 | Viewed by 2601
Abstract
This manuscript explores the role of green hydrogen produced through ethanol reforming in accelerating Brazil’s transition to a low-carbon economic framework. Despite ongoing efforts to lessen carbon dependence, Brazil’s reliance on biofuels and other renewable energy sources remains inadequate for fully achieving its [...] Read more.
This manuscript explores the role of green hydrogen produced through ethanol reforming in accelerating Brazil’s transition to a low-carbon economic framework. Despite ongoing efforts to lessen carbon dependence, Brazil’s reliance on biofuels and other renewable energy sources remains inadequate for fully achieving its decarbonization objectives. Green hydrogen presents a vital opportunity to boost energy sustainability, especially in sectors that are challenging to decarbonize, such as industry and transportation. By analyzing Brazil’s input–output (I-O) table, using data from the Brazilian Institute of Geography and Statistics (IBGE), this study evaluates the macroeconomic potential of green hydrogen, focusing on GDP growth and employment generation. Furthermore, the research explores green hydrogen systems’ economic feasibility and potential impact on future energy policies, offering valuable insights for stakeholders and decision-makers. In addition, this investigation highlights Brazil’s abundant renewable resources and identifies the infrastructural investments necessary to support a green hydrogen economy. The findings aim to strengthen Brazil’s national decarbonization strategy and serve as a model for other developing nations transitioning to clean energy. Full article
Show Figures

Figure 1

Back to TopTop