Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = nanoporous membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2715 KiB  
Article
Composite Behavior of Nanopore Array Large Memristors
by Ian Reistroffer, Jaden Tolbert, Jeffrey Osterberg and Pingshan Wang
Micromachines 2025, 16(8), 882; https://doi.org/10.3390/mi16080882 - 29 Jul 2025
Viewed by 192
Abstract
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior [...] Read more.
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior of nanopore-array large memristors, formed with different membrane materials, pore sizes, electrolytes, and device arrangements. Anodic aluminum oxide (AAO) membranes with 5 nm and 20 nm diameter pores and track-etched polycarbonate (PCTE) membranes with 10 nm diameter pores are tested and shown to demonstrate memristive and nonlinear behaviors with approximately 107–1010 pores in parallel when electrolyte concentration across the membranes is asymmetric. Ion diffusion through the large number of channels induces time-dependent electrolyte asymmetry that drives the system through different memristive states. The behaviors of series composite memristors with different configurations are also presented. In addition to helping understand fluidic devices and circuits for neuromorphic computing, the results also shed light on the development of field-assisted ion-selection-membrane filtration techniques as well as the investigations of large neurons and giant synapses. Further work is needed to de-embed parasitic components of the measurement setup to obtain intrinsic large memristor properties. Full article
(This article belongs to the Section D4: Glassy Materials and Micro/Nano Devices)
Show Figures

Figure 1

21 pages, 1208 KiB  
Review
Combination of Irreversible Electroporation and Clostridium novyi-NT Bacterial Therapy for Colorectal Liver Metastasis
by Zigeng Zhang, Guangbo Yu, Qiaoming Hou, Farideh Amirrad, Sha Webster, Surya M. Nauli, Jianhua Yu, Vahid Yaghmai, Aydin Eresen and Zhuoli Zhang
Cancers 2025, 17(15), 2477; https://doi.org/10.3390/cancers17152477 - 26 Jul 2025
Viewed by 293
Abstract
Colorectal liver metastasis (CRLM) poses a significant challenge in oncology due to its high incidence and poor prognosis in unresectable cases. Current treatments, including surgical resection, systemic chemotherapy, and liver-directed therapies, often fail to effectively target hypoxic tumor regions, which are inherently more [...] Read more.
Colorectal liver metastasis (CRLM) poses a significant challenge in oncology due to its high incidence and poor prognosis in unresectable cases. Current treatments, including surgical resection, systemic chemotherapy, and liver-directed therapies, often fail to effectively target hypoxic tumor regions, which are inherently more resistant to these interventions. This review examines the potential of a novel therapeutic strategy combining irreversible electroporation (IRE) ablation and Clostridium novyi-nontoxic (C. novyi-NT) bacterial therapy. IRE is a non-thermal tumor ablation technique that uses high-voltage electric pulses to create permanent nanopores in cell membranes, leading to cell death while preserving surrounding structures, and is often associated with temporary tumor hypoxia due to disrupted perfusion. C. novyi-NT is an attenuated, anaerobic bacterium engineered to selectively germinate and proliferate in hypoxic tumor regions, resulting in localized tumor cell lysis while sparing healthy, oxygenated tissue. The synergy between IRE-induced hypoxia and hypoxia-sensitive C. novyi-NT may enhance tumor destruction and stimulate systemic antitumor immunity. Furthermore, the integration of advanced imaging and artificial intelligence can support precise treatment planning and real-time monitoring. This integrated approach holds promise for improving outcomes in patients with CRLM, though further preclinical and clinical validation is needed. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

12 pages, 2818 KiB  
Article
Influence of Inner Lining Atoms of Multilayered Hexagonal Boron Nitride Porous Membrane on Desalination
by Chulwoo Park and Daejoong Kim
Micromachines 2025, 16(5), 530; https://doi.org/10.3390/mi16050530 - 29 Apr 2025
Viewed by 367
Abstract
Recent findings have demonstrated that the desalination and purification of contaminated water and the separation of ions and gases, besides solutions to other related issues, may all be achieved with the use of membranes based on artificial nanoporous materials. Before the expensive stages [...] Read more.
Recent findings have demonstrated that the desalination and purification of contaminated water and the separation of ions and gases, besides solutions to other related issues, may all be achieved with the use of membranes based on artificial nanoporous materials. Before the expensive stages of production and experimental testing, the optimum size and form of membrane nanopores could be determined using computer-aided modeling. The notion that rectangular nanopores created in a multilayered hexagonal boron nitride (h-BN) membrane in a way that results in different inner lining atoms would exhibit unique properties in terms of the water penetration rate is put forth and examined in the current study. Nanopores in boron nitride sheets can be generated with the inner lining of boron atoms (B-edged), nitrogen atoms (N-edged), or both boron and nitrogen atoms (BN-edged). In this study, we compared the three different inner-lined nanopores of boron nitride nanosheets to a comparable-sized graphene nanopore and evaluated the water conduction. Full article
(This article belongs to the Special Issue Nanomaterials for Micro/Nano Devices, 2nd Edition)
Show Figures

