Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = nanoparticle based-plasmonic sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 935 KiB  
Article
Plasmon-Driven Catalytic Inhibition of pATP Oxidation as a Mechanism for Indirect Fe²⁺ Detection on a SERS-Active Platform
by Alexandru-Milentie Hada, Mihail-Mihnea Moruz, Alexandru Holca, Simion Astilean, Marc Lamy de la Chapelle and Monica Focsan
Catalysts 2025, 15(7), 667; https://doi.org/10.3390/catal15070667 - 8 Jul 2025
Viewed by 402
Abstract
The detection of Fe2+ in environmental water sources is critical due to its biological relevance and potential toxicity at elevated levels. Herein, we report a plasmon-driven catalytic sensing nanoplatform based on p-aminothiophenol (pATP)-functionalized silver nanoparticles (AgNPs) for the selective and sensitive detection [...] Read more.
The detection of Fe2+ in environmental water sources is critical due to its biological relevance and potential toxicity at elevated levels. Herein, we report a plasmon-driven catalytic sensing nanoplatform based on p-aminothiophenol (pATP)-functionalized silver nanoparticles (AgNPs) for the selective and sensitive detection of Fe2+. The nanoplatform exploits the inhibition of the plasmon-driven catalytic conversion of pATP to 4,4-dimercaptoazobenzene (DMAB), monitored via surface-enhanced Raman scattering (SERS) spectroscopy. The catalytic efficiency was quantified by the intensity ratio between the formed DMAB-specific Raman band and the common aromatic ring vibration band of pATP and DMAB. This ratio decreased proportionally with increasing Fe2+ concentration over a range of 100 µM to 1.5 mM, with a calculated limit of detection of 39.7 µM. High selectivity was demonstrated against common metal ions, and excellent recovery rates (96.6–99.4%) were obtained in real water samples. Mechanistic insights, supported by chronopotentiometric measurements under light irradiation, revealed a competitive oxidation pathway in which Fe2+ preferentially consumes plasmon-generated hot holes over pATP. This mechanism clarifies the observed catalytic inhibition and supports the design of redox-responsive SERS sensors. The platform offers a rapid, low-cost, and portable solution for Fe2+ monitoring and holds promise for broader applications in detecting other redox-active analytes in complex environmental matrices. Full article
Show Figures

Figure 1

24 pages, 2772 KiB  
Article
Harnessing the Unique Nature of Evanescent Waves: Optimizing FOEW LSPR Sensors with Absorption-Focused Nanoparticle Design
by Omar Awad, AbdulRahman Ghannoum and Patricia Nieva
Fibers 2025, 13(6), 81; https://doi.org/10.3390/fib13060081 - 17 Jun 2025
Viewed by 416
Abstract
This work presents a novel and comprehensive framework for optimizing fiber optic evanescent wave (FOEW) localized surface plasmon resonance (LSPR) sensors by investigating the unique interaction between evanescent waves and plasmonic nanoparticles. Unlike propagating light, the evanescent wave is a localized, non-propagating field [...] Read more.
This work presents a novel and comprehensive framework for optimizing fiber optic evanescent wave (FOEW) localized surface plasmon resonance (LSPR) sensors by investigating the unique interaction between evanescent waves and plasmonic nanoparticles. Unlike propagating light, the evanescent wave is a localized, non-propagating field that interacts exclusively with absorbing media near the fiber surface. This characteristic highlights the importance of prioritizing nanoparticle absorption over total extinction in FOEW sensor design. The optical response of silver nanoparticles was modeled across a size range of 10–100 nm, showing that absorption increases with particle number. Among the sizes tested, 30 nm silver nanoparticles exhibited the highest absorption efficiency, which was confirmed experimentally. An analytical adsorption kinetics model based on diffusion transport further predicted that smaller nanoparticles yield higher surface coverage, a result validated through atomic force microscopy (AFM) and scanning electron microscopy (SEM) imaging. Refractive index (RI) sensitivity tests conducted on sensors fabricated with 10 nm, 20 nm, and 30 nm silver nanoparticles revealed that while smaller nanoparticles produced higher initial absorption due to greater surface density, the 30 nm particles ultimately provided superior RI sensitivity due to their enhanced absorption efficiency. These findings underscore the significance of absorption-centered nanoparticle design in maximizing FOEW LSPR sensor performance. Full article
Show Figures

