Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (701)

Search Parameters:
Keywords = nanomaterials aging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1479 KB  
Review
Application of Graphene Oxide Nanomaterials in Crop Plants and Forest Plants
by Yi-Xuan Niu, Xin-Yu Yao, Jun Hyok Won, Zi-Kai Shen, Chao Liu, Weilun Yin, Xinli Xia and Hou-Ling Wang
Forests 2026, 17(1), 94; https://doi.org/10.3390/f17010094 - 10 Jan 2026
Viewed by 150
Abstract
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, [...] Read more.
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, and root or soil exposure, while comparing annual crops with woody forest plants. Mechanistic progress points to a shared physicochemical basis: surface oxygen groups and sheet geometry reshape water and ion microenvironments at the soil–seed and soil–rhizosphere interfaces, and many reported shifts in antioxidant enzymes and hormone pathways likely represent downstream stress responses. In crops, low-to-moderate doses most consistently improve germination, root architecture, and tolerance to salinity or drought stress, whereas high doses or prolonged root exposure can cause root surface coating, oxidative injury, and photosynthetic inhibition. In forest plants, evidence remains limited and often relies on seedlings or tissue culture. For forest plants with long life cycles, processes such as soil persistence, aging, and multi-seasonal carry-over become key factors, especially in nurseries and restoration substrates. The available data indicate predominant root retention with generally limited root-to-shoot translocation, so residues in edible and medicinal organs remain insufficiently quantified under realistic-use patterns. This review provides a scenario-based framework for crop- and forestry-specific safe-dose windows and proposes standardized endpoints for long-term fate and ecological risk assessment. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

15 pages, 3551 KB  
Article
Silver Nanoclusters Decrease Bacterial Resistance to Heavy Metals and Antibiotics
by Gennady L. Burygin, Daniil S. Chumakov, Anastasia S. Astankova, Yulia A. Filip’echeva, Julia A. Balabanova and Yelena V. Kryuchkova
Nanomaterials 2026, 16(1), 54; https://doi.org/10.3390/nano16010054 - 31 Dec 2025
Viewed by 340
Abstract
Nanomaterials are widely used in biomedical research as drug and antibody carriers, and some nanomaterials have been shown to exhibit antimicrobial activity. Previously, silver nanoclusters (AgNCs) were predicted to interact with the bacterial TolC protein, which is involved in the development of multidrug [...] Read more.
Nanomaterials are widely used in biomedical research as drug and antibody carriers, and some nanomaterials have been shown to exhibit antimicrobial activity. Previously, silver nanoclusters (AgNCs) were predicted to interact with the bacterial TolC protein, which is involved in the development of multidrug resistance in pathogens. In this study, glutathione-coated AgNCs were synthesized and characterized. Their toxicological properties were studied in a microplate assay against five bacterial strains, both as single components and in mixtures with heavy metal salts and antibiotics. The resulting AgNCs had a diameter of 2.2 ± 0.5 nm, with excitation and emission maxima of λ = 490 nm and λ = 638 nm, respectively. No significant growth inhibition was observed at the concentrations used in resistance modulation assays (≤2.5 µg/mL Ag), except for transient effects at very high concentrations. A decrease in bacterial resistance to copper (II) and cadmium (II) cations and the antibiotics erythromycin and levofloxacin was observed upon the addition of AgNCs containing 2.5 μg/mL silver to the nutrient medium. A dose-dependent effect of AgNCs on bacterial resistance to toxicants was established. Thus, nanoclusters can be considered as inhibitors of bacterial resistance to heavy metals and antibiotics, which may be useful in studying bacterial adaptation mechanisms and developing technologies for overcoming multidrug resistance in bacteria. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
Show Figures

