Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = nanodiamond powders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 8233 KiB  
Review
Powders of Diamond Nanoparticles as a Promising Material for Reflectors of Very Cold and Cold Neutrons
by Egor Lychagin, Marc Dubois and Valery Nesvizhevsky
Nanomaterials 2024, 14(4), 387; https://doi.org/10.3390/nano14040387 - 19 Feb 2024
Cited by 3 | Viewed by 2255
Abstract
More than 15 years ago, the study of nanodiamond (ND) powders as a material for designing reflectors of very cold neutrons (VCNs) and cold neutrons (CNs) began. Such reflectors can significantly increase the efficiency of using such neutrons and expand the scope of [...] Read more.
More than 15 years ago, the study of nanodiamond (ND) powders as a material for designing reflectors of very cold neutrons (VCNs) and cold neutrons (CNs) began. Such reflectors can significantly increase the efficiency of using such neutrons and expand the scope of their application for solving applied and fundamental problems. This review considers the principle of operation of VCN and CN reflectors based on ND powders and their advantages. Information is presented on the performed experimental and theoretical studies of the effect of the size, structure, and composition of NDs on the efficiency of reflectors. Methods of chemical and mechanical treatments of powders in order to modify their chemical composition and structure are discussed. The aim is to avoid, or at least to decrease, the neutron inelastic scatterers and absorbers (mainly hydrogen atoms but also metallic impurities and nitrogen) as well as to enhance coherent elastic scattering (to destroy ND clusters and sp2 carbon shells on the ND surface that result from the preparation of NDs). Issues requiring further study are identified. They include deeper purification of NDs from impurities that can be activated in high radiation fluxes, the stability of NDs in high radiation fluxes, and upscaling methods for producing larger quantities of ND powders. Possible ways of solving these problems are proposed. Full article
Show Figures

Figure 1

15 pages, 8672 KiB  
Article
Effect of Additives on Tribological Performance of Magnetorheological Fluids
by Songran Zhuang, Yongbing Cao, Wanli Song, Peng Zhang and Seung-Bok Choi
Micromachines 2024, 15(2), 270; https://doi.org/10.3390/mi15020270 - 14 Feb 2024
Cited by 1 | Viewed by 1826
Abstract
In this study, nano-diamond (ND) and MoS2 powder are used as additives in a carbonyl iron-based magnetorheological fluid (MRF) to improve its tribological performance. MRFs are prepared by dispersing 35 wt.% of CI particles in silicone oil and adding different proportions (0, [...] Read more.
In this study, nano-diamond (ND) and MoS2 powder are used as additives in a carbonyl iron-based magnetorheological fluid (MRF) to improve its tribological performance. MRFs are prepared by dispersing 35 wt.% of CI particles in silicone oil and adding different proportions (0, 1, 3, or 5 wt.%) of ND and MoS2 additives. Seven kinds of MRFs are made and tested using reciprocating friction and wear tester under different normal loads, and then the friction characteristics are evaluated by analyzing the experimental results. The morphological properties of MRFs and contacting surfaces before and after the tests are also observed using a scanning electron microscope and analyzed via energy-dispersive X-ray spectroscopy. The results show that the appropriate weight percentage of MoS2 additives may decrease the friction coefficient and wear zone. It is also demonstrated from detailed analyses of worn surfaces that the wear mechanism is influenced not only by additives, but also by the applied normal load and magnetic field strength. Full article
(This article belongs to the Special Issue Magnetorheological Materials and Application Systems)
Show Figures