Figure 1

12 pages, 9594 KiB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 651
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

10 pages, 2212 KiB  
Article
A Metal Ion-Responsive Spiropyran-Based Fluorescent Color-Changing Hydrogel
by Yuxiu Yin, Xin Li, Ying Li, Hongyan Miao and Gang Shi
Materials 2025, 18(11), 2573; https://doi.org/10.3390/ma18112573 - 30 May 2025
Viewed by 405
Abstract
The low fluorescence quantum efficiency of hydrophilic modified spiropyran in hydrogel matrices cannot be naturally improved during photoresponsive operation, which significantly limits their practical applications.In this study, a hybrid hydrogel system integrating metal plasmon resonance-enhanced fluorescence effects is designed through copolymerization of N,N′-bis(acryloyl)cystamine-modified [...] Read more.
The low fluorescence quantum efficiency of hydrophilic modified spiropyran in hydrogel matrices cannot be naturally improved during photoresponsive operation, which significantly limits their practical applications.In this study, a hybrid hydrogel system integrating metal plasmon resonance-enhanced fluorescence effects is designed through copolymerization of N,N′-bis(acryloyl)cystamine-modified Au nanoparticles (Au NPs), hydrophilic graft-modified spiropyran molecules, and N-isopropylacrylamide. This approach successfully achieves a spiropyran-based fluorescent hydrogel sensor with enhanced fluorescence intensity. Furthermore, an inverted pyramid-structured surface is engineered on the hydrogel using a template-assisted strategy, combining anti-reflection optical effects with plasmonic enhancement mechanisms. Molecular modification facilitated the integration of spiropyran and Au NPs into the hydrogel molecular chains, enhancing the dispersion of Au NPs within the hydrogel matrix and preventing fluorescence quenching from direct contact between Au NPs and spiropyran. Additionally, the anti-reflection effect of the hydrogel surface microstructure and the plasmon resonance effect of Au NPs were crucial in boosting the sensor’s fluorescence. Finally, the fluorescence intensity of the hydrogel increased by 10.2 times. In addition, under the action of excitation light, this sensor exhibited dual responsiveness of colorimetry and fluorescence, allowing for the sensing of heavy metal ions. The limit of detection for Zn2+ is as low as 0.803 μM, and the hydrogel exhibited more than 10 cycles of photo-isomerization and ion responsiveness. Full article
(This article belongs to the Special Issue Construction and Applications in Functional Polymers)
Show Figures

Figure 1

15 pages, 902 KiB  
Article
Silver Nanoparticles for Biosensing and Drug Delivery: A Mechanical Study on DNA Interaction
by Katarína Nemčeková, Patrícia Dudoňová, Tomáš Holka, Sabína Balážová, Michaela Hornychová, Viktória Szebellaiová, Monika Naumowicz, Pavol Gemeiner, Tomáš Mackuľak, Miroslav Gál and Veronika Svitková
Biosensors 2025, 15(5), 331; https://doi.org/10.3390/bios15050331 - 21 May 2025
Viewed by 846
Abstract
Silver nanoparticles (AgNPs) have attracted tremendous attention in recent years due to their unique physicochemical properties, including pronounced surface plasmon resonance, tunable size, and amenability to functionalization. These attributes underpin the growing interest in AgNPs as SMART nanocarriers for targeted drug delivery and [...] Read more.
Silver nanoparticles (AgNPs) have attracted tremendous attention in recent years due to their unique physicochemical properties, including pronounced surface plasmon resonance, tunable size, and amenability to functionalization. These attributes underpin the growing interest in AgNPs as SMART nanocarriers for targeted drug delivery and as active components in biosensing platforms. In this work, we discuss various synthesis strategies for AgNPs—ranging from conventional chemical methods to green approaches—and highlight their subsequent functionalization with anticancer drugs, notably doxorubicin (DOX). We also examine the potential of AgNPs in biosensor applications, emphasizing electrochemical and optical detection modalities capable of monitoring drug release, oxidative stress, and relevant biomarkers. Our experimental data support the conclusion that AgNPs can effectively improve therapeutic efficacy by exploiting tumor-specific conditions (e.g., lower pH) while also enhancing biosensor sensitivity via surface plasmon resonance and electrochemical signal amplification. We provide a thorough discussion of the results, including mechanistic aspects of reactive oxygen species (ROS) generation, drug release kinetics, and sensor performance metrics. Overall, AgNP-based nanocarriers emerge as a powerful platform to address current challenges in precision oncology and medical diagnostics. Full article
(This article belongs to the Special Issue Nanotechnology-Based Biosensors in Drug Delivery)
Show Figures