Figure 1

9 pages, 4681 KB  
Article
Facile Galvanic Replacement Toward One-Dimensional Cu-Based Bimetallic Nanobelts
by Ying Xie, Qitong Sun, Yuanyuan Li, Wanwan Li, Zhiwei Hou, Lihui Wei and Sujun Guan
Nanomaterials 2026, 16(1), 38; https://doi.org/10.3390/nano16010038 - 26 Dec 2025
Viewed by 374
Abstract
We report a galvanic replacement-driven strategy for the in situ growth of highly uniform one-dimensional (1D) Cu@CuO-X (X = Ag, Bi) nanobelts directly on aluminum foils. Unlike conventional multi-step coating or hard-template replication strategies, the formation of these heterostructured nanobelts is governed by [...] Read more.
We report a galvanic replacement-driven strategy for the in situ growth of highly uniform one-dimensional (1D) Cu@CuO-X (X = Ag, Bi) nanobelts directly on aluminum foils. Unlike conventional multi-step coating or hard-template replication strategies, the formation of these heterostructured nanobelts is governed by a spontaneous interfacial galvanic replacement process between Cu and the introduced metal species, ensuring in situ growth and intimate interfacial integration. Comprehensive SEM, TEM, XRD, and XPS characterizations confirm the successful formation of Cu@CuO-Ag and Cu@CuO-Bi architectures, where Bi predominantly exists in the oxidized Bi3+ state, forming Bi2O3-like surface species. Benefiting from their 1D anisotropic framework and controllable heterointerfaces, this work underscores the distinctiveness and versatility of the self-templated galvanic replacement strategy for the design of multifunctional nanomaterials. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

35 pages, 20186 KB  
Article
Magnetoplasmonic Nanostructures from Magnetite with Noble Metal Surface Modification and Their Antimicrobial Activity
by Helmina Ardeleanu, Maria-Crinela Ardeleanu, Simona Dunca, Marian Grigoras, Gabriel Ababei, Daniela Pricop, Laura Ursu, Georgiana Bulai, Daniel Timpu, Nicoleta Lupu, Alin Ciobica, Mihaela Racuciu and Dorina Creanga
Int. J. Mol. Sci. 2025, 26(24), 12092; https://doi.org/10.3390/ijms262412092 - 16 Dec 2025
Viewed by 284
Abstract
Multifunctional nanomaterials have been extensively investigated in theranostics to enhance therapeutic specificity, biocompatibility, and responsiveness to external magnetic gradients. We synthesized magnetoplasmonic nanocomposites comprising magnetite nanoparticles modified with gold and silver. Magnetite was synthesized via chemical co-precipitation and stabilized in an aqueous medium [...] Read more.
Multifunctional nanomaterials have been extensively investigated in theranostics to enhance therapeutic specificity, biocompatibility, and responsiveness to external magnetic gradients. We synthesized magnetoplasmonic nanocomposites comprising magnetite nanoparticles modified with gold and silver. Magnetite was synthesized via chemical co-precipitation and stabilized in an aqueous medium using glucose, which also served as a reducing agent for Au3+ and Ag+ ions on the nanoparticle surface. Microstructural, magnetic, spectral, and optical characterizations confirmed the successful formation of nanocomposites with properties suitable for biomedical applications. Plasmonic behavior was evidenced by visible-range absorbance maxima at 398 nm (Ag) and 538 nm (Au), while Transmission Electron Microscopy (TEM) revealed mean diameters of 21 and 23 nm. Zeta potential values of +23 mV for magnetite–silver and −40 mV for magnetite–gold nanocomposite samples indicated good suspension stability. Antibacterial activity against Gram-positive and Gram-negative bacteria was evaluated using agar diffusion and by determining the minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Silver-modified magnetite nanocomposites exhibited the most potent effects, with MIC values of 0.01 mg/mL for Escherichia coli (E. coli) and 0.02 mg/mL for Staphylococcus aureus (S. aureus), and corresponding MBC values of 0.027 mg/mL and 0.055 mg/mL, respectively. These magnetoplasmonic nanostructures have significant potential for overcoming antibiotic resistance and enabling targeted therapeutic action through magnetic guidance. Full article
(This article belongs to the Special Issue Multifunctional Nanocomposites for Bioapplications)
Show Figures