Figure 1

15 pages, 12522 KiB  
Article
Silicon–Nanodiamond-Based Anode for a Lithium-Ion Battery
by Cheng-Ying Jhan, Shi-Hong Sung and Yonhua Tzeng
Nanomaterials 2024, 14(1), 43; https://doi.org/10.3390/nano14010043 - 22 Dec 2023
Cited by 6 | Viewed by 2530
Abstract
Maintaining the physical integrity of a silicon-based anode, which suffers from damage caused by severe volume changes during cycling, is a top priority in its practical applications. The performance of silicon-flake-based anodes has been significantly improved by mixing nanodiamond powders with silicon flakes [...] Read more.
Maintaining the physical integrity of a silicon-based anode, which suffers from damage caused by severe volume changes during cycling, is a top priority in its practical applications. The performance of silicon-flake-based anodes has been significantly improved by mixing nanodiamond powders with silicon flakes for the fabrication of anodes for lithium-ion batteries (LIBs). Nanodiamonds adhere to the surfaces of silicon flakes and are distributed in the binder between flakes. A consistent and robust solid electrolyte interphase (SEI) is promoted by the aid of abundant reactive surface-linked functional groups and exposed dangling bonds of nanodiamonds, leading to enhanced physical integrity of the silicon flakes and the anode. The battery’s high-rate discharge capabilities and cycle life are thus improved. SEM, Raman spectroscopy, and XRD were applied to examine the structure and morphology of the anode. Electrochemical performance was evaluated to demonstrate a capacity retention of nearly 75% after 200 cycles, with the final specific capacity exceeding 1000 mAh/g at a test current of 4 mA/cm2. This is attributed to the improved stability of the solid electrolyte interphase (SEI) structure that was achieved by integrating nanodiamonds with silicon flakes in the anode, leading to enhanced cycling stability and rapid charge-discharge performance. The results from this study present an effective strategy of achieving high-cycling-performance by adding nanodiamonds to silicon-flake-based anodes. Full article
(This article belongs to the Topic Advanced Nanomaterials for Lithium-Ion Batteries)
Show Figures

Figure 1

14 pages, 5468 KiB  
Article
High-Efficiency Chemical-Mechanical Magnetorheological Finishing for Ultra-Smooth Single-Crystal Silicon
by Zhifan Lin, Hao Hu, Yifan Dai, Yaoyu Zhong and Shuai Xue
Nanomaterials 2023, 13(3), 398; https://doi.org/10.3390/nano13030398 - 18 Jan 2023
Cited by 10 | Viewed by 2024
Abstract
To improve the material removal efficiency and surface quality of single-crystal silicon after magnetorheological finishing, a novel green chemical-mechanical magnetorheological finishing (CMMRF) fluid was developed. The main components of the CMMRF fluid are nano-Fe3O4, H2O2, [...] Read more.
To improve the material removal efficiency and surface quality of single-crystal silicon after magnetorheological finishing, a novel green chemical-mechanical magnetorheological finishing (CMMRF) fluid was developed. The main components of the CMMRF fluid are nano-Fe3O4, H2O2, CH3COOH, nanodiamond, carbonyl iron powder, and deionized water. The novel CMMRF fluid can simultaneously achieve Ra 0.32 nm (0.47 mm × 0.35 mm measurement area), Ra 0.22 nm (5 μm × 5 μm measurement area), and 1.91 × 10−2 mm3/min material removal efficiency. Comprehensive studies utilizing a scanning electron microscope and a magnetic rheometer show that the CMMRF fluid has a high mechanical removal effect due to the well-dispersed nanodiamond and nano-Fe3O4 particles. The results of Fourier transform infrared spectra and Young’s modulus test reveal the mechanism of the chemical reaction and the mechanical characteristics deterioration of the modified layer. Under co-enhanced chemical and mechanical effects, an ultra-smooth and highly efficient MRF technology for single-crystal silicon is realized. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

16 pages, 7331 KiB  
Article
Effect of Nanodiamond Sizes on the Efficiency of the Quasi-Specular Reflection of Cold Neutrons
by Alexei Bosak, Marc Dubois, Ekaterina Korobkina, Egor Lychagin, Alexei Muzychka, Grigory Nekhaev, Valery Nesvizhevsky, Alexander Nezvanov, Thomas Saerbeck, Ralf Schweins, Alexander Strelkov, Kylyshbek Turlybekuly and Kirill Zhernenkov
Materials 2023, 16(2), 703; https://doi.org/10.3390/ma16020703 - 11 Jan 2023
Cited by 4 | Viewed by 2375
Abstract
Nanomaterials can intensively scatter and/or reflect radiation. Such processes and materials are of theoretical and practical interest. Here, we study the quasi-specular reflections (QSRs) of cold neutrons (CNs) and the reflections of very cold neutrons (VCNs) from nanodiamond (ND) powders. The fluorination of [...] Read more.
Nanomaterials can intensively scatter and/or reflect radiation. Such processes and materials are of theoretical and practical interest. Here, we study the quasi-specular reflections (QSRs) of cold neutrons (CNs) and the reflections of very cold neutrons (VCNs) from nanodiamond (ND) powders. The fluorination of ND increased its efficiency by removing/replacing hydrogen, which is otherwise the dominant cause of neutron loss due to incoherent scattering. The probability of the diffuse reflection of VCNs increased for certain neutron wavelengths by using appropriate ND sizes. Based on model concepts of the interaction of CNs with ND, and in reference to our previous work, we assume that the angular distribution of quasi-specularly reflected CNs is narrower, and that the probability of QSRs of longer wavelength neutrons increases if we increase the characteristic sizes of NDs compared to standard detonation nanodiamonds (DNDs). However, the probability of QSRs of CNs with wavelengths below the cutoff of ~4.12 Å decreases due to diffraction scattering on the ND crystal lattice. We experimentally compared the QSRs of CNs from ~4.3 nm and ~15.0 nm ND. Our qualitative conclusions and numerical estimates can help optimize the parameters of ND for specific practical applications based on the QSRs of CNs. Full article
(This article belongs to the Special Issue Diamond Material and Its Applications)
Show Figures