Graphical abstract

17 pages, 5277 KiB  
Article
A New Chitosan-Modified Paper-Based SERS Glucose Sensor with Enhanced Reproducibility, Stability, and Sensitivity for Non-Enzymatic Label-Free Detection
by Rashida Akter, Toeun Kim, Jong Seob Choi and Hongki Kim
Biosensors 2025, 15(3), 153; https://doi.org/10.3390/bios15030153 - 1 Mar 2025
Cited by 1 | Viewed by 1246
Abstract
We have fabricated a new highly reproducible, stable, and sensitive cellulose paper-based Surfaced-enhanced Raman scattering (SERS) sensor substrate for non-enzymatic label-free glucose detection. To enhance reproducibility, stability, and sensitivity, the cellulose paper (CP) substrate has been modified with a naturally derived biocompatible polymer, [...] Read more.
We have fabricated a new highly reproducible, stable, and sensitive cellulose paper-based Surfaced-enhanced Raman scattering (SERS) sensor substrate for non-enzymatic label-free glucose detection. To enhance reproducibility, stability, and sensitivity, the cellulose paper (CP) substrate has been modified with a naturally derived biocompatible polymer, chitosan (CS), followed by depositing enormous amount of plasmonic silver nanoparticles (AgNPs) on CP/CS and finally forming a self-assembling monolayer of 4-mercaptophenyl boronic acid (MPBA) on CP/CS/AgNPs (CP/CS/AgNPs/MPBA). The SERS sensor substrate is characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD) spectroscopy techniques. The glucose sensing is achieved by monitoring the SERS intensity of C-S and B-O stretching vibrations at 1072 cm−1 in MPBA, which is gradually increased with increasing concentration of glucose due to the increasing orientation change of MPBA on AgNPs. The results show that the proposed glucose paper-based SERS sensor exhibits a high analytical enhancement factor (AEF) (3.4 × 107), enhanced reproducibility (<7%), improved stability (>5 weeks), excellent selectivity towards other metabolic compounds, and high sensitivity with a limit of detection (LOD) of 0.74 mM and a linear dynamic range between 1.0 and 7.0 mM. The practical application of this SERS sensor is examined in real spiked and non-spiked human blood serum samples for the detection of glucose, and satisfactory recovery results have been obtained, demonstrating the potentiality of the present paper-based SERS sensor for non-enzymatic label-free glucose detection in real biological samples. Full article
Show Figures