Graphical abstract

31 pages, 1574 KB  
Review
Nanoparticle-Based Assays for Antioxidant Capacity Determination
by Jolanta Flieger, Natalia Żuk, Ewelina Grabias-Blicharz, Piotr Puźniak and Wojciech Flieger
Antioxidants 2025, 14(12), 1506; https://doi.org/10.3390/antiox14121506 - 15 Dec 2025
Viewed by 644
Abstract
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation [...] Read more.
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation of other molecules during processing and storage. There are many classical methods for assessing antioxidant capacity/activity, which are based on mechanisms such as hydrogen atom transfer (HAT), single electron transfer (SET), electron transfer with proton conjugation (HAT/SET mixed mode assays) or the chelation of selected transition metal ions (e.g., Fe2+ or Cu1+). The antioxidant capacity (AOxC) index value can be expressed in terms of standard AOs (e.g., Trolox or ascorbic acid) equivalents, enabling different products to be compared. However, there is currently no standardized method for measuring AOxC. Nanoparticle sensors offer a new approach to assessing antioxidant status and can be used to analyze environmental samples, plant extracts, foodstuffs, dietary supplements and clinical samples. This review summarizes the available information on nanoparticle sensors as tools for assessing antioxidant status. Particular attention has been paid to nanoparticles (with a size of less than 100 nm), including silver (AgNPs), gold (AuNPs), cerium oxide (CeONPs) and other metal oxide nanoparticles, as well as nanozymes. Nanozymes belong to an advanced class of nanomaterials that mimic natural enzymes due to their catalytic properties and constitute a novel signal transduction strategy in colorimetric and absorption sensors based on the localized surface plasmon resonance (LSPR) band. Other potential AOxC sensors include quantum dots (QDs, <10 nm), which are particularly useful for the sensitive detection of specific antioxidants (e.g., GSH, AA and baicalein) and can achieve very good limits of detection (LOD). QDs and metallic nanoparticles (MNPs) operate on different principles to evaluate AOxC. MNPs rely on optical changes resulting from LSPR, which are monitored as changes in color or absorbance during synthesis, growth or aggregation. QDs, on the other hand, primarily utilize changes in fluorescence. This review aims to demonstrate that, thanks to its simplicity, speed, small sample volumes and relatively inexpensive instrumentation, nanoparticle-based AOxC assessment is a useful alternative to classical approaches and can be tailored to the desired aim and analytes. Full article
Show Figures

Figure 1

32 pages, 1415 KB  
Review
Challenges in Operating a Microbial Electrolysis Cell (MEC): Translating Biofilm Activity to Electron Flow and Hydrogen
by Naufila Mohamed Ashiq, Alreem Ali Juma Al Rahma Aldarmaki, Mariam Salem Saif Alketbi, Haya Aadel Abdullah Alshehhi, Alreem Salem Obaid Alkaabi, Noura Suhail Mubarak Saeed Alshamsi and Ashraf Aly Hassan
Sustainability 2025, 17(24), 11216; https://doi.org/10.3390/su172411216 - 15 Dec 2025
Viewed by 545
Abstract
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected [...] Read more.
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected current densities by the flow of electrons to produce hydrogen. This review examines the multiple causes that lead to the disconnect between robust biofilm development, electron transfer, and hydrogen production. Factors affecting biofilm generation (formation, substrate selection, thickness, conductivity, and heterogeneity) are discussed. Moreover, factors affecting electron transfer (electrode configuration, mass transfer constraints, key electroactive species, and metabolic pathways) are discussed. Also, substrate diffusion limitations, proton accumulation causing inhibitory pH gradients in stratified biofilms, elevated internal resistance, electron diversion to competing processes like hydrogenotrophic methanogenesis consuming H2, and detrimental biofilm aging, impacting hydrogen production, are studied. The critical roles of electrode materials, reactor configuration, and biofilm electroactivity are analyzed, emphasizing advanced electrochemical (CV, EIS, LSV), imaging (CLSM, SEM, AFM), and omics (metagenomics, transcriptomics, proteomics) techniques essential for diagnosing bottlenecks. Strategies to enhance extracellular electron transfer (EET) (advanced nanomaterials, redox mediators, conductive polymers, bioaugmentation, and pulsed electrical operation) are evaluated for bridging this performance gap and improving energy recovery. The review presents an integrated framework connecting biofilm electroactivity, EET kinetics, and hydrogen evolution efficiency. It highlights that conventional biofilm metrics may not reflect actual electron flow. Combining electrochemical, microelectrode, and omics insights allows precise evaluation of EET efficiency and supports sustainable MEC optimization for enhanced hydrogen generation. Full article
Show Figures

