Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = nanoreservoirs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 194 KiB  
Abstract
Mesoporous Silica Nanoreservoirs Loaded with 1-H Benzotriazole for Active Anticorrosion Protection
by Cristina Lavinia Nistor, Sabina Georgiana Burlacu, Cătălin Ionuţ Mihăescu, Cristina Scomoroscenco, Ioana Cătălina Gîfu, Claudia Mihaela Ninciuleanu, Raluca Ianchiş, Cristian Petcu and Elvira Alexandrescu
Chem. Proc. 2022, 7(1), 71; https://doi.org/10.3390/chemproc2022007071 - 6 May 2022
Viewed by 1696
Abstract
In recent years, scientists are paying increased attention to the development of intelligent nanocontainers in applications such as biomedical, catalysis, and anticorrosion [1]. Preparation of anticorrosion coatings containing smart nanocontainers loaded with corrosion inhibitors, which can be initiated when the barrier [...] Read more.
In recent years, scientists are paying increased attention to the development of intelligent nanocontainers in applications such as biomedical, catalysis, and anticorrosion [1]. Preparation of anticorrosion coatings containing smart nanocontainers loaded with corrosion inhibitors, which can be initiated when the barrier coatings are damaged, favor the long-term function, as uncontrolled loss by leaching is inhibited [2]. The aim of the present study is to optimize the amount of an organic inhibitor (1-H benzotriazole (BTA)) that can be in situ encapsulated in a mesoporous silica nanocontainer, prepared by an original sol-gel formulation. Materials and methods: For the synthesis of silica mesoporous, nanoparticles loaded with BTA were used with three silica co-precursors: tetraethylorthosilicate (TEOS), phenyltriethoxysilane (PTES), and octyltriethoxysilane (OTES), at a 5/1/1 gravimetric ratio. The synthesis was carried out in the presence of a solvent (ethanol) and of a surfactant (Igepal CA-630). The pH of the sol–gel system was adjusted to ~9 by dripping an aqueous solution of NH4OH (25%). Prior to the addition to the sol–gel reaction system, BTA was completely dissolved in ethanol. Various amounts of BTA were loaded to the sol–gel systems: 0.25; 0.5; 0.75; 1; 1.25; 1.5; and 2 g (corresponding to 0.09; 0.18; 0.27; 0.35; 0.44; 0.53; and 0.70% grav. of the total amount of sol–gel mixture, respectively). Furthermore, a similar set of samples was prepared in the presence of a constant amount of rhodamine B, dissolved in ethanol. This second set was obtained in order to perform a visual evaluation of the encapsulation efficiency. Particles dimensions, size distributions, and particles charging in the final dispersions were evaluated by the dynamic light scattering (DLS) technique and Zeta potential measurements. Surface morphology was observed by SEM. The structural characteristics of the silica mesoporous particles were investigated by N2 adsorption–desorption analysis on the calcined samples. Results: During the in situ synthesis of silica nanoparticles, the aromatic molecules of the corrosion inhibitor BTA were linked via a hydrophobic interaction with the phenyl groups from the silica pores formed by the hydrophobic functions of silica co-precursors, i.e., PTES and OTES. In addition, the corrosion inhibitor was trapped inside the surfactant micelles of Igepal and encapsulated together inside the silica pores formed by the surfactant. Moreover, it was observed that only a small amount of BTA can be encapsulated in the absence of the surfactant. Conclusions: An optimized method was developed to obtain mesoporous silica nanoparticles loaded with 1-H Benzotriazole (BTA) as a corrosion inhibitor. The optimal range of the BTA concentration was found to be between 0.18 and 0.35%. Full article
21 pages, 4316 KiB  
Review
Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon
by Sebastián Bonardd, David Díaz Díaz, Angel Leiva and César Saldías
Polymers 2021, 13(24), 4404; https://doi.org/10.3390/polym13244404 - 15 Dec 2021
Cited by 7 | Viewed by 4376
Abstract
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of [...] Read more.
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Graphical abstract