Figure 1

14 pages, 3702 KiB  
Article
Sustainable and Flexible Surface-Enhanced Raman Scattering Transducer: Gold Nanoparticle-Bacterial Cellulose Composite for Pesticide Monitoring in Agrifood Systems
by Daniela Lospinoso, Adriano Colombelli, Sudipto Pal, Pasquale Cretì, Maria Concetta Martucci, Gabriele Giancane, Antonio Licciulli, Roberto Rella and Maria Grazia Manera
Biosensors 2025, 15(2), 69; https://doi.org/10.3390/bios15020069 - 23 Jan 2025
Viewed by 1411
Abstract
Functionalized plasmonic nanostructure platforms are widely used for developing optical biosensors and SERS assays. In this work, we present a low-cost and scalable surface-enhanced Raman scattering (SERS) system based on an innovative optical transducer comprising gold nanoparticles (AuNPs) embedded in nano-fibrillated bacterial cellulose [...] Read more.
Functionalized plasmonic nanostructure platforms are widely used for developing optical biosensors and SERS assays. In this work, we present a low-cost and scalable surface-enhanced Raman scattering (SERS) system based on an innovative optical transducer comprising gold nanoparticles (AuNPs) embedded in nano-fibrillated bacterial cellulose (BC). The AuNPs@BC composite leverages the unique nanofibrillar architecture of bacterial cellulose, which provides a high surface area, flexibility, and uniform nanoparticle distribution, enabling the formation of numerous electromagnetic “hot spots”. This structure excites localized surface plasmon resonance (LSPR), as demonstrated by a bulk sensitivity of 72 nm/RIU, and supports enhanced Raman signal amplification. The eco-friendly and disposable AuNPs@BC platform was tested for agrifood applications, focusing on the detection of thiram pesticide. The system achieved a detection limit of 0.24 ppm (1 µM), meeting the sensitivity requirements for regulatory compliance in food safety. A strong linear correlation (R2 ≈ 0.99) was observed between the SERS peak intensity at 1370 cm−1 and thiram concentrations, underscoring its potential for quantitative analysis. The combination of high sensitivity, reproducibility, and environmental sustainability makes the AuNPs@BC platform a promising solution for developing cost-effective, flexible, and portable sensors for pesticide monitoring and other biosensing applications. Full article
Show Figures

Figure 1

12 pages, 5661 KiB  
Communication
Light-Sheet Skew Ray-Based Microbubble Chemical Sensor for Pb2+ Measurements
by Tingting Zhuang, Lukui Xu, Mamoona Khalid, Xuan Wu, Linqiao Du, Soroush Shahnia, Christophe A. Codemard, Zhiyong Bai, Ying Wang, Shen Liu, George Y. Chen and Yiping Wang
Sensors 2024, 24(21), 6785; https://doi.org/10.3390/s24216785 - 22 Oct 2024
Viewed by 1268
Abstract
A multimode fiber-based sensor is proposed and demonstrated for the detection of lead traces in contaminated water. The sensing mechanism involves using a light sheet to excite a specific group of skew rays that optimizes light absorption. The sensing region features an inline [...] Read more.
A multimode fiber-based sensor is proposed and demonstrated for the detection of lead traces in contaminated water. The sensing mechanism involves using a light sheet to excite a specific group of skew rays that optimizes light absorption. The sensing region features an inline microbubble structure that funnels the skew rays into a tight ring, thereby intensifying the evanescent field. The sensitivity is further refined by incorporating gold nanoparticles, which amplify the evanescent field strength through localized surface plasmon resonance. The gold nanoparticles are functionalized with oxalic acid to improve specificity for lead ion detection. Experiment results demonstrated the significantly enhanced absorption sensitivity of the proposed sensing method for large center offsets, achieving a detection limit of 0.1305 ng/mL (the World Health Organization safety limit is 10 ng/mL) for concentrations ranging from 0.1 to 10 ng/mL. Full article
Show Figures

Figure 1

15 pages, 3341 KiB  
Article
Inkjet-Printed Localized Surface Plasmon Resonance Subpixel Gas Sensor Array for Enhanced Identification and Visualization of Gas Spatial Distributions from Multiple Odor Sources
by Tianshu Jiang, Hao Guo, Lingpu Ge, Fumihiro Sassa and Kenshi Hayashi
Sensors 2024, 24(20), 6731; https://doi.org/10.3390/s24206731 - 19 Oct 2024
Viewed by 1289
Abstract
The visualization of the spatial distributions of gases from various sources is essential to understanding the composition, localization, and behavior of these gases. In this study, an inkjet-printed localized surface plasmon resonance (LSPR) subpixel gas sensor array was developed to visualize the spatial [...] Read more.
The visualization of the spatial distributions of gases from various sources is essential to understanding the composition, localization, and behavior of these gases. In this study, an inkjet-printed localized surface plasmon resonance (LSPR) subpixel gas sensor array was developed to visualize the spatial distributions of gases and to differentiate between acetic acid, geraniol, pentadecane, and cis-jasmone. The sensor array, which integrates gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), and fluorescent pigments, was positioned 3 cm above the gas source. Hyperspectral imaging was used to capture the LSPR spectra across the sensor array, and these spectra were then used to construct gas information matrices. Principal component analysis (PCA) enabled effective classification of the gases and localization of their sources based on observed spectral differences. Heat maps that visualized the gas concentrations were generated using the mean squared error (MSE) between the sensor responses and reference spectra. The array identified and visualized the four gas sources successfully, thus demonstrating its potential for gas localization and detection applications. The study highlights a straightforward, cost-effective approach to gas sensing and visualization, and in future work, we intend to refine the sensor fabrication process and enhance the detection of complex gas mixtures. Full article
(This article belongs to the Special Issue Optical Gas Sensing and Applications)
Show Figures