Figure 1

11 pages, 387 KB  
Article
Hazard Assessment of Ag Nanoparticles in Soil Invertebrates—Strong Impact on the Longer-Term Exposure of Folsomia candida
by Susana I. L. Gomes, Janeck J. Scott-Fordsmand and Mónica J. B. Amorim
J. Xenobiot. 2025, 15(6), 210; https://doi.org/10.3390/jox15060210 - 12 Dec 2025
Viewed by 372
Abstract
Silver nanomaterials (Ag NMs) are widely used, including in consumer products, and they inevitably enter the environment, with the soil compartment acting as a major sink. However, most available toxicity data focus on the reference Ag NM300K and rely on standard tests, even [...] Read more.
Silver nanomaterials (Ag NMs) are widely used, including in consumer products, and they inevitably enter the environment, with the soil compartment acting as a major sink. However, most available toxicity data focus on the reference Ag NM300K and rely on standard tests, even though long(er)-term exposure tests are recognized as particularly important for assessing the risks to soil invertebrates. Hence, the aim of the present study was to investigate the toxicity of commercial Ag NPs (Ag-Sigma, NPs < 150 nm) to the soil ecotoxicology model Folsomia candida (Collembola). Effects were assessed based on the standard OECD reproduction test (28 days) and beyond, with exposure prolonged for a second generation (56 days). Results showed that, based on the standard test (50% reproduction effect concentration—EC50 = 988 mg Ag/kg soil), the commercial Ag NPs were less toxic than the reference Ag NM300K and the ionic form AgNO3 (from literature). However, the toxicity dramatically increased (ca. 4 times) during the second-generation exposure (EC50(56d) = 234 mg Ag/kg soil), surpassing the toxicity of Ag NM300K. The decrease in adults’ size indicates that moulting might be affected. Overall, increased toxicity in prolonged exposure was not expected based on the available and standard test results, which highlights the importance of long(er)-term exposures to fully assess the risks of NMs to soil communities. Full article
Show Figures

Graphical abstract

12 pages, 1922 KB  
Article
Acute Toxicity of Pure and Silver-Doped ZnO Nanoparticles in Artemia salina Based on LC50 Determination
by Jexairys Sostre-Figueroa, Amanda Rodríguez-Cadiz and Sonia J. Bailón-Ruiz
Micro 2025, 5(4), 58; https://doi.org/10.3390/micro5040058 - 6 Dec 2025
Viewed by 397
Abstract
Zinc oxide (ZnO) nanoparticles are widely used in cosmetics, coatings, and industrial formulations due to their UV-absorbing and antimicrobial properties; however, their increasing release into aquatic systems has raised concerns about potential ecological risks. This study evaluates the acute toxicity of pure and [...] Read more.
Zinc oxide (ZnO) nanoparticles are widely used in cosmetics, coatings, and industrial formulations due to their UV-absorbing and antimicrobial properties; however, their increasing release into aquatic systems has raised concerns about potential ecological risks. This study evaluates the acute toxicity of pure and silver-doped ZnO (Ag-ZnO) nanoparticles using Artemia salina as a marine model organism. Nanoparticles were synthesized via a reflux-assisted method and characterized by UV–Vis spectroscopy, HRTEM, ED, FTIR, and EDX analyses, confirming a crystalline wurtzite structure, particle sizes of 10–30 nm, and successful incorporation of 5% Ag. Silver doping produced a slight blue shift in the absorption edge and minor lattice distortions, indicating modifications in the electronic structure. Toxicity assays revealed clear concentration- and time-dependent decreases in nauplii survival. Dose–response modeling showed LC50 values of 358 ppm (24 h) and 64 ppm (48 h) for pure ZnO, whereas Ag-ZnO exhibited LC50 values of 607 ppm (24 h) and 28 ppm (48 h). These results indicate that Ag doping does not enhance short-term toxicity but markedly increases toxicity after prolonged exposure. Overall, the findings highlight the need to consider both nanomaterial composition and exposure duration in ecotoxicological assessments and provide relevant data for evaluating the environmental impact of doped nanomaterials in marine systems. Full article
Show Figures

Figure 1

22 pages, 1697 KB  
Review
Advances in Reference Membranes for Potentiometric Sensing Applications
by Martyna Drużyńska, Nikola Lenar and Beata Paczosa-Bator
Membranes 2025, 15(12), 376; https://doi.org/10.3390/membranes15120376 - 6 Dec 2025
Viewed by 848
Abstract
Accurate potentiometric sensing critically depends on the stability and reproducibility of the reference electrode potential. Conventional liquid-filled Ag/AgCl or calomel electrodes, though well-established, are poorly compatible with miniaturized, portable, or long-term in situ sensing devices due to electrolyte leakage, junction potential instability, and [...] Read more.
Accurate potentiometric sensing critically depends on the stability and reproducibility of the reference electrode potential. Conventional liquid-filled Ag/AgCl or calomel electrodes, though well-established, are poorly compatible with miniaturized, portable, or long-term in situ sensing devices due to electrolyte leakage, junction potential instability, and maintenance requirements. Recent advances in solid-state and membrane-based reference electrodes offer a promising alternative by eliminating the liquid junction while maintaining stable and well-defined potential. This review summarizes the advancements in polymer-based and composite reference membranes, focusing on material strategies, stabilization mechanisms, and integration approaches. Emphasis is placed on ionic-liquid-doped membranes, conducting polymers, lipophilic salts, and carbon nanomaterials as functional components enhancing interfacial stability and charge transfer. The performances of various architectures, solid-contact, liquid-junction-free, and quasi-reference systems, are compared in terms of potential drift, matrix resistance, biocompatibility, and manufacturability. Furthermore, recent developments in printed, microfluidic, and wearable potentiometric platforms demonstrate how reference membrane innovations enable reliable operation in compact, low-cost, and flexible analytical systems. The review outlines current trends, challenges, and future directions toward universal, miniaturized, and leak-free reference electrodes suitable for innovative sensing technologies. Full article
Show Figures

Figure 1

30 pages, 9345 KB  
Article
Naringin and Naringenin Functionalized Silver Nanoparticles: Synthesis, Characterization and Biological Evaluation
by Ozana-Andreea Măriuț, Cornelia Mircea, Bianca Ivănescu, Irina Macovei, Adrian Fifere, Irina Roșca, Ioana-Andreea Turin-Moleavin, Ana Flavia Burlec, Monica Hăncianu and Andreia Corciovă
Pharmaceutics 2025, 17(12), 1569; https://doi.org/10.3390/pharmaceutics17121569 - 5 Dec 2025
Viewed by 580
Abstract
Background/Objectives: Flavonoids have been extensively investigated as reducing and stabilizing agents in the green synthesis of metallic nanoparticles. However, studies specifically employing pure naringin (NG) and naringenin (NGN) remain relatively scarce. Methods: In the present work, silver nanoparticles (AgNPs) were synthesized [...] Read more.
Background/Objectives: Flavonoids have been extensively investigated as reducing and stabilizing agents in the green synthesis of metallic nanoparticles. However, studies specifically employing pure naringin (NG) and naringenin (NGN) remain relatively scarce. Methods: In the present work, silver nanoparticles (AgNPs) were synthesized under controlled laboratory conditions using NG and NGN as bioreductants, and critical parameters governing nanoparticle formation were optimized. The synthesized AgNPs were comprehensively characterized using ultraviolet–visible (UV–Vis) spectroscopy, dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR). Results: The characterization analyses confirmed the successful formation of predominantly spherical AgNPs with average particle sizes of 17 nm (AgNG) and 20.4 nm (AgNGN). DLS analysis indicated zeta potentials of approximately −30 mV and PDIs of 0.45 (AgNG) and 0.29 (AgNGN), consistent with stable colloidal dispersions. Biological evaluations revealed that both AgNP systems exhibited notable antioxidant and antimicrobial activities. Furthermore, cytogenetic assessment using the Allium cepa assay demonstrated concentration-dependent alterations in mitotic index and chromosomal integrity, indicating biological activity at cellular level. Conclusions: Collectively, these results underscore the potential of flavonoid-mediated synthesis as an eco-friendly and effective approach for generating stable, bioactive nanomaterials with promising biological applications. Full article
Show Figures