Figure 1

19 pages, 4178 KiB  
Article
Amorphous Carbon Films with Embedded Well-Dispersed Nanodiamonds: Plasmon-Enhanced Analysis and Possible Antimicrobial Applications
by Oleg Streletskiy, Elena Perevedentseva, Ilya Zavidovskiy, Artashes Karmenyan, Vladimir Sychev, Vera Sadykova, Anastasia Kuvarina and Chia-Liang Cheng
Magnetochemistry 2022, 8(12), 171; https://doi.org/10.3390/magnetochemistry8120171 - 26 Nov 2022
Cited by 9 | Viewed by 3437
Abstract
An amorphous carbon film with embedded detonation nanodiamond (DND) particles (a-C:ND) was produced by magnetron sputtering of nanodiamond powder. An Ag film was deposited on the carbon structure by radiofrequency magnetron sputtering. The silver film was irradiated with a 150 eV Ar+ [...] Read more.
An amorphous carbon film with embedded detonation nanodiamond (DND) particles (a-C:ND) was produced by magnetron sputtering of nanodiamond powder. An Ag film was deposited on the carbon structure by radiofrequency magnetron sputtering. The silver film was irradiated with a 150 eV Ar+ to form plasmonic-active nanoparticles (NP) on the surface of the a-C:ND. The structure of the obtained a-C:ND and a-C:ND/Ag structures were studied by scanning and transmission electron microscopy, electron energy-loss spectroscopy, UV–Visible absorption spectroscopy, Raman spectroscopy, and fluorescence lifetime imaging at two-photon excitation. The analysis revealed 76% of sp3-carbon and a good dispersion of diamond nanoparticles in the a-C. Surface-enhanced Raman scattering (SERS) was applied to investigate the a-C:ND/Ag structure, allowing for the observation of SERS from the sp2-carbon species and the absence of significant a-C:ND damage after Ar+ irradiation of the Ag overlayer. A plasmonic-metal-enhanced luminescence was observed at one- and two-photon excitations, revealing a two- to five-fold intensity increase. The activity of the used DNDs was tested using the agar diffusion method and observed against the bacteria of Bacillus subtilis, Staphylococcus aureus, and Escherichia coli and the fungi of Aspergillus niger, Aspergillus fumigatus, and the yeast of Candida albicans, showing DND activity against all the test strains of fungi. Full article
(This article belongs to the Special Issue Magnetron Sputtering Process)
Show Figures