Figure 1

12 pages, 4178 KiB  
Article
Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection
by Chia-Ling Sung, Tzung-Ta Kao and Yu-Cheng Lin
Nanomaterials 2024, 14(19), 1562; https://doi.org/10.3390/nano14191562 - 27 Sep 2024
Viewed by 1308
Abstract
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) [...] Read more.
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) create an effective SERS substrate, with additional hotspots at branch junctures enhancing LSPR. We achieve differential LSPR effects by varying the distribution and spacing of branches and the overall morphology. Adjustments to electrodeposition parameters, such as current and plating solution protective agents on an anodized aluminum oxide (AAO) base, allow for precise control over LSPR intensities. By pre-depositing AgNPs, the electron transmission paths during electrodeposition are modified, which leads to optimized dendritic morphology and enhanced LSPR effects. Parameter optimization produces elongated rods with main and secondary branches, covered with uniformly sized, densely packed, non-overlapping spherical AgNPs. This configuration enhances the LSPR effect by generating additional hotspots beyond the branch tips. Fine-tuning the electrodeposition parameters improved the AgNPs’ morphology, achieving uniform particle distribution and optimal spacing. Compared to non-SERS substrates, our structure amplified the Raman signal for lactic acid detection by five orders of magnitude. This method can effectively tailor SERS substrates for specific analytes and laser-based detection. Full article
(This article belongs to the Special Issue Nanomaterial-Based SERS Sensing and Detection Technology)
Show Figures

Figure 1

13 pages, 4872 KiB  
Article
Dual-Mode Sensing of Fe(III) Based on Etching Induced Modulation of Localized Surface Plasmon Resonance and Surface Enhanced Raman Spectroscopy
by Miriam Parmigiani, Benedetta Albini, Pietro Galinetto and Angelo Taglietti
Nanomaterials 2024, 14(18), 1467; https://doi.org/10.3390/nano14181467 - 10 Sep 2024
Viewed by 1241
Abstract
Convenient, rapid, highly sensitive and on-site iron determination is important for environmental safety and human health. We developed a sensing system for the detection of Fe(III) in water based on 7-mercapto-4-methylcoumarine (MMC)-stabilized silver-coated gold nanostars (GNS@Ag@MMC), exploiting a redox reaction between the Fe(III) [...] Read more.
Convenient, rapid, highly sensitive and on-site iron determination is important for environmental safety and human health. We developed a sensing system for the detection of Fe(III) in water based on 7-mercapto-4-methylcoumarine (MMC)-stabilized silver-coated gold nanostars (GNS@Ag@MMC), exploiting a redox reaction between the Fe(III) cation and the silver shell of the nanoparticles, which causes a severe transformation of the nanomaterial structure, reverting it to pristine GNSs. This system works by simultaneously monitoring changes in the Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman Spectroscopy (SERS) spectra as a function of added Fe(III). The proposed sensing system is able to detect the Fe(III) cation in the 1.0 × 10−5–1.5 × 10−4 M range, and its selectivity of the GNS@Ag@MMC sensor toward iron has been verified monitoring the LSPR and the SERS response to other cations with a clear selectivity toward Fe(III). Full article
Show Figures

Figure 1

14 pages, 2462 KiB  
Article
Development of a Gold Nanoparticle-Based Sensor for Authentication of Organic Milk Based on Differential Levels of miRNA
by Karelmar Lopez-Benitez, Patricia Alcazar-Gonzalez, Loubna Abou el qassim, Mª Teresa Fernandez-Argüelles, Fernando Vicente, Luis J. Royo and Mario Menendez-Miranda
Nanomaterials 2024, 14(16), 1364; https://doi.org/10.3390/nano14161364 - 19 Aug 2024
Cited by 2 | Viewed by 1782
Abstract
Dairy production systems significantly impact environmental sustainability, animal welfare, and human health. Intensive farming maximizes output through high-input practices, raising concerns about environmental degradation, animal welfare, and health risks from antibiotic residues. Conversely, organic farming emphasizes sustainable practices, animal welfare, and minimal synthetic [...] Read more.
Dairy production systems significantly impact environmental sustainability, animal welfare, and human health. Intensive farming maximizes output through high-input practices, raising concerns about environmental degradation, animal welfare, and health risks from antibiotic residues. Conversely, organic farming emphasizes sustainable practices, animal welfare, and minimal synthetic inputs, potentially enhancing biodiversity, soil health, and milk quality. MicroRNAs (miRNAs), non-coding RNAs regulating gene expression, are promising biomarkers due to their response to various conditions. In this study, miRNAs bta-miR-103 and bta-miR-155, which are abundant in milk from pasture-fed cows, were selected. Additionally, bta-miR-215, which is abundant in milk fat from intensive systems, was also studied, in order to differentiate dairy production systems. A novel, cost-effective gold nanoparticle (AuNP)-based sensor was developed for miRNA detection, leveraging the unique plasmonic properties of AuNPs for visual detection. The method involves functionalizing AuNPs with complementary RNA probes and detecting miRNA-induced aggregation through colorimetric changes. This rapid, results in 30 min, and sensitive, visual limit of detection of 200 nM, assay requires minimal instrumentation and can be easily interpreted, offering significant advantages for field implementation in characterizing dairy production systems. This study demonstrates the successful application of this sensor in detecting miRNAs in 350 nM miRNA spiked raw milk, highlighting its potential for in situ dairy industry applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3845 KiB  
Article
Temperature-Dependent Localized Surface Plasmon Resonances of Noble Nanoparticles Covered with Polymers
by Dimitrios Ntemogiannis, Maria Tsarmpopoulou, Constantinos Moularas, Yiannis Deligiannakis, Alkeos Stamatelatos, Dionysios M. Maratos, Nikolaos G. Ploumis, Vagelis Karoutsos, Spyridon Grammatikopoulos, Mihail Sigalas and Panagiotis Poulopoulos
Photonics 2024, 11(7), 618; https://doi.org/10.3390/photonics11070618 - 28 Jun 2024
Cited by 4 | Viewed by 1757
Abstract
Self-assembled gold and silver nanoparticles were fabricated in medium vacuum conditions on Corning glass substrates by means of DC magnetron sputtering. The samples were deposited either at 420 °C or 440 °C, or they were initially deposited at room temperature followed by post [...] Read more.
Self-assembled gold and silver nanoparticles were fabricated in medium vacuum conditions on Corning glass substrates by means of DC magnetron sputtering. The samples were deposited either at 420 °C or 440 °C, or they were initially deposited at room temperature followed by post annealing. Subsequently, they were covered with three different polymers, namely Polystyrene-block-polybutadiene-blockpolystyrene (PS-b-PBD-b-PS), Polystyrene-co-methyl methacrylate (PS-co-PMMA) and Polystyreneblock-polyisoprene-block-polystyrene (PS-b-PI-b-PS), using spin coating. Localized surface plasmon resonances were recorded in the temperature range of −25 °C–100 °C. We show that the resonance position changes systematically as a function of temperature. Theoretical calculations carried out via the Rigorous Coupled Wave Analysis support the experimental results. Based on these findings, the investigated materials demonstrate potential as components for the development of temperature sensors. Full article
(This article belongs to the Special Issue Plasmon-Enhanced Photon Emission in Nanostructures)
Show Figures