Figure 1

15 pages, 3504 KB  
Article
Study on Enhanced Oil Recovery and Microscopic Mechanisms in Low-Permeability Reservoirs Using Nano-SiO2/CTAB System
by Tingting Cheng, Jinyi Wang, Huaizhu Liu, Jun Ding, Yuting Ren and Xinhao Gong
Processes 2025, 13(12), 3862; https://doi.org/10.3390/pr13123862 - 29 Nov 2025
Viewed by 466
Abstract
In the field of enhanced oil recovery in low-permeability reservoirs, the application of nanomaterials has attracted widespread attention. However, conventional nanomaterials exhibit issues such as large particle size and poor dispersion stability. This study selected SiO2 nanoparticles with a particle size of [...] Read more.
In the field of enhanced oil recovery in low-permeability reservoirs, the application of nanomaterials has attracted widespread attention. However, conventional nanomaterials exhibit issues such as large particle size and poor dispersion stability. This study selected SiO2 nanoparticles with a particle size of 10 nm and combined them with 12 types of commonly used oilfield surfactants. After aging at 120 °C for 48 h, using dispersion stability and interfacial tension (IFT) as evaluation criteria, hexadecyltrimethylammonium bromide (CTAB) was ultimately identified as the optimal modifier. The structure and morphology of the SiO2 particles were characterized in detail using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The system evaluated the dispersion stability of nanofluids before and after modification, as well as the interfacial properties (IFT reduced to the 10−1 mN/m range) and wettability (oil-wet surfaces reversed to strongly water-wet, with contact angles decreasing to 30°) of nanofluids with different modification degrees. Considering economic factors, the modified nano-SiO2 system with a ratio of 1:0.5 was selected. Microvisualization experiments revealed that the modified nanoscale system achieves residual oil displacement through three mechanisms: emulsification (reducing residual oil droplet size to enhance mobility), wetting reversal (lowering contact angle to weaken adhesion), and structural separation pressure (counteracting capillary forces to destabilize residual oil). Displacement experiments reveal that in rock cores with permeability ranging from 1 to 100 mD, the modified system exhibits a recovery rate trend that initially increases and then decreases. Nevertheless, it consistently enhances recovery rates, maintaining them above 12%, demonstrating strong application potential. Full article
Show Figures

Figure 1

30 pages, 5811 KB  
Article
Preparation of Temperature-Activated Nanomaterial-Enhanced Phase Transition Emulsion and Study on Self-Generating Plugging Particles
by Jiaqin Wang, Dan Bao, Yanjie Yang, Zhipeng Miao, Mingzhong Li, Yangyang Qi, Biao Wang, Taosong Liang and Peng Zhang
Nanomaterials 2025, 15(22), 1715; https://doi.org/10.3390/nano15221715 - 13 Nov 2025
Viewed by 545
Abstract
Fractured lost circulation remains a major drilling challenge due to low compatibility between conventional plugging materials and fractures. By utilizing thermosetting resin emulsification and high-temperature crosslinking coalescence, this study developed a temperature-activated nanomaterial enhanced liquid–solid phase transition plugging emulsion. The system adapts to [...] Read more.
Fractured lost circulation remains a major drilling challenge due to low compatibility between conventional plugging materials and fractures. By utilizing thermosetting resin emulsification and high-temperature crosslinking coalescence, this study developed a temperature-activated nanomaterial enhanced liquid–solid phase transition plugging emulsion. The system adapts to varying fracture apertures, forming plugging particles with a broad size distribution and high strength upon thermal activation. The structural characteristics, mechanical properties, and fracture-plugging performance of the plugging particles were systematically investigated. Results demonstrate that the optimized system, comprising 8 wt.% emulsifier, 0.16 wt.% dispersant, 0.4 wt.% crosslinker, 0.4 wt.% viscosifier, 70 wt.% distilled water, and 2 wt.% nano-silica (all percentages relative to epoxy resin content), can produce particles with a size of 1–5 mm at formation temperatures of 80–120 °C. After 16 h of thermal aging at 180 °C, the particles exhibited excellent thermal stability and compressive strength, with D(90) degradation rates of 3.07–5.41%, and mass loss of 0.63–3.40% under 60 MPa. The system exhibits excellent injectability and drilling fluid compatibility, forming rough-surfaced particles for stable bridging. Microscopic analysis confirmed full curing in 140–180 min. Notably, it sealed 1–5 mm fractures with 10 MPa pressure, enabling adaptive plugging for unknown fracture apertures. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology for the Oil and Gas Industry)
Show Figures

Figure 1

32 pages, 5875 KB  
Systematic Review
Thermally Conductive Biopolymers in Regenerative Medicine and Oncology: A Systematic Review
by Ivett Poma-Paredes, Oscar Vivanco-Galván, Darwin Castillo-Malla and Yuliana Jiménez-Gaona
Pharmaceuticals 2025, 18(11), 1708; https://doi.org/10.3390/ph18111708 - 11 Nov 2025
Viewed by 672
Abstract
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced [...] Read more.
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced biopolymers in hyperthermia-based therapies, (ii) appraise evidence from clinical and preclinical studies, (iii) identify and classify principal applications in regenerative medicine. Methods: A PRISMA-guided systematic review (2020–2025) with predefined inclusion/exclusion criteria was conducted and complemented by a bibliometric analysis using VOSviewer for mapping and visualization. Results: Modifying biopolymers—via functionalization with photothermal or magnetic nanoagents (Au; Fe2O3/Fe3O4/CoFe2O4; CuS; Ag; MXenes, e.g., Nb2C), crosslinking strategies, and hybrid formulations—significantly increased thermal conductivity, enabling localized hyperthermia and controlled drug release. In vitro and in vivo studies showed that europium-doped iron oxide nanoparticles embedded in chitosan generated heat efficiently while sparing healthy tissues, underscoring the need to balance biocompatibility and thermal performance. Hydrogel systems enriched with carbon nanomaterials (graphene, carbon nanotubes) and matrices such as GelMA, PNIPAM, hyaluronic acid, and PLA/PLGA demonstrated tissue compatibility and effective thermal behavior; graphene was compatible with neural tissue without inducing inflammation. Conclusions: Thermally conductive biopolymers show growing potential for oncology and regenerative medicine. The evidence supports further academic and interdisciplinary research to optimize safety, performance, and translational pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

28 pages, 1289 KB  
Review
Nanomaterials for Sensory Systems—A Review
by Andrei Ivanov, Daniela Laura Buruiana, Constantin Trus, Viorica Ghisman and Iulian Vasile Antoniac
Biosensors 2025, 15(11), 754; https://doi.org/10.3390/bios15110754 - 11 Nov 2025
Viewed by 1410
Abstract
Nanotechnology offers powerful new tools to enhance food quality monitoring and safety assurance. In the food industry, nanoscale materials (e.g., metal, metal oxide, carbon, and polymeric nanomaterials) are being integrated into sensory systems to detect spoilage, contamination, and intentional food tampering with unprecedented [...] Read more.
Nanotechnology offers powerful new tools to enhance food quality monitoring and safety assurance. In the food industry, nanoscale materials (e.g., metal, metal oxide, carbon, and polymeric nanomaterials) are being integrated into sensory systems to detect spoilage, contamination, and intentional food tampering with unprecedented sensitivity. Nanosensors can rapidly identify foodborne pathogens, toxins, and chemical changes that signal spoilage, overcoming the limitations of conventional assays that are often slow, costly, or require expert operation. These advances translate into improved food safety and extended shelf-life by allowing early intervention (for example, via antimicrobial nano-coatings) to prevent spoilage. This review provides a comprehensive overview of the types of nanomaterials used in food sensory applications and their mechanisms of action. We examine current applications in detecting food spoilage indicators and adulterants, as well as recent innovations in smart packaging and continuous freshness monitoring. The advantages of nanomaterials—including heightened analytical sensitivity, specificity, and the ability to combine sensing with active preservative functions—are highlighted alongside important toxicological and regulatory considerations. Overall, nanomaterials are driving the development of smarter food packaging and sensor systems that promise safer foods, reduced waste, and empowered consumers. However, realizing this potential will require addressing safety concerns and establishing clear regulations to ensure responsible deployment of nano-enabled food sensing technologies. Representative figures of merit include Au/AgNP melamine tests with LOD 0.04–0.07 mg L−1 and minute-scale readout, a smartphone Au@carbon-QD assay with LOD 3.6 nM, Fe3O4/DPV detection of Sudan I at 0.001 µM (linear 0.01–20 µM), and a reusable Au–Fe3O4 piezo-electrochemical immunosensor for aflatoxin B1 with LOD 0.07 ng mL−1 (≈15 × reuse), alongside freshness labels that track TVB-N/amine in near-real time and e-nose arrays distinguishing spoilage stages. Full article
(This article belongs to the Section Environmental, Agricultural, and Food Biosensors)
Show Figures

Figure 1

14 pages, 1197 KB  
Article
Silver Sulfide Quantum Dots Conjugated with Anti-PSG1 Monoclonal Antibodies: Optical, Photothermal, and Cytocompatibility Assessment
by Daniel Martinez-Osuna, Imelda Olivas-Armendariz, Porfirio Estrada-Rojas, Florinda Jimenez-Vega, Mónica Elvira Mendoza-Duarte, Alejandro Vega-Rios, Christian Chapa-Gonzalez, Santos-Adriana Martel-Estrada, Laura Elizabeth Valencia-Gomez, Mauricio Salcedo and María Fernanda Amézaga-González
Processes 2025, 13(11), 3382; https://doi.org/10.3390/pr13113382 - 22 Oct 2025
Viewed by 516
Abstract
Silver sulfide quantum dots (Ag2S QDs) are promising nanomaterials for biomedical applications due to their near-infrared emission and biocompatibility. In this study, Ag2S QDs were synthesized using bovine serum albumin (BSA) as a stabilizing and reducing agent to assess [...] Read more.
Silver sulfide quantum dots (Ag2S QDs) are promising nanomaterials for biomedical applications due to their near-infrared emission and biocompatibility. In this study, Ag2S QDs were synthesized using bovine serum albumin (BSA) as a stabilizing and reducing agent to assess their potential in targeted photothermal therapy. The QDs showed an average size of 1.06 ± 0.38 nm by DLS and 4.42 nm by TEM. Conjugation to an anti-PSG1 monoclonal antibody was performed via EDC/Sulfo-NHS chemistry and confirmed by FTIR spectroscopy, a decrease in zeta potential, and a redshift in emission. The conjugate exhibited an average size of 22.82 ± 9.7 nm and a zeta potential of +85.7 mV, indicating high colloidal stability. Fluorescence studies showed that the conjugate emits at 590 nm when excited at 560 nm, whereas the BSA-Ag2S QDs (non-conjugated) emit at 480 nm upon excitation at 400 nm, reflecting changes in optical properties due to conjugation. Thermal imaging under 808 nm laser irradiation revealed efficient photothermal conversion, with temperature increases up to 13.6 °C at 200 μg/mL and a conversion efficiency of 11.41 ± 0.04%. The conjugate was non-cytotoxic to fibroblasts but induced selective cytotoxicity in HeLa cells after laser exposure, with a selectivity index of 3.0. These findings suggest that Ag2S-BSA QDs conjugated with anti-PSG1 represent promising candidates for further investigation in cancer nanotheranostics. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

Back to TopTop