Graphical abstract

9 pages, 2498 KiB  
Article
Diamond Composites Produced from Fluorinated Mixtures of Micron-Sized and Nanodiamonds by Metal Infiltration
by Valery N. Khabashesku, Vladimir P. Filonenko, Rustem K. Bagramov and Igor P. Zibrov
Materials 2022, 15(14), 4936; https://doi.org/10.3390/ma15144936 - 15 Jul 2022
Cited by 3 | Viewed by 1773
Abstract
Improving the operating performance of superhard composites is an important and urgent task, due to a continuing industrial need. In this work, diamond composites with high wear resistance were obtained by sintering fluorinated mixtures of micron-sized diamonds with nanodiamonds at high pressures and [...] Read more.
Improving the operating performance of superhard composites is an important and urgent task, due to a continuing industrial need. In this work, diamond composites with high wear resistance were obtained by sintering fluorinated mixtures of micron-sized diamonds with nanodiamonds at high pressures and temperatures (7–8 GPa, 1550–1700 °C). Aluminum and cobalt powders were added to the diamond mixture to activate the process. The external infiltration of nickel into the diamond layer was carried out additionally during the sintering process, and the effects of nickel infiltration on the structure and properties of composites were studied. The metal melt ensured the mass transfer of carbon within a volume, and the formation of a strong diamond framework. The composition of the additives was selected in such a way that the binding phase became ultimately composed of the intermetallic AlNixCo1−x(x ≤ 1). The Young’s modulus of composites synthesized in this way had a value of 850 GPa, and their wear resistance when turning white granite was more than twice as high as that of premium commercial PDC. The obtained results thus demonstrate that by using nickel to increase melt infiltration into diamond-based composites, the mechanical properties of Al/Co/fluorinated diamond compositions, studied previously, can be further improved. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

23 pages, 5234 KiB  
Article
Thermal Conductivity of Detonation Nanodiamond Hydrogels and Hydrosols by Direct Heat Flux Measurements
by Liliya O. Usoltseva, Dmitry S. Volkov, Evgeny A. Karpushkin, Mikhail V. Korobov and Mikhail A. Proskurnin
Gels 2021, 7(4), 248; https://doi.org/10.3390/gels7040248 - 3 Dec 2021
Cited by 9 | Viewed by 3625
Abstract
The methodology and results of thermal conductivity measurements by the heat-flow technique for the detonation nanodiamond suspension gels, sols, and powders of several brands in the range of nanoparticle concentrations of 2–100% w/w are discussed. The conditions of assessing the thermal [...] Read more.
The methodology and results of thermal conductivity measurements by the heat-flow technique for the detonation nanodiamond suspension gels, sols, and powders of several brands in the range of nanoparticle concentrations of 2–100% w/w are discussed. The conditions of assessing the thermal conductivity of the fluids and gels (a FOX 50 heat-flow meter) with the reproducibility (relative standard deviation) of 1% are proposed. The maximum increase of 13% was recorded for the nanodiamond gels (140 mg mL−1 or 4% v/v) of the RDDM brand, at 0.687 ± 0.005 W m−1 K−1. The thermal conductivity of the nanodiamond powders is estimated as 0.26 ± 0.03 and 0.35 ± 0.04 W m−1 K−1 for the RUDDM and RDDM brands, respectively. The thermal conductivity for the aqueous pastes containing 26% v/v RUDDM is 0.85 ± 0.04 W m−1 K−1. The dignities, shortcomings, and limitations of this approach are discussed and compared with the determining of the thermal conductivity with photothermal-lens spectrometry. Full article
(This article belongs to the Collection Feature Papers in Gel Materials)
Show Figures

Graphical abstract

15 pages, 3562 KiB  
Article
Effect of Particle Sizes on the Efficiency of Fluorinated Nanodiamond Neutron Reflectors
by Aleksander Aleksenskii, Marcus Bleuel, Alexei Bosak, Alexandra Chumakova, Artur Dideikin, Marc Dubois, Ekaterina Korobkina, Egor Lychagin, Alexei Muzychka, Grigory Nekhaev, Valery Nesvizhevsky, Alexander Nezvanov, Ralf Schweins, Alexander Shvidchenko, Alexander Strelkov, Kylyshbek Turlybekuly, Alexander Vul’ and Kirill Zhernenkov
Nanomaterials 2021, 11(11), 3067; https://doi.org/10.3390/nano11113067 - 14 Nov 2021
Cited by 11 | Viewed by 2814
Abstract
Over a decade ago, it was confirmed that detonation nanodiamond (DND) powders reflect very cold neutrons (VCNs) diffusively at any incidence angle and that they reflect cold neutrons quasi-specularly at small incidence angles. In the present publication, we report the results of a [...] Read more.
Over a decade ago, it was confirmed that detonation nanodiamond (DND) powders reflect very cold neutrons (VCNs) diffusively at any incidence angle and that they reflect cold neutrons quasi-specularly at small incidence angles. In the present publication, we report the results of a study on the effect of particle sizes on the overall efficiency of neutron reflectors made of DNDs. To perform this study, we separated, by centrifugation, the fraction of finer DND nanoparticles (which are referred to as S-DNDs here) from a broad initial size distribution and experimentally and theoretically compared the performance of such a neutron reflector with that from deagglomerated fluorinated DNDs (DF-DNDs). Typical commercially available DNDs with the size of ~4.3 nm are close to the optimum for VCNs with a typical velocity of ~50 m/s, while smaller and larger DNDs are more efficient for faster and slower VCN velocities, respectively. Simulations show that, for a realistic reflector geometry, the replacement of DF-DNDs (a reflector with the best achieved performance) by S-DNDs (with smaller size DNDs) increases the neutron albedo in the velocity range above ~60 m/s. This increase in the albedo results in an increase in the density of faster VCNs in such a reflector cavity of up to ~25% as well as an increase in the upper boundary of the velocities of efficient VCN reflection. Full article
(This article belongs to the Special Issue Fluorinated Nanocarbons and Their Applications)
Show Figures