Figure 1

11 pages, 1533 KiB  
Article
Plastic Analysis with a Plasmonic Nano-Gold Sensor Coated with Plastic-Binding Peptides
by Francois Gagné, Maxime Gauthier and Chantale André
J. Xenobiot. 2024, 14(2), 690-700; https://doi.org/10.3390/jox14020040 - 1 Jun 2024
Cited by 2 | Viewed by 1496
Abstract
Contamination with plastics of small dimensions (<1 µm) represents a health concern for many terrestrial and aquatic organisms. This study examined the use of plastic-binding peptides as a coating probe to detect various types of plastic using a plasmon nano-gold sensor. Plastic-binding peptides [...] Read more.
Contamination with plastics of small dimensions (<1 µm) represents a health concern for many terrestrial and aquatic organisms. This study examined the use of plastic-binding peptides as a coating probe to detect various types of plastic using a plasmon nano-gold sensor. Plastic-binding peptides were selected for polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS) based on the reported literature. Using nAu with each of these peptides to test the target plastics revealed high signal, at 525/630 nm, suggesting that the target plastic limited HCl-induced nAu aggregation. Testing with other plastics revealed some lack of specificity but the signal was always lower than that of the target plastic. This suggests that these peptides, although reacting mainly with their target plastic, show partial reactivity with the other target plastics. By using a multiple regression model, the relative levels of a given plastic could be corrected by the presence of other plastics. This approach was tested in freshwater mussels caged for 3 months at sites suspected to release plastic materials: in rainfall overflow discharges, downstream a largely populated city, and in a municipal effluent dispersion plume. The data revealed that the digestive glands of the mussels contained higher levels of PP, PE, and PET plastic particles at the rainfall overflow and downstream city sites compared to the treated municipal effluent site. This corroborated earlier findings that wastewater treatment could remove nanoparticles, at least in part. A quick and inexpensive screening test for plastic nanoparticles in biological samples with plasmonic nAu-peptides is proposed. Full article
Show Figures

Figure 1

14 pages, 4547 KiB  
Article
Molding Process Retaining Gold Nanoparticle Assembly Structures during Transfer to a Polycarbonate Surface
by Philipp Zimmermann, Daniel Schletz, Marisa Hoffmann, Patrick T. Probst, Andreas Fery and Jürgen Nagel
Polymers 2024, 16(11), 1553; https://doi.org/10.3390/polym16111553 - 31 May 2024
Viewed by 1181
Abstract
The immobilization of gold nanoparticle (AuNP) linear surface assemblies on polycarbonate (PC) melt surface via molding is investigated. The order of the particle assemblies is preserved during the molding process. The assemblies on PC exhibit plasmonic coupling features and dichroic properties. The structure [...] Read more.
The immobilization of gold nanoparticle (AuNP) linear surface assemblies on polycarbonate (PC) melt surface via molding is investigated. The order of the particle assemblies is preserved during the molding process. The assemblies on PC exhibit plasmonic coupling features and dichroic properties. The structure of the assemblies is quantified based on Scanning Electron Microscopy (SEM) and image analysis data using an orientational order parameter. The transfer process from mold to melt shows high structural fidelity. The order parameter of around 0.98 reflects the orientation of the lines and remains unaffected, independent of the injection direction of the melt relative to the particle lines. This is discussed in the frame of fountain flow during injection molding. The particles were permanently fixed and withstood the injection molding process, detachment of the substrate, and extraction in boiling ethanol. The plasmonic particles coupled strongly within the dense nanoparticle lines to produce anisotropic optical properties, as quantified by dichroic ratios of 0.28 and 0.52 using ultraviolet–visible–near-infrared (UV–Vis–NIR) spectroscopy. AuNP line assemblies on a polymer surface may be a basis for plasmonic devices like surface-enhanced Raman scattering (SERS) sensors or a precursor for nanowires. Their embedding via injection molding constitutes an important link between particle-self-assembly approaches for optically functional surfaces and polymer processing techniques. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

Back to TopTop