11 pages, 1887 KiB  
Article
A New Nanocomposite Packaging Based on LASiS-Generated AgNPs for the Preservation of Apple Juice
by Maria Chiara Sportelli, Antonio Ancona, Annalisa Volpe, Caterina Gaudiuso, Valentina Lavicita, Valerio Miceli, Amalia Conte, Matteo Alessandro Del Nobile and Nicola Cioffi
Antibiotics 2021, 10(7), 760; https://doi.org/10.3390/antibiotics10070760 - 22 Jun 2021
Cited by 9 | Viewed by 2552
Abstract
Designing bioactive materials, with controlled metal ion release, exerting a significant biological action and associated to low toxicity for humans, is nowadays one of the most important challenges for our community. The most looked-for nanoantimicrobials are capable of releasing metal species with defined [...] Read more.
Designing bioactive materials, with controlled metal ion release, exerting a significant biological action and associated to low toxicity for humans, is nowadays one of the most important challenges for our community. The most looked-for nanoantimicrobials are capable of releasing metal species with defined kinetic profiles, either by slowing down or inhibiting bacterial growth and pathogenic microorganism diffusion. In this study, laser ablation synthesis in solution (LASiS) has been used to produce bioactive Ag-based nanocolloids, in isopropyl alcohol, which can be used as water-insoluble nano-reservoirs in composite materials like poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Infrared spectroscopy was used to evaluate the chemical state of pristine polymer and final composite material, thus providing useful information about synthesis processes, as well as storage and processing conditions. Transmission electron microscopy was exploited to study the morphology of nano-colloids, along with UV-Vis for bulk chemical characterization, highlighting the presence of spheroidal particles with average diameter around 12 nm. Electro-thermal atomic absorption spectroscopy was used to investigate metal ion release from Ag-modified products, showing a maximum release around 60 ppb, which ensures an efficient antimicrobial activity, being much lower than what recommended by health institutions. Analytical spectroscopy results were matched with bioactivity tests carried out on target microorganisms of food spoilage. Full article
(This article belongs to the Special Issue Bacterial Contamination and Nano-Technological Solutions in Industry)
Show Figures

Figure 1

15 pages, 7811 KiB  
Article
Soft Nanoonions: A Dynamic Overview onto Catanionic Vesicles Temperature-Driven Transition
by Gesmi Milcovich, Filipe E. Antunes, Mario Grassi and Fioretta Asaro
Int. J. Mol. Sci. 2020, 21(18), 6804; https://doi.org/10.3390/ijms21186804 - 16 Sep 2020
Cited by 3 | Viewed by 3230
Abstract
Catanionic vesicles are emerging interesting structures for bioapplications. They self-generate by a pairing of oppositely charged ionic surfactants that assemble into hollow structures. Specifically, the anionic-cationic surfactant pair assumes a double-tailed zwitterionic behavior. In this work, the multilamellar-to-unilamellar thermal transition of several mixed [...] Read more.
Catanionic vesicles are emerging interesting structures for bioapplications. They self-generate by a pairing of oppositely charged ionic surfactants that assemble into hollow structures. Specifically, the anionic-cationic surfactant pair assumes a double-tailed zwitterionic behavior. In this work, the multilamellar-to-unilamellar thermal transition of several mixed aqueous systems, with a slight excess of the anionic one, were investigated. Interestingly, it was found that the anionic counterion underwent a dissociation as a consequence of a temperature increase, leading to the mentioned thermal transition. The present work proposed the spectroscopic techniques, specifically multinuclear NMR and PGSTE (pulsed gradient stimulated echo), as a key tool to study such systems, with high accuracy and effectiveness, while requiring a small amount of the sample. The results presented herein evidence encouraging perspectives, forecasting the application of the studied vesicular nanoreservoirs, for e.g., drug delivery. Full article
(This article belongs to the Special Issue The Self-Assembly and Design of Polyfunctional Nanosystems)
Show Figures