Figure 1

17 pages, 7247 KiB  
Article
Identification of eccDNA in Extracellular Vesicles Derived from Human Dermal Fibroblasts Through Nanopore Sequencing
by Bianca Simonassi-Paiva, Julia Alves Luz, Julia Hellena Ribeiro, Juliano Coelho da Silveira, Camila Azzolin de Souza, Georgios Joannis Pappas Jr, Juliana Lott de Carvalho, Mark Lynch, Robert Pogue and Neil J. Rowan
Int. J. Mol. Sci. 2025, 26(9), 4144; https://doi.org/10.3390/ijms26094144 - 27 Apr 2025
Cited by 1 | Viewed by 714
Abstract
Extrachromosomal circular DNAs (eccDNAs) are heterogeneous circular DNA molecules derived from genomic DNA, and believed to be involved in intercellular communication and in natural biological processes. Extracellular vesicles (EVs) are membrane-bound particles released from all cells, and have been shown to contain various [...] Read more.
Extrachromosomal circular DNAs (eccDNAs) are heterogeneous circular DNA molecules derived from genomic DNA, and believed to be involved in intercellular communication and in natural biological processes. Extracellular vesicles (EVs) are membrane-bound particles released from all cells, and have been shown to contain various classes of nucleic acids. EVs can play a role in intercellular communication and may be used as biomarkers. This constitutes the first study to demonstrate that EVs derived from healthy human dermal fibroblasts carry eccDNA. eccDNA from EVs and their corresponding donor cells were isolated and sequenced on the Oxford Nanopore MinIon platform, followed by the identification of potential eccDNAs through four different bioinformatic pipelines, namely ecc_Finder, cyrcular-calling, CReSIL, and Flec. Our main findings demonstrate that EVs derived from human dermal fibroblasts carry eccDNA; there is variability in the number of eccDNAs identified in the same sample through different pipelines; and there is variability in the identified eccDNAs across biological replicates. Additionally, eccDNAs characterized in this research had (a) sequences as small as 306 base pairs and as large as 28,958 base pairs across all samples, (b) uneven chromosomal distribution, and (c) an average of 49.7% of the identified eccDNAs harboring gene fragments. Future implications for this novel research include using this framework method to elucidate factors and conditions that may influence the skin aging process and related biogenesis in human dermal cells. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

25 pages, 16068 KiB  
Article
Mechanical Properties and Fracture Analysis of Advanced Nickel-Based Nanomembranes
by Janik Marius Lück and Joachim Rösler
Materials 2025, 18(9), 1961; https://doi.org/10.3390/ma18091961 - 25 Apr 2025
Cited by 1 | Viewed by 326
Abstract
Nanoporous membranes based on the single crystalline nickel-based superalloy CMSX-4 are a promising class of materials for membranes, especially for use in premix membrane emulsification. In addition to the pore size, the strength and stability of the membrane structure are key factors for [...] Read more.
Nanoporous membranes based on the single crystalline nickel-based superalloy CMSX-4 are a promising class of materials for membranes, especially for use in premix membrane emulsification. In addition to the pore size, the strength and stability of the membrane structure are key factors for subsequent use. The production of the membranes is based on the directional coarsening of the γ/γ′-microstructure by creep deformation, in which the material is subjected to a tensile load at high temperatures so that a bicontinuous network of the γ- and γ′-phase is formed. The subsequent dissolution of the γ-phase leaves a network of γ′-phase, which can be used as a membrane structure; the former γ-matrix channels now serve as pores. Previous investigations focusing on the evolution of the microstructure during membrane fabrication found that a particularly small pore size can be achieved when the creep deformation temperature is lowered from 1000 °C to 950 °C while increasing the stress from 170 MPa to 250 MPa. This study will now investigate the strength and fracture behaviour of membranes produced by these improved parameters. For this purpose, four creep states with creep strains between 1.3% and 5.7% are investigated in tensile tests at room temperature, with the load being applied perpendicular and parallel to the raft structure. The results show that the strength of nanomembranes during perpendicular loading essentially depends on the cross-linking between γ′-rafts. Generally, an increase in creep strain leads to an increase of the cross-linking resulting in higher tensile strength. During parallel loading, γ′-inhomogeneities play an important role resulting in a loss of strength. The analysis of the fracture surfaces and evaluation of EBSD measurements reveal an insufficient cross-linking between dendrites and around γ′-inhomogeneities, leading to preferred crack paths. Therefore, the differences in orientation within the single crystal play a key role in the strength of the nanomembranes. Full article
(This article belongs to the Special Issue Advanced Nanoporous and Mesoporous Materials)
Show Figures

Figure 1

18 pages, 2351 KiB  
Review
Pulsed Field Ablation: A Review of Preclinical and Clinical Studies
by Andrew P. Sullivan, Martin Aguilar and Zachary Laksman
Bioengineering 2025, 12(4), 329; https://doi.org/10.3390/bioengineering12040329 - 22 Mar 2025
Viewed by 2735
Abstract
Pulsed field ablation (PFA) is an emerging technology that utilizes ultra-short high-voltage electric pulses to create nanopores in cell membranes, leading to cell death through irreversible electroporation (IRE). PFA is touted to be highly tissue-selective, which may mitigate the risk of collateral injury [...] Read more.
Pulsed field ablation (PFA) is an emerging technology that utilizes ultra-short high-voltage electric pulses to create nanopores in cell membranes, leading to cell death through irreversible electroporation (IRE). PFA is touted to be highly tissue-selective, which may mitigate the risk of collateral injury to vital adjacent structures. In the field of cardiac electrophysiology, initial studies have shown promising results for acute pulmonary vein isolation (PVI) and lesion durability, with overall freedom from recurrent atrial arrhythmia comparable to traditional thermal ablation modalities. While further large studies are required for long-term efficacy and safety data, PFA has the potential to become a preferred energy source for cardiac ablation for some indications. This review outlines the basic principles and biophysics of IRE and its application to cardiac electrophysiology through a review of the existing preclinical and clinical data. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

12 pages, 21558 KiB  
Article
Ceramic Nanofiltration Membranes: Creating Nanopores by Calcination of Atmospheric-Pressure Molecular Layer Deposition Grown Titanicone Layers
by Harpreet Sondhi, Mingliang Chen, Michiel Pieter Nijboer, Arian Nijmeijer, Fred Roozeboom, Mikhael Bechelany, Alexey Kovalgin and Mieke Luiten-Olieman
Membranes 2025, 15(3), 86; https://doi.org/10.3390/membranes15030086 - 8 Mar 2025
Viewed by 1742
Abstract
Ceramic membrane technology, whether applied as a stand-alone separation technology or in combination with energy-intensive approaches like distillation, is a promising solution for lower energy alternatives with minimal carbon footprints. To improve the separation of solutes in the nanofiltration range from industrial wastewater [...] Read more.
Ceramic membrane technology, whether applied as a stand-alone separation technology or in combination with energy-intensive approaches like distillation, is a promising solution for lower energy alternatives with minimal carbon footprints. To improve the separation of solutes in the nanofiltration range from industrial wastewater streams, ceramic nanofiltration (NF) membranes with reproducible sub-nanometre pore sizes are required. To achieve this, the emerging technique of molecular layer deposition (MLD) is employed to develop ceramic NF membranes, and its efficiency and versatility make it a powerful tool for preparing uniform nanoscale high-porosity membranes. Our work, which involved vapor-phase titanium tetrachloride as a precursor and ethylene glycol as a co-reactant, followed by calcination in air at 350 °C, resulted in NF membranes with pore sizes (radii) around ~0.8 ± 0.1 nm and a demineralized water permeability of 13 ± 1 L·m−2·h−1·bar−1.The high-water flux with >90% rejection of polyethylene glycol molecules with a molecular size larger than 380 ± 6 Dalton indicates the efficiency of the MLD technique in membrane functionalization and size-selective separation processes, and its potential for industrial applications. Full article
Show Figures

Figure 1

12 pages, 1044 KiB  
Article
Improved Isolation of Ultra-High-Molecular-Weight Genomic DNA Suitable for Third-Generation Sequencing
by Ayşe Öykü Ova, Enrique Joffre, Reza Zandi Shafagh, Mariana F. G. Assunção, Roman Y. Sidorov, Lilia M. A. Santos, Volker M. Lauschke and Ute Römling
Microorganisms 2025, 13(3), 534; https://doi.org/10.3390/microorganisms13030534 - 27 Feb 2025
Cited by 1 | Viewed by 1045
Abstract
Although a variety of protocols to isolate high-molecular-weight genomic DNA exist, the isolation and preservation of ultra-high-molecular-weight genomic DNA of sufficient quality and length for error-free third-generation sequencing remains challenging. Inspired by the isolation of high-molecular-weight DNA in agarose plugs suitable to be [...] Read more.
Although a variety of protocols to isolate high-molecular-weight genomic DNA exist, the isolation and preservation of ultra-high-molecular-weight genomic DNA of sufficient quality and length for error-free third-generation sequencing remains challenging. Inspired by the isolation of high-molecular-weight DNA in agarose plugs suitable to be separated by pulsed-field gel electrophoresis, we report the construction of an incubation chamber for DNA isolation. The chamber is flanked by semi-permeable polycarbonate membranes of variable pore size for the selective diffusion of compounds and components, which allows efficient cell lysis and the subsequent isolation of ultra-high-molecular-weight genomic DNA without shearing. The designed experimental approach is simple, but effective in isolating high-quality ultra-long genomic DNA that is suitable for third-generation sequencing by Oxford Nanopore Technology from challenging bacterial samples. We envisage that genomic DNA isolation using the incubation chamber, or variations thereof, will facilitate the regular sequencing of megabasepair-long DNA fragments, with a multitude of applications in microbiology, immunology, oncology, paleontology and forensic science. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Graphical abstract

44 pages, 11801 KiB  
Review
Layer-by-Layer Nanoarchitectonics: A Method for Everything in Layered Structures
by Katsuhiko Ariga
Materials 2025, 18(3), 654; https://doi.org/10.3390/ma18030654 - 1 Feb 2025
Cited by 9 | Viewed by 1605
Abstract
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related [...] Read more.
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related research efforts, research into creating functional materials through the formation of thin layers on surfaces, molecular membranes, and multilayer structures of these materials have a lot of implications. Layered structures are especially important as a key part of nanoarchitectonics. The diversity of the components and materials used in layer-by-layer (LbL) assemblies is a notable feature. Examples of LbL assemblies introduced in this review article include quantum dots, nanoparticles, nanocrystals, nanowires, nanotubes, g-C3N4, graphene oxide, MXene, nanosheets, zeolites, nanoporous materials, sol–gel materials, layered double hydroxides, metal–organic frameworks, covalent organic frameworks, conducting polymers, dyes, DNAs, polysaccharides, nanocelluloses, peptides, proteins, lipid bilayers, photosystems, viruses, living cells, and tissues. These examples of LbL assembly show how useful and versatile it is. Finally, this review will consider future challenges in layer-by-layer nanoarchitectonics. Full article
Show Figures

Graphical abstract

27 pages, 3994 KiB  
Review
Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials
by Aleksey Vishnyakov
Materials 2025, 18(3), 534; https://doi.org/10.3390/ma18030534 - 24 Jan 2025
Cited by 8 | Viewed by 1780
Abstract
This review analyzes the current practices in the data-driven characterization, design and optimization of disordered nanoporous materials with pore sizes ranging from angstroms (active carbon and polymer membranes for gas separation) to tens of nm (aerogels). While the machine learning (ML)-based prediction and [...] Read more.
This review analyzes the current practices in the data-driven characterization, design and optimization of disordered nanoporous materials with pore sizes ranging from angstroms (active carbon and polymer membranes for gas separation) to tens of nm (aerogels). While the machine learning (ML)-based prediction and screening of crystalline, ordered porous materials are conducted frequently, materials with disordered porosity receive much less attention, although ML is expected to excel in the field, which is rich with ill-posed problems, non-linear correlations and a large volume of experimental results. For micro- and mesoporous solids (active carbons, mesoporous silica, aerogels, etc.), the obstacles are mostly related to the navigation of the available data with transferrable and easily interpreted features. The majority of published efforts are based on the experimental data obtained in the same work, and the datasets are often very small. Even with limited data, machine learning helps discover non-evident correlations and serves in material design and production optimization. The development of comprehensive databases for micro- and mesoporous materials with low-level structural and sorption characteristics, as well as automated synthesis/characterization protocols, is seen as the direction of efforts for the immediate future. This paper is written in a language readable by a chemist unfamiliar with the data science specifics. Full article
Show Figures

Graphical abstract

17 pages, 5715 KiB  
Article
Nano-Perforated Silicon Membrane with Monolithically Integrated Buried Cavity
by Sanjeev Vishal Kota, Anil Thilsted, Daniel Trimarco, Jesper Yue Pan, Ole Hansen, Jörg Hübner, Rafael Taboryski and Henri Jansen
Micromachines 2025, 16(1), 104; https://doi.org/10.3390/mi16010104 - 16 Jan 2025
Cited by 1 | Viewed by 1264
Abstract
A wafer-scale process for fabricating monolithically suspended nano-perforated membranes (NPMs) with integrated support structures into silicon is developed. Existing fabrication methods are suitable for many desired geometries, but face challenges related to mechanical robustness and fabrication complexity. We demonstrate a process that utilizes [...] Read more.
A wafer-scale process for fabricating monolithically suspended nano-perforated membranes (NPMs) with integrated support structures into silicon is developed. Existing fabrication methods are suitable for many desired geometries, but face challenges related to mechanical robustness and fabrication complexity. We demonstrate a process that utilizes the cyclic deposit, remove, etch, and multi-step (DREM) process for directional etching of high-aspect-ratio (HAR) 300 nm in diameter nano-pores of 700 nm pitch. Subsequently, a buried cavity beneath the nano-pores is formed by switching to an isotropic etch, which effectively yields a thick NPM. Due to this architecture’s flexibility and process robustness, structural parameters such as membrane thickness, diameter, integrated support structures, and cavity height can be adjusted, allowing a wide range of NPM geometries. This work presents NPMs with final thicknesses of 4.5 µm, 6.5 µm, and 12 µm. Detailed steps of this new approach are discussed, including the etching of a through-silicon-via to establish the connection of the NPM to the macro-world. Our approach to fabricating NPMs within single-crystal silicon overcomes some of the limitations of previous methods. Owing to its monolithic design, this NPM architecture permits further enhancements through material deposition, pore size reduction, and surface functionalization, broadening its application potential for corrosive environments, purification and separation processes, and numerous other advanced applications. Full article
(This article belongs to the Special Issue Micro and Nano Machining Processes, 3rd Edition)
Show Figures

Figure 1

22 pages, 4065 KiB  
Article
Inertial Memory Effects in Molecular Transport Across Nanoporous Membranes
by Slobodanka Galovic, Milena Čukić and Dalibor Chevizovich
Membranes 2025, 15(1), 11; https://doi.org/10.3390/membranes15010011 - 6 Jan 2025
Cited by 1 | Viewed by 1012
Abstract
Nanoporous membranes are heterogeneous structures, with heterogeneity manifesting at the microscale. In examining particle transport through such media, it has been observed that this transport deviates from classical diffusion, as described by Fick’s second law. Moreover, the classical model is physically unsustainable, as [...] Read more.
Nanoporous membranes are heterogeneous structures, with heterogeneity manifesting at the microscale. In examining particle transport through such media, it has been observed that this transport deviates from classical diffusion, as described by Fick’s second law. Moreover, the classical model is physically unsustainable, as it is non-causal and predicts an infinite speed of concentration perturbation propagation through a substantial medium. In this work, we have derived two causal models as extensions of Fick’s second law, where causality is linked to the effects of inertial memory in the nanoporous membrane. The results of the derived models have been compared with each other and with those obtained from the classical model. It has been demonstrated that both causal models, one with exponentially fading inertial memory and the other with power-law fading memory, predict that the concentration perturbation propagates as a damped wave, leading to an increased time required for the cumulative amount of molecules passing through the membrane to reach a steady state compared to the classical model. The power-law fading memory model predicts a longer time required to achieve a stationary state. These findings have significant implications for understanding cell physiology, developing drug delivery systems, and designing nanoporous membranes for various applications. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

