Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = nanosecond pulsed laser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1750 KB  
Article
Numerical Modelling of Pulsed Laser Surface Processing of Polymer Composites
by Krzysztof Szabliński and Krzysztof Moraczewski
Materials 2026, 19(3), 607; https://doi.org/10.3390/ma19030607 - 4 Feb 2026
Abstract
Filled-polymer coatings enable functional surfaces for selective metallisation, wetting control and local conductivity, but pulsed-laser texturing is often limited by process non-uniformity caused by scan kinematics and plume shielding. Here, we develop a three-tier numerical workflow for nanosecond pulsed-laser surface treatment of a [...] Read more.
Filled-polymer coatings enable functional surfaces for selective metallisation, wetting control and local conductivity, but pulsed-laser texturing is often limited by process non-uniformity caused by scan kinematics and plume shielding. Here, we develop a three-tier numerical workflow for nanosecond pulsed-laser surface treatment of a thermoplastic coating containing glass microspheres (baseline case: PLA matrix with Vf = 0.20; spheres represented via an effective optical transport model). Tier 1 predicts spatially resolved ablation depth under raster scanning, using an incubation law and regime switching (no-removal/melt-limited/logarithmic ablation/blow-off) coupled to a dynamic shielding factor. Tier 2 computes the 1D transient (pulse-averaged) temperature field and the thickness of the thermally softened layer. Tier 3 models post-pulse capillary redistribution of the softened layer to estimate groove reshaping. The simulations show that scan overlap and shielding dynamics dominate groove homogeneity more strongly than average power alone: under identical average power, variations in local pulse count and shielding lead to significant changes in depth statistics and regime fractions. The workflow produces quantitative maps and summary metrics (mean depth, P5–P95 range, uniformity index and regime fractions) and demonstrates how controlled reflow can smooth peaks while preserving groove depth. These results provide a predictive tool for laser parameter selection and process optimisation prior to experimental trials. Full article
Show Figures

Figure 1

18 pages, 5816 KB  
Article
Collinear Pulse Train PLD: Fabrication of High-Refractive-Index-Difference TiO2/ZnO Multilayers with Multifunctional Applications
by Xiang Zhao, Guoyan Dong, Zheng Zhu, Yutao Qin, Jiaxiang He and Jin Yu
Appl. Sci. 2026, 16(3), 1354; https://doi.org/10.3390/app16031354 - 29 Jan 2026
Viewed by 133
Abstract
Pulsed laser deposition (PLD) is widely used for functional film fabrication, but traditional nanosecond-laser-induced thermal effects and interface roughness severely limit the quality of multilayer structures. To address this critical challenge, a picosecond pulsed laser with collinear pulse train output was adopted for [...] Read more.
Pulsed laser deposition (PLD) is widely used for functional film fabrication, but traditional nanosecond-laser-induced thermal effects and interface roughness severely limit the quality of multilayer structures. To address this critical challenge, a picosecond pulsed laser with collinear pulse train output was adopted for TiO2/ZnO multilayer preparation, achieving dual advantages of thermal diffusion suppression and roughness reduction. A systematic investigation was conducted on the properties of TiO2 and ZnO films, establishing a “constant-deposition-rate multi-pulse regulation” strategy that yielded low roughness (4.43 nm for TiO2, 3.27 nm for ZnO) and optimized refractive index matching. Through 500 °C oxygen annealing, TiO2’s refractive index was enhanced to 2.6, forming a large refractive index difference (Δn = 0.77) with ZnO (~1.83) for efficient photonic band gap (PBG) regulation. Integral annealing was identified as the optimal post-treatment, enabling the four-layer TiO2/ZnO multilayer to reach a maximum reflectance of 75% with excellent structural uniformity. The multifunctional applications of the multilayers exhibit excellent ability in photocatalytic degradation of tetracycline hydrochloride (TCH) and fluorescence enhancement of CdSe quantum dots (QDs). This work pioneers a high-quality PLD-based multilayer fabrication route and opens new avenues for its application in environmental remediation and optoelectronic devices. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Electromagnetic Metamaterials)
Show Figures