Figure 1

13 pages, 3172 KiB  
Article
A New Polycaprolactone-Based Biomembrane Functionalized with BMP-2 and Stem Cells Improves Maxillary Bone Regeneration
by Céline Stutz, Marion Strub, François Clauss, Olivier Huck, Georg Schulz, Hervé Gegout, Nadia Benkirane-Jessel, Fabien Bornert and Sabine Kuchler-Bopp
Nanomaterials 2020, 10(9), 1774; https://doi.org/10.3390/nano10091774 - 8 Sep 2020
Cited by 14 | Viewed by 3985
Abstract
Oral diseases have an impact on the general condition and quality of life of patients. After a dento-alveolar trauma, a tooth extraction, or, in the case of some genetic skeletal diseases, a maxillary bone defect, can be observed, leading to the impossibility of [...] Read more.
Oral diseases have an impact on the general condition and quality of life of patients. After a dento-alveolar trauma, a tooth extraction, or, in the case of some genetic skeletal diseases, a maxillary bone defect, can be observed, leading to the impossibility of placing a dental implant for the restoration of masticatory function. Recently, bone neoformation was demonstrated after in vivo implantation of polycaprolactone (PCL) biomembranes functionalized with bone morphogenic protein 2 (BMP-2) and ibuprofen in a mouse maxillary bone lesion. In the present study, human bone marrow derived mesenchymal stem cells (hBM-MSCs) were added on BMP-2 functionalized PCL biomembranes and implanted in a maxillary bone lesion. Viability of hBM-MSCs on the biomembranes has been observed using the “LIVE/DEAD” viability test and scanning electron microscopy (SEM). Maxillary bone regeneration was observed for periods ranging from 90 to 150 days after implantation. Various imaging methods (histology, micro-CT) have demonstrated bone remodeling and filling of the lesion by neoformed bone tissue. The presence of mesenchymal stem cells and BMP-2 allows the acceleration of the bone remodeling process. These results are encouraging for the effectiveness and the clinical use of this new technology combining growth factors and mesenchymal stem cells derived from bone marrow in a bioresorbable membrane. Full article
(This article belongs to the Special Issue Bioactive Materials for Tooth Engineering)
Show Figures

Figure 1

15 pages, 3257 KiB  
Article
Halloysite Nanotubes as Nano-Carriers of Corrosion Inhibitors in Cement Formulations
by Monica Tonelli, Piero Baglioni and Francesca Ridi
Materials 2020, 13(14), 3150; https://doi.org/10.3390/ma13143150 - 15 Jul 2020
Cited by 13 | Viewed by 3476
Abstract
The ingress of water, as a vehicle for many harmful substances, is the main cause of all the major physical and chemical degradation processes affecting concrete buildings. To prevent damage and protect concrete surfaces, coatings are generally used. Cement-based coatings in particular can [...] Read more.
The ingress of water, as a vehicle for many harmful substances, is the main cause of all the major physical and chemical degradation processes affecting concrete buildings. To prevent damage and protect concrete surfaces, coatings are generally used. Cement-based coatings in particular can act as a physical barrier and reduce the permeability of surfaces. In case of chloride-induced corrosion, corrosion inhibitors are also generally used, and nano-carriers have been proven to provide a long-term protective effect. In this work, we designed a surface protection cementitious coating enhanced with nano-silica and halloysite nanotubes (HNTs). HNTs were loaded with a corrosion inhibitor, benzotriazole (BTA), and used as nano-reservoir, while nano-silica was used to improve the structure of the protective coating and to strengthen its adhesion to the surface of application. The cementitious coatings were characterized with a multi-technique approach including thermal and spectroscopic analysis, scanning electron microscopy, specific surface area and pore size distribution, and Vickers hardness test. The release of BTA was monitored through UV-vis analysis, and the transportation of BTA through coated mortars was studied in simulated rain conditions. We evidenced that the presence of silica densifies the porous structure and increases the interfacial bond strength between the protective coating and the surface of application. We report here, for the first time, that HNTs can be used as nano-carriers for the slow delivery of anti-corrosion molecules in cement mortars. Full article
(This article belongs to the Special Issue The Impact of Nanomaterials in Smart Construction Materials)
Show Figures