Figure 1

13 pages, 4052 KiB  
Article
Laser Fusion of Aluminum Powder Coated with Diamond Particles via Selective Laser Melting: Powder Preparation and Synthesis Description
by Alexander S. Shinkaryov, Dmitriy Yu Ozherelkov, Ivan A. Pelevin, Sergey A. Eremin, Vyacheslav N. Anikin, Maxim A. Burmistrov, Stanislav V. Chernyshikhin, Alexander A. Gromov and Anton Yu Nalivaiko
Coatings 2021, 11(10), 1219; https://doi.org/10.3390/coatings11101219 - 5 Oct 2021
Cited by 16 | Viewed by 3543
Abstract
This work aims to study the possibility of obtaining Al–C composite from AlSi10MgCu aluminum matrix with the addition of 500 nm-sized diamond particles by selective laser melting (SLM) process. Al–C composite powder was prepared by mechanical mixing to form a uniform cover along [...] Read more.
This work aims to study the possibility of obtaining Al–C composite from AlSi10MgCu aluminum matrix with the addition of 500 nm-sized diamond particles by selective laser melting (SLM) process. Al–C composite powder was prepared by mechanical mixing to form a uniform cover along the surface of aluminum particles. The diamond content in the resulting AlSi10MgCu-diamond composite powder was equal to 0.67 wt %. The selection of the optimal SLM parameters for the obtained composite material is presented. For materials characterization, the following methods were used: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) was applied after SLM printing for a detailed investigation of the obtained composites. The presence of carbon additives and the formation of aluminum carbides in the material after the SLM process were demonstrated. Full article
Show Figures

Figure 1

18 pages, 6715 KiB  
Article
Clustering of Diamond Nanoparticles, Fluorination and Efficiency of Slow Neutron Reflectors
by Aleksander Aleksenskii, Markus Bleuel, Alexei Bosak, Alexandra Chumakova, Artur Dideikin, Marc Dubois, Ekaterina Korobkina, Egor Lychagin, Alexei Muzychka, Grigory Nekhaev, Valery Nesvizhevsky, Alexander Nezvanov, Ralf Schweins, Alexander Shvidchenko, Alexander Strelkov, Kylyshbek Turlybekuly, Alexander Vul’ and Kirill Zhernenkov
Nanomaterials 2021, 11(8), 1945; https://doi.org/10.3390/nano11081945 - 28 Jul 2021
Cited by 14 | Viewed by 3725
Abstract
Neutrons can be an instrument or an object in many fields of research. Major efforts all over the world are devoted to improving the intensity of neutron sources and the efficiency of neutron delivery for experimental installations. In this context, neutron reflectors play [...] Read more.
Neutrons can be an instrument or an object in many fields of research. Major efforts all over the world are devoted to improving the intensity of neutron sources and the efficiency of neutron delivery for experimental installations. In this context, neutron reflectors play a key role because they allow significant improvement of both economy and efficiency. For slow neutrons, Detonation NanoDiamond (DND) powders provide exceptionally good reflecting performance due to the combination of enhanced coherent scattering and low neutron absorption. The enhancement is at maximum when the nanoparticle diameter is close to the neutron wavelength. Therefore, the mean nanoparticle diameter and the diameter distribution are important. In addition, DNDs show clustering, which increases their effective diameters. Here, we report on how breaking agglomerates affects clustering of DNDs and the overall reflector performance. We characterize DNDs using small-angle neutron scattering, X-ray diffraction, scanning and transmission electron microscopy, neutron activation analysis, dynamical light scattering, infra-red light spectroscopy, and others. Based on the results of these tests, we discuss the calculated size distribution of DNDs, the absolute cross-section of neutron scattering, the neutron albedo, and the neutron intensity gain for neutron traps with DND walls. Full article
(This article belongs to the Special Issue Fluorinated Nanocarbons and Their Applications)
Show Figures