Figure 1

20 pages, 5028 KB  
Article
Acoustic Signatures in Laser-Induced Plasmas for Detection of Explosives in Traces
by Violeta Lazic, Biljana Stankov, Fabrizio Andreoli, Marco Pistilli, Ivano Menicucci, Christian Ulrich, Frank Schnürer, Roberto Chirico and Pasqualino Gaudio
Sensors 2026, 26(2), 672; https://doi.org/10.3390/s26020672 - 20 Jan 2026
Viewed by 310
Abstract
In this work we report the results of analysis of the acoustic signal generated by the interaction of a nanosecond laser pulse (30 mJ, 1064 nm) with various residues placed on a silica wafer. The signal was captured by a unidirectional microphone placed [...] Read more.
In this work we report the results of analysis of the acoustic signal generated by the interaction of a nanosecond laser pulse (30 mJ, 1064 nm) with various residues placed on a silica wafer. The signal was captured by a unidirectional microphone placed 30 mm from the laser-generated plasma. The examined sample classes, other than the clean wafer, included particles from soils and rocks, carbonates, nitro precursors, ash, coal, smeared diesel, and particles of explosives. We tested three types of explosives, namely PETN, RDX, and HMX, having different origins. For the explosives, the acoustic signal showed a faster rise, larger amplitude, different width, and attenuation compared with the other sample classes. By subtracting the acoustic signal from the wafer at the same position, obtained after four cleaning laser pulses, the contribution of echoes was eliminated and true differences between the residue and substrate became evident. Through four different features in the subtracted signal, it was possible to classify explosives without the presence of false positives; the estimated limit of detection was 15 ng, 9.6 ng, and 18 ng for PETN, RDX, and HMX, respectively, where the mass was extrapolated from nano-printed samples and LIBS spectra acquired simultaneously. Furthermore, HMX was distinguished from the other two explosives in 90% of the cases; diesel and coal were also recognized. We also found that explosives deposited through wet transfer behaved as inert substances for the tested masses up to 30 ng. Full article
(This article belongs to the Special Issue Laser and Spectroscopy for Sensing Applications)
Show Figures

Figure 1

17 pages, 5957 KB  
Article
Precision Cutting of CF/PEEK by UV Nanosecond Laser for On-Orbit Manufacturing Applications
by Wenqiang Wu, Bing Wei, Yu Huang and Congyi Wu
Micromachines 2026, 17(1), 93; https://doi.org/10.3390/mi17010093 - 11 Jan 2026
Viewed by 343
Abstract
On-orbit cutting is a critical process for the on-orbit manufacturing of carbon fiber reinforced polyetheretherketone composites (CF/PEEK) truss structures, with pulsed laser cutting serving as one of the feasible methods. Achieving high-quality cutting of CF/PEEK remains a major challenge for on-orbit manufacturing. Therefore, [...] Read more.
On-orbit cutting is a critical process for the on-orbit manufacturing of carbon fiber reinforced polyetheretherketone composites (CF/PEEK) truss structures, with pulsed laser cutting serving as one of the feasible methods. Achieving high-quality cutting of CF/PEEK remains a major challenge for on-orbit manufacturing. Therefore, the cutting process of CF/PEEK prepreg tape was studied by an ultraviolet (UV) nanosecond laser. A three-factor, five-level orthogonal experiment was carried out to analyze the influence of laser repetition rate (LRR), laser cutting speed (LCS), and laser scanning times (LCTs) on cutting quality. The ablation mechanism dominated by the photothermal effect between the UV nanosecond laser and CF/PEEK was analyzed, and the by-products in the cutting process were explored. Finally, the optimal cutting quality (the width of slit (Ws) = 41.69 ± 3.54 μm, the heat-affected zone (HAZ) = 87.27 ± 7.30 μm) was obtained under the process conditions of LRR 50 kHz-LCS 50 mm/s-LCT 16 times. The findings show that the WS and HAZ increase with the increase in LRR and LCT and the decrease in LCS, and the carbon fiber decomposes and escapes due to the photothermal effect. Full article
Show Figures

Figure 1

17 pages, 2654 KB  
Article
A Simple Three-Step Method for the Synthesis of Submicron Gold Particles: The Influence of Laser Irradiation Duration, Pulse Energy, Laser Pulse Duration, and Initial Concentration of Nanoparticles in the Colloid
by Ilya V. Baimler, Ivan A. Popov, Alexander V. Simakin and Sergey V. Gudkov
Nanomaterials 2026, 16(2), 79; https://doi.org/10.3390/nano16020079 - 6 Jan 2026
Viewed by 461
Abstract
This work demonstrates a three-step method for the synthesis and production of submicron spherical gold particles using laser ablation in liquid (LAL), laser-induced fragmentation in liquid (LFL), laser-induced nanochain formation, and laser melting in liquid (LML). The nanoparticles were characterized using transmission electron [...] Read more.
This work demonstrates a three-step method for the synthesis and production of submicron spherical gold particles using laser ablation in liquid (LAL), laser-induced fragmentation in liquid (LFL), laser-induced nanochain formation, and laser melting in liquid (LML). The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV–visible spectroscopy. In the first stage, spherical gold nanoparticles with a size of 20 nm were obtained using LAL and LFL. Subsequent irradiation of gold nanoparticle colloids with radiation at a wavelength of 532 nm leads to the formation of gold nanochains. Irradiation of nanochain colloids with radiation at a wavelength of 1064 nm leads to the formation of large spherical gold particles with a size of 50 to 200 nm. The formation of submicron gold particles upon irradiation of 2 mL of colloid occurs within the first minutes of irradiation and is complete after 480,000 laser pulses. Increasing the laser pulse energy leads to the formation of larger particles; after exceeding the threshold energy (321 mJ/cm2), fragmentation is observed. Increasing the concentration of nanoparticles in the initial colloid up to 150 μg/mL leads to a linear increase in the size of submicron nanoparticles. The use of picosecond pulses for irradiating nanochains demonstrates the formation of the largest particles (200 nm) compared to nanosecond pulses, which may be due to the effect of local surface melting. The described technique opens the possibility of synthesizing stable gold nanoparticles over a wide range of sizes, from a few to hundreds of nanometers, without the use of chemical reagents. Full article
Show Figures

Figure 1

21 pages, 7862 KB  
Article
Laser Deposition of Metal Oxide Structures for Gas Sensor Applications
by Nikolay Nedyalkov, Anna Dikovska, Tina Dilova, Genoveva Atanasova, Reni Andreeva and Georgi Avdeev
Materials 2026, 19(1), 176; https://doi.org/10.3390/ma19010176 - 3 Jan 2026
Viewed by 472
Abstract
This work presents results on laser-induced fabrication of metal and oxide structures on glass substrates. The Laser-Induced Reverse Transfer (LIRT) technique is applied using Zn and Sn, sintered ZnO and SnO2, and oxide composite targets. The processing is performed by nanosecond [...] Read more.
This work presents results on laser-induced fabrication of metal and oxide structures on glass substrates. The Laser-Induced Reverse Transfer (LIRT) technique is applied using Zn and Sn, sintered ZnO and SnO2, and oxide composite targets. The processing is performed by nanosecond pulses of a Nd:YAG laser system operated at wavelength of 1064 nm. Detailed analyses of the deposited material morphology, composition and structure are presented, as the role of the processing conditions is revealed. It is found that at the applied conditions of using up to five laser pulses, the deposited material is composed of a nanostructured film covered in microsized nanoparticle clusters or droplets. The use of metal targets leads to formation of structures composed of metal and oxide phases. The adhesion test shows that part of the deposited material is stably adhered to the substrate surface. It is demonstrated that the deposited materials can be used as resistive gas sensors with sensitivity to NH3, CO, ethanol, acetone and N2O, at concentrations of 30 ppm. The ability of the method to deposit composite structures that consist of a mixture of both investigated oxides is also demonstrated. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Third Edition))
Show Figures

Figure 1

14 pages, 8566 KB  
Article
Lithium Niobate Tantalate Solid Solutions Probed by Luminescence Spectroscopy
by Felix Sauerwein, Niklas Dömer, Tobias Hehemann, Moritz Huesmann, Steffen Ganschow and Mirco Imlau
Crystals 2026, 16(1), 1; https://doi.org/10.3390/cryst16010001 - 19 Dec 2025
Viewed by 418
Abstract
The polar oxide Lithium Niobate Tantalate is probed using time-resolved luminescence spectroscopy with the goal of revealing an initial structural insight into the solid solution by analyzing the spectral properties and dynamics of radiatively decaying self-localization phenomena. A blue-green luminescence band can be [...] Read more.
The polar oxide Lithium Niobate Tantalate is probed using time-resolved luminescence spectroscopy with the goal of revealing an initial structural insight into the solid solution by analyzing the spectral properties and dynamics of radiatively decaying self-localization phenomena. A blue-green luminescence band can be induced by ultraviolet nanosecond laser pulses with a temperature-dependent intensity and spectral width, pointing to the radiative decay of optically generated self-trapped excitons as its origin, i.e., electron–hole pairs with strong coupling to either the NbO6- or TaO6-octahedra. The luminescence decay takes place in the microsecond time range and deviates significantly from a single exponential behavior, so the determined lifetime constants of up to ≈70 μs and stretching factors (1/3–1/5) are validated in more detail using alternative evaluation methods. We discuss our findings, considering the interplay of radiative and non-radiative decay channels, the transition from self-trapped to free excitons, and the presence of a structural disorder of the oxygen octahedra in the solid solutions. Overall, our results suggest self-trapped excitons as local probes for an initial structural elucidation and provide essential information about further experimental and theoretical studies on the atomic structure of Lithium Niobate Tantalate, but also for improving the crystal quality in the framework of applications in photonics and quantum optics. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 1792 KB  
Article
Theoretical Study of Ultra-Fast Laser Lift-Off of Carbon Nanotube-Integrated Polyimide Films
by Run Bai, Yachong Xu, Junwei Fu, Zhenzhen Sun, Yanbo Wang, Rui Yang, Zijuan Han, Fanfan Wang and Boyuan Cai
Nanomaterials 2026, 16(1), 1; https://doi.org/10.3390/nano16010001 - 19 Dec 2025
Viewed by 395
Abstract
In this paper, ultra-fast laser lift-off (LLO) of carbon nanotube (CNT)-integrated polyimide film (PI) was investigated by different laser burst mode and pulse intervals using the two-temperature model. By comparing the temperature field distributions of nanosecond, picosecond, and femtosecond lasers at different pulse [...] Read more.
In this paper, ultra-fast laser lift-off (LLO) of carbon nanotube (CNT)-integrated polyimide film (PI) was investigated by different laser burst mode and pulse intervals using the two-temperature model. By comparing the temperature field distributions of nanosecond, picosecond, and femtosecond lasers at different pulse intervals, it can be found that picosecond lasers cause a higher lattice temperature increase at the PI interface with specific pulse interval conditions. With the increase in the pulse interval, the lattice temperature of the three kinds of lasers decreased, indicating that the heat accumulation effect was weakened. In addition, under picosecond laser irradiation, the lattice temperature at the PI/glass interface of integrated CNTs could be significantly increased, which was significantly different from the system without integrated CNTs. The simulation results show that the picosecond laser is more suitable for LLO with an appropriate pulse interval, and the integration of CNTs at the PI/glass interface can effectively reduce the laser energy threshold required for the LLO process. Our work presents a new PI/CNT/glass model for ultra-fast laser low-threshold LLO and promotes the laser debonding technology in the fields of OLED and other optoelectronic chips. Full article
(This article belongs to the Special Issue Nano-Optics and Nanophotonics)
Show Figures

Figure 1

15 pages, 3499 KB  
Article
Photothermal Heat Transfer in Nano-Hydroxyapatite/Carbon Nanotubes Composites Modeled Through Cellular Automata
by Cecilia Mercado-Zúñiga and José Antonio García-Merino
Crystals 2025, 15(12), 1062; https://doi.org/10.3390/cryst15121062 - 17 Dec 2025
Viewed by 326
Abstract
Modeling elementary diffusion processes in nanostructured materials is essential for developing platforms capable of interacting with high-speed physical signals. In this work, the photothermal response of a nano-hydroxyapatite/carbon nanotube (nHAp/CNT) composite was experimentally characterized and modeled through a cellular automaton (CA) framework designed [...] Read more.
Modeling elementary diffusion processes in nanostructured materials is essential for developing platforms capable of interacting with high-speed physical signals. In this work, the photothermal response of a nano-hydroxyapatite/carbon nanotube (nHAp/CNT) composite was experimentally characterized and modeled through a cellular automaton (CA) framework designed to capture the thermal propagation of the hybrid system. Synthesizing nHAp/CNT composites enables the combination of the biocompatible and piezoelectric nature of nHAp with the enhanced photothermal response introduced by CNTs. UV–Vis reflectance measurements confirmed that CNT incorporation increases the optical absorption of the ceramic matrix, resulting in more efficient photothermal conversion. The composite was irradiated with a nanosecond pulsed laser, and the resulting thermal transients were compared with CA simulations based on a D2Q9 lattice configuration. The model accurately reproduces experiments, achieving R2 > 0.991 and NRMSE below 2.4% for all tested laser powers. This strong correspondence validates the CA approach for predicting spatiotemporal heat diffusion in heterogeneous nanostructured composites. Furthermore, the model revealed a sensitive thermal coupling when two heat sources were considered, indicating synergistic enhancement of local temperature fields. These findings demonstrate both the effective integration of CNTs within the nHAp matrix and the capability of CA-based modeling to describe their photothermal behavior. Overall, this study establishes a computational–experimental basis for designing controlled thermal-wave propagation and guiding future multi-frequency or multi-source photothermal mixing experiments. Full article
Show Figures

Figure 1

14 pages, 1899 KB  
Article
Investigation of the Damage Characteristics and Mechanisms in Silicon Carbide Crystals Induced by Nanosecond Pulsed Lasers at the Fundamental Frequency
by Penghao Xu, Erxi Wang, Teng Wang, Chong Shan, Xiaohui Zhao, Huamin Kou, Dapeng Jiang, Qinghui Wu, Zhan Sui and Yanqi Gao
Photonics 2025, 12(12), 1207; https://doi.org/10.3390/photonics12121207 - 8 Dec 2025
Viewed by 409
Abstract
Silicon carbide (SiC) single crystals are extensively utilized in various fields due to their exceptional properties, such as a wide bandgap and a high breakdown threshold. Nevertheless, the intrinsic high hardness of SiC creates significant challenges for contact machining. This study investigates the [...] Read more.
Silicon carbide (SiC) single crystals are extensively utilized in various fields due to their exceptional properties, such as a wide bandgap and a high breakdown threshold. Nevertheless, the intrinsic high hardness of SiC creates significant challenges for contact machining. This study investigates the surface damage characteristics and underlying mechanisms involved in processing both high-purity silicon carbide (HP-SiC) and nitrogen-doped silicon carbide (N-SiC) crystals using fundamental-frequency nanosecond pulsed lasers. This study establishes a laser-induced damage threshold (LIDT) testing platform and employs the internationally standardized 1-ON-1 test method to evaluate the damage characteristics of HP-SiC and N-SiC crystals under single-pulse laser irradiation. Experimental results indicate that N-SiC crystals exhibit superior absorption characteristics and a lower LIDT compared with HP-SiC crystals. Subsequently, a defect analysis model was established to conduct a theoretical examination of defect information across various types of SiC. Under fundamental-frequency nanosecond pulsed laser irradiation, N-SiC crystals demonstrate a lower average damage threshold and a broader defect damage threshold distribution than their HP-SiC counterparts. By integrating multi-dimensional analytical methods—including photothermal weak absorption mechanisms and damage morphology analysis—the underlying damage mechanisms of the distinct SiC forms were comprehensively elucidated. Moreover, although N-SiC crystals show weaker photothermal absorption properties, they exhibit more pronounced absorption and damage response processes. These factors collectively account for the different laser damage resistances observed in the two types of silicon carbide crystals, implying that distinct processing methodologies should be employed for nanosecond pulsed laser treatment of different SiC crystals. This paper elucidates the damage characteristics of various SiC materials induced by near-infrared nanosecond pulsed lasers and explores their underlying physical mechanisms. Additionally, it provides reliable data and a comprehensive mechanistic explanation for the efficient removal of these materials in practical applications. Full article
(This article belongs to the Special Issue New Perspectives in Micro-Nano Optical Design and Manufacturing)
Show Figures

Figure 1

12 pages, 5803 KB  
Article
Tunable Near-Infrared Laser Emission at 1.7 μm Generated by Stimulated Raman Scattering of Sulfur Hexafluoride Molecules in Anti-Resonant Hollow-Core Fibers
by Peicong Liu, Tianyu Li, Wenxi Pei, Luohao Lei, Jing Shi, Guorui Lv, Qi Chen, Guangrong Sun, Yamei Xu, Shuyi Wang, Zhiyue Zhou and Zefeng Wang
Photonics 2025, 12(12), 1196; https://doi.org/10.3390/photonics12121196 - 4 Dec 2025
Viewed by 393
Abstract
Fiber lasers operating at 1.7 μm have significant application value in fields such as gas detection and material processing due to their characteristics, including compact structure and ease of thermal management. Based on the stimulated Raman scattering (SRS) of gas molecules in hollow-core [...] Read more.
Fiber lasers operating at 1.7 μm have significant application value in fields such as gas detection and material processing due to their characteristics, including compact structure and ease of thermal management. Based on the stimulated Raman scattering (SRS) of gas molecules in hollow-core fibers (HCFs), fiber gas Raman lasers (FGRLs) are a novel and effective method for generating 1.7 μm fiber lasers. We report here, to the best of our knowledge, the first FGRL based on the anti-resonant hollow-core fiber (AR-HCF) filled with sulfur hexafluoride (SF6) molecules. A nanosecond pulsed fiber amplifier tunable from 1540 to 1560 nm was used to pump a 17.8-m-long AR-HCF filled with SF6 molecules. By virtue of the vibrational SRS of SF6 molecules, laser output in the range of 1748–1774 nm was achieved. At a gas pressure of 15 bar, a maximum average power output of ~3 W was obtained, corresponding to an optical-to-optical conversion efficiency of ~22%. The output linewidth of the Raman laser was measured to be approximately 2.1 GHz using a Fabry–Pérot (F-P) scanning interferometer. The research results enriched the methods for 1.7 μm fiber laser output. Full article
Show Figures

Figure 1

13 pages, 4242 KB  
Article
Phase Transition Behavior and Threshold Characteristics of GeTe Thin Films Under Single-Pulse Nanosecond Laser Irradiation
by Yajing Li, Xinyu Ma, Qiang Chen, Sixian Qian, Yixuan Jiang, Yuejun Zheng and Yunqi Fu
Materials 2025, 18(23), 5466; https://doi.org/10.3390/ma18235466 - 4 Dec 2025
Viewed by 387
Abstract
Realizing the full potential of optical actuation for high-speed phase-change radio-frequency (RF) switches requires a shift to single-pulse operation. This work presents a systematic investigation of reversible phase transitions in GeTe thin films induced by single 10 ns laser pulses, utilizing spatially resolved [...] Read more.
Realizing the full potential of optical actuation for high-speed phase-change radio-frequency (RF) switches requires a shift to single-pulse operation. This work presents a systematic investigation of reversible phase transitions in GeTe thin films induced by single 10 ns laser pulses, utilizing spatially resolved characterization techniques, including atomic force microscopy (AFM) and micro-spectroscopy. Precise laser fluence windows for crystallization (12.7–16 mJ/cm2) and amorphization (25.44–41.28 mJ/cm2) are established. A critical finding is that the amorphization process is governed by rapid thermal accumulation, which creates a direct trade-off between achieving the phase transition and avoiding detrimental surface morphology. Specifically, we observe that excessive energy leads to the formation of laser-induced ridges and ablation craters, which are identified as primary causes of device performance degradation. This study elucidates the underlying mechanism of single-pulse-induced phase transitions and provides a practical processing window and design guidelines for developing high-performance, optically actuated GeTe-based RF switches. Full article
Show Figures

Figure 1

15 pages, 3479 KB  
Article
Effect of Nd:YAG Nanosecond Laser Ablation on the Microstructure and Surface Properties of Coated Hardmetals
by G. A. Leal, C. M. Moreno, R. C. Hernández, E. Mejía-Ospino and L. C. Ardila
Coatings 2025, 15(12), 1413; https://doi.org/10.3390/coatings15121413 - 2 Dec 2025
Viewed by 484
Abstract
Nanosecond-pulsed Nd:YAG laser ablation was investigated as a method for removing Al Ti-based hard coatings deposited on WC–Co hardmetal inserts. Systematic variation in laser parameters identified conditions for complete coating removal while preserving substrate integrity. The laser was operated at 532 nm, under [...] Read more.
Nanosecond-pulsed Nd:YAG laser ablation was investigated as a method for removing Al Ti-based hard coatings deposited on WC–Co hardmetal inserts. Systematic variation in laser parameters identified conditions for complete coating removal while preserving substrate integrity. The laser was operated at 532 nm, under a range of fluences (0.1–11.7 J/cm2), pulse delays (20–180 µs), and pulse numbers (1–300). LIBS qualitative monitoring enabled precise ablation progress by identifying Ti, Al, and O layers, and later the detection of Co and W signals. Scanning electron microscopy (SEM/EDS) and optical profilometry confirmed that 5–10 pulses at intermediate delays (60–80 µs, 4.8–7.1 J/cm2) provided complete removal of ~18 µm-thick coatings while maintaining substrate integrity. In contrast, higher energies and excessive pulses caused localized melting and surface irregularities. These results demonstrate that Nd:YAG laser ablation, especially when coupled with LIBS, offers a precise, fast, and environmentally alternative to conventional chemical stripping methods for the refurbishment and recycling of cutting tools. Full article
Show Figures

Figure 1

10 pages, 2899 KB  
Article
Study of a High-Power, Long-Pulse-Width Acousto-Optical Q-Switched 1064 nm Laser Based on a Multi-Pass Cavity
by Wenbo Li, Zhaochen Lv, Yu Ding, Qingxuan Li, Jiapeng Hu, Chenpeng Deng, Tian Lan, Anru Yan, Youqiang Liu, Xuesheng Liu and Zhiyong Wang
Appl. Sci. 2025, 15(23), 12536; https://doi.org/10.3390/app152312536 - 26 Nov 2025
Viewed by 414
Abstract
A high-power, long-pulse-width acousto-optical Q-switched 1064 nm laser based on a multi-pass cavity (MPC) is reported in this paper. First, a plano-concave MPC structure satisfying the Q-preserving configuration was designed and introduced into an acousto-optical Q-switched plano-plano cavity Nd:YAG laser, extending the original [...] Read more.
A high-power, long-pulse-width acousto-optical Q-switched 1064 nm laser based on a multi-pass cavity (MPC) is reported in this paper. First, a plano-concave MPC structure satisfying the Q-preserving configuration was designed and introduced into an acousto-optical Q-switched plano-plano cavity Nd:YAG laser, extending the original laser cavity length by 1200 mm. The laser achieved a maximum average output power of 123.6 W with a repetition rate of 10 kHz. At this power level, the laser pulse width was broadened to 157.5 ns, which can be compared to 82.5 ns without the MPC structure, achieving a broadening ratio of 90.9%. The beam quality factors were Mx2 = 10.75 in the horizontal direction and My2 = 11.37 in the vertical direction. The experimental results demonstrate that inserting an MPC into the cavity is an effective method for broadening the pulse width of nanosecond lasers. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

16 pages, 3936 KB  
Article
Nanosecond Laser-Fabricated Titanium Meshes and Their Chemical Modification for Photocatalytic and SERS Applications
by Piotr Krzemiński, Algirdas Lazaukas, Sarunas Meskinis, Renata Wojnarowska-Nowak, Bogumił Cieniek, Yaroslav Bobitski and Joanna Kisała
Appl. Sci. 2025, 15(21), 11579; https://doi.org/10.3390/app152111579 - 29 Oct 2025
Viewed by 604
Abstract
This study presents the fabrication and chemical modification of titanium meshes produced by nanosecond laser drilling, tailored for advanced photocatalytic and surface-enhanced Raman scattering (SERS) applications. Titanium meshes were fabricated via pulsed laser ablation (TM_1) and subsequently modified either by deposition of silver [...] Read more.
This study presents the fabrication and chemical modification of titanium meshes produced by nanosecond laser drilling, tailored for advanced photocatalytic and surface-enhanced Raman scattering (SERS) applications. Titanium meshes were fabricated via pulsed laser ablation (TM_1) and subsequently modified either by deposition of silver nanoparticles through irradiation (TM_2) and sonication (TM_3) or by surface oxidation using hydrogen peroxide (TM_4). Morphological and compositional analyses revealed that these modifications lead to distinct Ag nanoparticle morphologies and significant increases in surface oxygen content, notably enhancing photocatalytic performance. Photocatalytic tests demonstrated that the TM_4 mesh achieved the highest degradation rate of methylene blue, underscoring the critical role of surface oxygen enrichment. In contrast, TM_2 and TM_3 exhibit strong potential as surface-enhanced Raman scattering (SERS) substrates due to the well-distributed plasmonic silver nanostructures that enhance local electromagnetic fields. Their three-dimensional porous architecture facilitates high surface area and efficient analyte adsorption (MB), further improving SERS sensitivity. These findings establish nanosecond laser-processed titanium meshes, particularly those that are chemically modified, as promising, scalable materials for efficient water purification and effective SERS substrates for molecular sensing. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

Back to TopTop