Graphical abstract

22 pages, 7549 KiB  
Article
Multifunctional Superparamagnetic Stiff Nanoreservoirs for Blood Brain Barrier Applications
by Zulema Vargas-Osorio, Andrés Da Silva-Candal, Yolanda Piñeiro, Ramón Iglesias-Rey, Tomas Sobrino, Francisco Campos, José Castillo and José Rivas
Nanomaterials 2019, 9(3), 449; https://doi.org/10.3390/nano9030449 - 17 Mar 2019
Cited by 18 | Viewed by 4224
Abstract
Neurological diseases (Alzheimer’s disease, Parkinson’s disease, and stroke) are becoming a major concern for health systems in developed countries due to the increment of ageing in the population, and many resources are devoted to the development of new therapies and contrast agents for [...] Read more.
Neurological diseases (Alzheimer’s disease, Parkinson’s disease, and stroke) are becoming a major concern for health systems in developed countries due to the increment of ageing in the population, and many resources are devoted to the development of new therapies and contrast agents for selective imaging. However, the strong isolation of the brain by the brain blood barrier (BBB) prevents not only the crossing of pathogens, but also a large set of beneficial drugs. Therefore, an alternative strategy is arising based on the anchoring to vascular endothelial cells of nanoplatforms working as delivery reservoirs. In this work, novel injectable mesoporous nanorods, wrapped by a fluorescent magnetic nanoparticles envelope, are proposed as biocompatible reservoirs with an extremely high loading capacity, surface versatility, and optimal morphology for enhanced grafting to vessels during their diffusive flow. Wet chemistry techniques allow for the development of mesoporous silica nanostructures with tailored properties, such as a fluorescent response suitable for optical studies, superparamagnetic behavior for magnetic resonance imaging MRI contrast, and large range ordered porosity for controlled delivery. In this work, fluorescent magnetic mesoporous nanorods were physicochemical characterized and tested in preliminary biological in vitro and in vivo experiments, showing a transversal relaxivitiy of 324.68 mM−1 s−1, intense fluorescence, large specific surface area (300 m2 g−1), and biocompatibility for endothelial cells’ uptake up to 100 µg (in a 80% confluent 1.9 cm2 culture well), with no liver and kidney disability. These magnetic fluorescent nanostructures allow for multimodal MRI/optical imaging, the allocation of therapeutic moieties, and targeting of tissues with specific damage. Full article
Show Figures

Graphical abstract

14 pages, 2589 KiB  
Article
Composite Aerogels of Carbon Nanocellulose Fibers and Mixed-Valent Manganese Oxides as Renewable Supercapacitor Electrodes
by Xiaoyu Guo, Qi Zhang, Qing Li, Haipeng Yu and Yixing Liu
Polymers 2019, 11(1), 129; https://doi.org/10.3390/polym11010129 - 13 Jan 2019
Cited by 37 | Viewed by 7868
Abstract
Bio-waste derived nanocelluloses show excellent mechanical flexibility and self-aggregated capability, which enable them to be good supporting substrates for the synthesis of electroactive materials. Herein, we present a facile route for fabricating composite aerogels consisting of carbonized nanocellulose fibers (CNF) and mixed-valent manganese [...] Read more.
Bio-waste derived nanocelluloses show excellent mechanical flexibility and self-aggregated capability, which enable them to be good supporting substrates for the synthesis of electroactive materials. Herein, we present a facile route for fabricating composite aerogels consisting of carbonized nanocellulose fibers (CNF) and mixed-valent manganese oxide (MnOx), toward supercapacitor applications. Mixed solutions of nanocellulose and manganese acetate with different ratios were prepared and freeze-dried into hybrid aerogels. The hybrid aerogels were then transformed into CNF/MnOx composites by a calcination process. The CNF membranes served as porous carbon nano-reservoirs for MnOx and electrolyte. The CNF/MnOx composites also kept a 3D porous aerogel structure with hierarchical pores, which enabled stable transport of both electrolyte ions and electrons to the electrode surface, leading to low a charge-transfer impedance and good electrochemical kinetics. The CNF/MnOx-based symmetric supercapacitor showed a satisfied energy density and power density of 37.5 Wh kg−1 and 2.75 kW kg−1, respectively. All the above results demonstrate the feasibility of using sustainable nanocellulose as a nanoscale carbon substrate for the synthesis of hybrid composite electrodes toward renewable supercapacitor applications. Full article
(This article belongs to the Special Issue Polymer and Composite Aerogels)
Show Figures

Graphical abstract

16 pages, 8858 KiB  
Review
Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications
by Fareeha Batool, Marion Strub, Catherine Petit, Isaac Maximiliano Bugueno, Fabien Bornert, François Clauss, Olivier Huck, Sabine Kuchler-Bopp and Nadia Benkirane-Jessel
Nanomaterials 2018, 8(5), 337; https://doi.org/10.3390/nano8050337 - 16 May 2018
Cited by 41 | Viewed by 6697
Abstract
This review encompasses different pre-clinical bioengineering approaches for periodontal tissues, maxillary jaw bone, and the entire tooth. Moreover, it sheds light on their potential clinical therapeutic applications in the field of regenerative medicine. Herein, the electrospinning method for the synthesis of polycaprolactone (PCL) [...] Read more.
This review encompasses different pre-clinical bioengineering approaches for periodontal tissues, maxillary jaw bone, and the entire tooth. Moreover, it sheds light on their potential clinical therapeutic applications in the field of regenerative medicine. Herein, the electrospinning method for the synthesis of polycaprolactone (PCL) membranes, that are capable of mimicking the extracellular matrix (ECM), has been described. Furthermore, their functionalization with cyclosporine A (CsA), bone morphogenetic protein-2 (BMP-2), or anti-inflammatory drugs’ nanoreservoirs has been demonstrated to induce a localized and targeted action of these molecules after implantation in the maxillary jaw bone. Firstly, periodontal wound healing has been studied in an induced periodontal lesion in mice using an ibuprofen-functionalized PCL membrane. Thereafter, the kinetics of maxillary bone regeneration in a pre-clinical mouse model of surgical bone lesion treated with BMP-2 or BMP-2/Ibuprofen functionalized PCL membranes have been analyzed by histology, immunology, and micro-computed tomography (micro-CT). Furthermore, the achievement of innervation in bioengineered teeth has also been demonstrated after the co-implantation of cultured dental cell reassociations with a trigeminal ganglia (TG) and the cyclosporine A (CsA)-loaded poly(lactic-co-glycolic acid) (PLGA) scaffold in the jaw bone. The prospective clinical applications of these different tissue engineering approaches could be instrumental in the treatment of various periodontal diseases, congenital dental or cranio-facial bone anomalies, and post-surgical complications. Full article
(This article belongs to the Special Issue Preparation and Application of Hybrid Nanomaterials)
Show Figures

Graphical abstract

37 pages, 632 KiB  
Review
Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine
by Farahnaz Barahuie, Mohd Zobir Hussein, Sharida Fakurazi and Zulkarnain Zainal
Int. J. Mol. Sci. 2014, 15(5), 7750-7786; https://doi.org/10.3390/ijms15057750 - 5 May 2014
Cited by 55 | Viewed by 9264
Abstract
Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, [...] Read more.
Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

Back to TopTop