Figure 1

13 pages, 2704 KiB  
Article
Fluorination of Diamond Nanoparticles in Slow Neutron Reflectors Does Not Destroy Their Crystalline Cores and Clustering While Decreasing Neutron Losses
by Alexei Bosak, Artur Dideikin, Marc Dubois, Oleksandr Ivankov, Egor Lychagin, Alexei Muzychka, Grigory Nekhaev, Valery Nesvizhevsky, Alexander Nezvanov, Ralf Schweins, Alexander Strelkov, Alexander Vul’ and Kirill Zhernenkov
Materials 2020, 13(15), 3337; https://doi.org/10.3390/ma13153337 - 27 Jul 2020
Cited by 16 | Viewed by 2824
Abstract
If the wavelength of radiation and the size of inhomogeneities in the medium are approximately equal, the radiation might be intensively scattered in the medium and reflected from its surface. Such efficient nanomaterial reflectors are of great scientific and technological interest. In previous [...] Read more.
If the wavelength of radiation and the size of inhomogeneities in the medium are approximately equal, the radiation might be intensively scattered in the medium and reflected from its surface. Such efficient nanomaterial reflectors are of great scientific and technological interest. In previous works, we demonstrated a significant improvement in the efficiency of reflection of slow neutrons from a powder of diamond nanoparticles by replacing hydrogen located on the surface of nanoparticles with fluorine and removing the residual sp2 amorphous shells of nanoparticles via the fluorination process. In this paper, we study the mechanism of this improvement using a set of complementary experimental techniques. To analyze the data on a small-angle scattering of neutrons and X-rays in powders of diamond nanoparticles, we have developed a model of discrete-size diamond nanospheres. Our results show that fluorination does not destroy either the crystalline cores of nanoparticles or their clustering in the scale range of 0.6–200 nm. This observation implies that it does not significantly affect the neutron scattering properties of the powder. We conclude that the overall increase in reflectivity from the fluorinated nanodiamond powder is primarily due to the large reduction of neutron losses in the powder caused by the removal of hydrogen contaminations. Full article
(This article belongs to the Special Issue New Insight into Design and Properties of Nanomaterials)
Show Figures

Figure 1

48 pages, 18208 KiB  
Review
Structure of Carbon Materials Explored by Local Transmission Electron Microscopy and Global Powder Diffraction Probes
by Karolina Jurkiewicz, Mirosława Pawlyta and Andrzej Burian
C 2018, 4(4), 68; https://doi.org/10.3390/c4040068 - 19 Dec 2018
Cited by 118 | Viewed by 23464
Abstract
Transmission electron microscopy and neutron or X-ray diffraction are powerful techniques available today for characterization of the structure of various carbon materials at nano and atomic levels. They provide complementary information but each one has advantages and limitations. Powder X-ray or neutron diffraction [...] Read more.
Transmission electron microscopy and neutron or X-ray diffraction are powerful techniques available today for characterization of the structure of various carbon materials at nano and atomic levels. They provide complementary information but each one has advantages and limitations. Powder X-ray or neutron diffraction measurements provide structural information representative for the whole volume of a material under probe but features of singular nano-objects cannot be identified. Transmission electron microscopy, in turn, is able to probe single nanoscale objects. In this review, it is demonstrated how transmission electron microscopy and powder X-ray and neutron diffraction methods complement each other by providing consistent structural models for different types of carbons such as carbon blacks, glass-like carbons, graphene, nanotubes, nanodiamonds, and nanoonions. Full article
(This article belongs to the Special Issue Transmission Electron Microscopy and Carbon Materials)
Show Figures