13 pages, 2766 KiB  
Article
Low-Cost and Portable Biosensor Based on Monitoring Impedance Changes in Aptamer-Functionalized Nanoporous Anodized Aluminum Oxide Membrane
by Nianyu Jiang and Pranav Shrotriya
Micromachines 2025, 16(1), 35; https://doi.org/10.3390/mi16010035 - 29 Dec 2024
Viewed by 1249
Abstract
We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and [...] Read more.
We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and the impedance reader is utilized to monitor transmembrane impedance changes. The biosensor is utilized to detect amodiaquine molecules using an amodiaquine-binding aptamer (OR7)-functionalized membrane. The aptamer-functionalized membrane is exposed to different concentrations of amodiaquine molecules to characterize the sensitivity of the sensor response. The specificity of the sensor response is characterized by exposure to varying concentrations of chloroquine, which is similar in structure to amodiaquine but does not bind to the OR7 aptamer. A commercial potentiostat is also used to measure the sensor response for amodiaquine and chloroquine. The sensing response measured using both the portable impedance reader and the commercial potentiostat showed a similar dynamic response and detection threshold. The specific and sensitive sensing results for amodiaquine demonstrate the efficacy of the low-cost and portable biosensor. Full article
(This article belongs to the Special Issue Biosensors for Diagnostic and Detection Applications, 2nd Edition)
Show Figures

Figure 1

18 pages, 5355 KiB  
Article
Tuning of Water Vapor Permeability in 2D Nanocarbon-Based Polypropylene Composite Membranes
by Glykeria A. Visvini, Georgios N. Mathioudakis, Amaia Soto Beobide and George A. Voyiatzis
Nanomaterials 2025, 15(1), 11; https://doi.org/10.3390/nano15010011 - 25 Dec 2024
Cited by 1 | Viewed by 857
Abstract
This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling [...] Read more.
This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling the water vapor permeable capabilities of PP composite membranes, widely used in industrial applications, such as technical (building roof membranes) or medical (surgical gowns) textiles. The study investigates how the dispersion and concentration of these graphene nanomaterials within the PP matrix influence the microstructure and water vapor permeability (WVP) performance. The WVP measurements were conducted via the “wet” cup method. The presence of either GO, rGO or GNPs in the new polyolefin composite membranes revealed 6- to 7-fold enhanced WVP values compared to pristine PP. This improvement is attributed to the nanoindentations created at the interface of the carbon nanoinclusions with the polymer matrix in the form of nanopores that facilitate water vapor diffusion. In the particular case of GO and rGO, residual oxidative groups might contribute to the WVP as well. This is the first study to compare GO, rGO and even GNP inclusions under identical conditions, providing deeper insights into the mechanisms driving the observed improvements in WVP performance. Full article
(This article belongs to the Special Issue Functional Two-Dimensional Materials, Thin Films and Coatings)
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Tissue Sources Influence the Morphological and Morphometric Characteristics of Collagen Membranes for Guided Bone Regeneration
by Josefa Alarcón-Apablaza, Karina Godoy-Sánchez, Marcela Jarpa-Parra, Karla Garrido-Miranda and Ramón Fuentes
Polymers 2024, 16(24), 3499; https://doi.org/10.3390/polym16243499 - 16 Dec 2024
Cited by 1 | Viewed by 963
Abstract
(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed [...] Read more.
(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed to evaluate the morphological and chemical properties of porcine collagen membranes from five different tissue sources: skin, pericardium, dermis, tendons, and peritoneum. (2) Methods: The membrane structure was analyzed using energy-dispersive X-ray spectrometry (EDX), variable pressure scanning electron microscopy (VP-SEM), Fourier transform infrared spectroscopy (FTIR), and thermal stability via thermogravimetric analysis (TGA). The absorption capacity of the membranes for GBR was also assessed using an analytical digital balance. (3) Results: The membranes displayed distinct microstructural features. Skin- and tendon-derived membranes had rough surfaces with nanopores (1.44 ± 1.24 µm and 0.46 ± 0.1 µm, respectively), while pericardium- and dermis-derived membranes exhibited rough surfaces with macropores (78.90 ± 75.89 µm and 64.89 ± 13.15 µm, respectively). The peritoneum-derived membrane featured a rough surface of compact longitudinal fibers with irregular macropores (9.02 ± 3.70 µm). The thickness varied significantly among the membranes, showing differences in absorption capacity. The pericardium membrane exhibited the highest absorption, increasing by more than 10 times its initial mass. In contrast, the skin-derived membrane demonstrated the lowest absorption, increasing by less than 4 times its initial mass. Chemical analysis revealed that all membranes were primarily composed of carbon, nitrogen, and oxygen. Thermogravimetric and differential scanning calorimetry analyses showed no significant compositional differences among the membranes. FTIR spectra confirmed the presence of collagen, with characteristic peaks corresponding to Amide A, B, I, II, and III. (4) Conclusions: The tissue origin of collagen membranes significantly influences their morphological characteristics, which may, in turn, affect their osteogenic properties. These findings provide valuable insights into the selection of collagen membranes for GBR applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

Back to TopTop