Graphical abstract

16 pages, 3109 KiB  
Article
Orthogonal Functionalization of Nanodiamond Particles after Laser Modification and Treatment with Aromatic Amine Derivatives
by Justyna Fraczyk, Adam Rosowski, Beata Kolesinska, Anna Koperkiewcz, Anna Sobczyk-Guzenda, Zbigniew J. Kaminski and Mariusz Dudek
Nanomaterials 2018, 8(11), 908; https://doi.org/10.3390/nano8110908 - 5 Nov 2018
Cited by 13 | Viewed by 3923
Abstract
A laser system with a wavelength of 1064 nm was used to generate sp2 carbon on the surfaces of nanodiamond particles (NDPs). The modified by microplasma NDPs were analysed using FT-IR and Raman spectroscopy. Raman spectra confirmed that graphitization had occurred on [...] Read more.
A laser system with a wavelength of 1064 nm was used to generate sp2 carbon on the surfaces of nanodiamond particles (NDPs). The modified by microplasma NDPs were analysed using FT-IR and Raman spectroscopy. Raman spectra confirmed that graphitization had occurred on the surfaces of the NDPs. The extent of graphitization depended on the average power used in the laser treatment process. FT-IR analysis revealed that the presence of C=C bonds in all spectra of the laser-modified powder. The characteristic peaks for olefinic bonds were much more intense than in the case of untreated powder and grew in intensity as the average laser power increased. The olefinized nanodiamond powder was further functionalized using aromatic amines via in situ generated diazonium salts. It was also found that isokinetic mixtures of structurally diverse aromatic amines containing different functional groups (acid, amine) could be used to functionalize the surfaces of the laser-modified nanoparticles leading to an amphiphilic carbon nanomaterial. This enables one-step orthogonal functionalization and opens the possibility of selectively incorporating molecules with diverse biological activities on the surfaces of NDPs. Modified NDPs with amphiphilic properties resulting from the presence carboxyl and amine groups were used to incorporate simultaneously folic acid (FA-CONH-(CH2)5-COOH) and 5(6)-carboxyfluorescein (FL-CONH-(CH2)2-NH2) derivatives on the surface of material under biocompatible procedures. Full article
Show Figures

Graphical abstract

19 pages, 5228 KiB  
Article
Salt-Assisted Ultrasonicated De-Aggregation and Advanced Redox Electrochemistry of Detonation Nanodiamond
by Sanju Gupta, Brendan Evans, Alex Henson and Sara B. Carrizosa
Materials 2017, 10(11), 1292; https://doi.org/10.3390/ma10111292 - 10 Nov 2017
Cited by 11 | Viewed by 5090
Abstract
Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND) by using a facile technique namely, salt-assisted ultrasonic [...] Read more.
Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND) by using a facile technique namely, salt-assisted ultrasonic de-agglomeration (SAUD). Utilizing ultrasound energy and ionic salts (sodium chloride and sodium acetate), SAUD is expected to break apart thermally treated nanodiamond aggregates (~50–100 nm) and produce an aqueous slurry of de-aggregated stable colloidal nanodiamond dispersions by virtue of ionic interactions and electrostatic stabilization. Moreover, the SAUD technique neither has toxic chemicals nor is it difficult to remove impurities and therefore the isolated nanodiamonds produced are exceptionally suited for engineered nanocarbon for mechanical (composites, lubricants) and biomedical (bio-labeling, biosensing, bioimaging, theranostic) applications. We characterized the microscopic structure using complementary techniques including transmission electron microscopy combined with selected-area electron diffraction, optical and vibrational spectroscopy. We immobilized SAUD produced NDs on boron-doped diamond electrodes to investigate fundamental electrochemical properties. They included surface potential (or Fermi energy level), carrier density and mapping electrochemical (re)activity using advanced scanning electrochemical microscopy in the presence of a redox-active probe, with the aim of understanding the surface redox chemistry and the interfacial process of isolated nanodiamond particles as opposed to aggregated and untreated nanoparticles. The experimental findings are discussed in terms of stable colloids, quantum confinement and predominantly surface effects, defect sites (sp2–bonded C and unsaturated bonds), inner core (sp3–bonded C)/outer shell (sp2–bonded C) structure, and surface functionality. Moreover, the surface electronic states give rise to midgap states which serve as electron donors (or acceptors) depending upon the bonding (or antibonding). These are important as electroanalytical platforms for various electrocatalytic processes. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop