Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (137)

Search Parameters:
Keywords = nanocrystalline thin films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 239
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 301
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

18 pages, 8684 KiB  
Article
Harnessing Nanoplasmonics: Design Optimization for Enhanced Optoelectronic Performance in Nanocrystalline Silicon Devices
by Mohsen Mahmoudysepehr and Siva Sivoththaman
Micromachines 2025, 16(5), 540; https://doi.org/10.3390/mi16050540 - 30 Apr 2025
Viewed by 415
Abstract
Nanoplasmonic structures have emerged as a promising approach to address light trapping limitations in thin-film optoelectronic devices. This study investigates the integration of metallic nanoparticle arrays onto nanocrystalline silicon (nc-Si:H) thin films to enhance optical absorption through plasmonic effects. Using finite-difference time-domain (FDTD) [...] Read more.
Nanoplasmonic structures have emerged as a promising approach to address light trapping limitations in thin-film optoelectronic devices. This study investigates the integration of metallic nanoparticle arrays onto nanocrystalline silicon (nc-Si:H) thin films to enhance optical absorption through plasmonic effects. Using finite-difference time-domain (FDTD) simulations, we systematically optimize key design parameters, including nanoparticle geometry, spacing, metal type (Ag and Al), dielectric spacer material, and absorber layer thickness. The results show that localized surface plasmon resonances (LSPRs) significantly amplify near-field intensities, improve forward scattering, and facilitate coupling into waveguide modes within the active layer. These effects lead to a measurable increase in integrated quantum efficiency, with absorption improvements reaching up to 30% compared to bare nc-Si:H films. The findings establish a reliable design framework for engineering nanoplasmonic architectures that can be applied to enhance performance in photovoltaic devices, photodetectors, and other optoelectronic systems. Full article
(This article belongs to the Special Issue Nanostructured Optoelectronic and Nanophotonic Devices)
Show Figures

Figure 1

6 pages, 1229 KiB  
Proceeding Paper
Synthesis of Nanocrystalline Composite CuO-ZnO Thin Films for Photovoltaic Sensors
by Irina O. Ignatieva, Victor V. Petrov and Ekaterina M. Bayan
Eng. Proc. 2024, 82(1), 110; https://doi.org/10.3390/ecsa-11-22210 - 23 Apr 2025
Viewed by 152
Abstract
Nanocrystalline CuO-ZnO composite thin films were obtained by solid-phase pyrolysis with different molar ratios of Cu:Zn (1:99 and 5:95). X-ray diffraction analysis showed that the films are composed of two phases. According to scanning electron microscopy data, the film is solid and is [...] Read more.
Nanocrystalline CuO-ZnO composite thin films were obtained by solid-phase pyrolysis with different molar ratios of Cu:Zn (1:99 and 5:95). X-ray diffraction analysis showed that the films are composed of two phases. According to scanning electron microscopy data, the film is solid and is formed by crystallites with an average size of 18 nm. The films have high transparency in the visible range. Full article
Show Figures

Figure 1

30 pages, 14392 KiB  
Article
High-Quality Perovskite Thin Films for NO2 Detection: Optimizing Pulsed Laser Deposition of Pure and Sr-Doped LaMO3 (M = Co, Fe)
by Lukasz Cieniek, Agnieszka Kopia, Kazimierz Kowalski and Tomasz Moskalewicz
Materials 2025, 18(5), 1175; https://doi.org/10.3390/ma18051175 - 6 Mar 2025
Cited by 2 | Viewed by 939
Abstract
This study investigates the structural and catalytic properties of pure and Sr-doped LaCoO3 and LaFeO3 thin films for potential use as resistive gas sensors. Thin films were deposited via pulsed laser deposition (PLD) and characterized using X-ray diffraction (XRD), X-ray photoelectron [...] Read more.
This study investigates the structural and catalytic properties of pure and Sr-doped LaCoO3 and LaFeO3 thin films for potential use as resistive gas sensors. Thin films were deposited via pulsed laser deposition (PLD) and characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation, and scratch tests. XRD analysis confirmed the formation of the desired perovskite phases without secondary phases. XPS revealed the presence of La3+, Co3+/Co4+, Fe3+/Fe4+, and Sr2+ oxidation states. SEM and AFM imaging showed compact, nanostructured surfaces with varying morphologies (shape and size of surface irregularities) depending on the composition. Sr doping led to surface refinement and increased nanohardness and adhesion. Transmission electron microscopy (TEM) analysis confirmed the columnar growth of nanocrystalline films. Sr-doped LaCoO3 demonstrated enhanced sensitivity and stability in the presence of NO2 gas compared to pure LaCoO3, as evidenced by electrical resistivity measurements within 230 ÷ 440 °C. At the same time, it was found that Sr doping stabilizes the catalytic activity of LaFeO3 (in the range of 300 ÷ 350 °C), although its behavior in the presence of NO2 differs from that of LaCo(Sr)O3—especially in terms of response and recovery times. These findings highlight the potential of Sr-doped LaCoO3 and LaFeO3 thin films for NO2 sensing applications. Full article
Show Figures

Figure 1

18 pages, 13259 KiB  
Article
Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films
by Ying Wang, Xu Wang, Hailong Shang, Xiaotong Liu, Yu Qi, Xiaoben Qi and Ning Zhong
Nanomaterials 2025, 15(3), 229; https://doi.org/10.3390/nano15030229 - 31 Jan 2025
Cited by 1 | Viewed by 952
Abstract
The TiB2 film exhibits exceptional hardness and chemical stability due to its unique crystal structure and robust covalent bonds, but it also demonstrates high brittleness and poor toughness, which restricts its practical applications in engineering. By appropriately incorporating metal dopants, the toughness [...] Read more.
The TiB2 film exhibits exceptional hardness and chemical stability due to its unique crystal structure and robust covalent bonds, but it also demonstrates high brittleness and poor toughness, which restricts its practical applications in engineering. By appropriately incorporating metal dopants, the toughness of the ceramic matrix can be enhanced without compromising its inherent hardness. In this study, TiB2 films with different nickel contents (0–32.22 at.%) were fabricated through radio frequency magnetron sputtering. The microstructure, chemical composition, phase structure, and mechanical properties were analyzed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and nanoindentation tester. The pure TiB2 film exhibited (0001) and (0002) peaks; however, the addition of nickel resulted in broadening of the (0001) peak and disappearance of the (0002) peak, and no crystalline nickel or other nickel-containing phases could be identified. It was found that the incorporation of nickel refines the grain structure of titanium diboride, with nickel present in an amorphous form at the boundaries of titanium diboride, thereby forming a wrapped structure. The enrichment of nickel at the grain boundary becomes more pronounced as the nickel content is further increased, which hinders the growth of TiB2 grains, resulting in the thinning of columnar crystals and formation of nanocrystalline in the film, and the coating hardness remains above 20 GPa, when the nickel content is less than 10.83 at.%. With the increase in nickel content, titanium diboride exhibited a tendency to form an amorphous structure, while nickel became increasingly enriched at the boundaries, and the coating hardness and elastic modulus decreased. The wrapped microstructure could absorb the energy generated by compressive shear stress through plastic deformation, which should be beneficial to improve the toughness of the coatings. The addition of nickel enhanced the adhesion between the film and substrate while reducing the friction coefficient of the film. Specifically, when the nickel content reached 4.26 at.%, a notable enhancement in both nanohardness and toughness was observed for nanocomposite films. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

16 pages, 13489 KiB  
Article
Synthesis of Nanocrystalline Mn-Doped Bi2Te3 Thin Films via Magnetron Sputtering
by Joshua Bibby, Angadjit Singh, Emily Heppell, Jack Bollard, Barat Achinuq, Sarah J. Haigh, Gerrit van der Laan and Thorsten Hesjedal
Crystals 2025, 15(1), 54; https://doi.org/10.3390/cryst15010054 - 7 Jan 2025
Cited by 1 | Viewed by 1152
Abstract
This study reports the structural and magnetic properties of Mn-doped Bi2Te3 thin films grown by magnetron sputtering. The films exhibit a ferromagnetic response that depends on the Mn doping concentration, as revealed by X-ray magnetic circular dichroism measurements. At an [...] Read more.
This study reports the structural and magnetic properties of Mn-doped Bi2Te3 thin films grown by magnetron sputtering. The films exhibit a ferromagnetic response that depends on the Mn doping concentration, as revealed by X-ray magnetic circular dichroism measurements. At an Mn concentration of ∼6.0%, a magnetic moment of (3.48 ± 0.25) μB/Mn was determined. Structural analysis indicated the presence of a secondary MnTex phase, which complicates the interpretation of the magnetic properties. Additionally, the incorporation of Mn ions within the van der Waals gap and substitutional doping on Bi sites contributes to the observed complex magnetic properties. Intriguingly, a decrease in magnetic moment per Mn was observed with increasing Mn concentration, which is consistent with the formation of the intrinsic magnetic topological insulator MnBi2Te4. Full article
(This article belongs to the Special Issue Materials and Devices Grown via Molecular Beam Epitaxy)
Show Figures

Figure 1

9 pages, 5136 KiB  
Article
Research on the Microstructure, Mechanical Properties and Strengthening Mechanism of Nanocrystalline Al-Mo Alloy Films
by Ying Wang, Huanqing Xu, Yulan Chen, Xiaoben Qi and Ning Zhong
Nanomaterials 2024, 14(24), 1990; https://doi.org/10.3390/nano14241990 - 12 Dec 2024
Viewed by 765
Abstract
In this work, the Al-Mo nanocrystalline alloy films with Mo contents ranging from 0–10.5 at.% were prepared via magnetron co-sputtering technology. The composition and microstructure of alloy thin films were studied using XRD, TEM, and EDS. The mechanical behaviors were tested through nanoindentation. [...] Read more.
In this work, the Al-Mo nanocrystalline alloy films with Mo contents ranging from 0–10.5 at.% were prepared via magnetron co-sputtering technology. The composition and microstructure of alloy thin films were studied using XRD, TEM, and EDS. The mechanical behaviors were tested through nanoindentation. The weights of each strengthening factor were calculated and the strengthening mechanism of alloy thin films was revealed. The results indicate that a portion of Mo atoms exist in the Al lattice, forming a solid solution of Mo in Al. The other part of Mo atoms tends to segregate at the grain boundaries, and this segregation becomes more pronounced with an increase in Mo content. There are no compounds or second phases present in any alloy films. As the Mo element content increases, the grain size of the alloy films gradually decreases. The hardness of pure aluminum film is 2.2 GPa. The hardness increases with an increase in Mo content. When the Mo content is 10.5 at.%, The hardness of the film increases to a maximum value of 4.9 GPa. The fine grain (Hgb), solid solution (Hss), and nanocrystalline solute pinning (Hnc,ss) are the three main reasons for the increase in the hardness of alloy thin films. The contribution of Hgb is the largest, accounting for over 60% of the total, while the contribution of Hss accounts for about 30%, ranking second. The rest of the increase is due to Hnc,ss. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

20 pages, 11208 KiB  
Article
Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance
by Ruixin Li, Faqi Zhan, Guochang Wen, Bing Wang, Jiahao Qi, Yisi Liu, Chenchen Feng and Peiqing La
Catalysts 2024, 14(11), 828; https://doi.org/10.3390/catal14110828 - 17 Nov 2024
Cited by 3 | Viewed by 1241
Abstract
In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptimal. This [...] Read more.
In the realm of photoelectrocatalytic (PEC) water splitting, the BiVO4/WO3 photoanode exhibits high electron–hole pair separation and transport capacity, rendering it a promising avenue for development. However, the charge transport and reaction kinetics at the heterojunction interface are suboptimal. This study uses the hydrothermal–electrodeposition–dip coating–calcination method to prepare a microcrystalline WO3 photoanode thin film as the substrate material and combines it with nanocrystalline BiVO4 to form a micro–nano-structured heterojunction photoanode to enhance the intrinsic and surface/interface charge transport properties of the photoanode. Under the condition of 1.23 V vs. RHE, the photoelectric current density reaches 1.09 mA cm−2, which is twice that of WO3. Furthermore, by using a simple impregnation–mineralization method to load the amorphous FeOOH catalyst, a noncrystalline–crystalline composite structure is formed to increase the number of active sites on the surface and reduce the overpotential of water oxidation, lowering the onset potential from 0.8 V to 0.6 V (vs. RHE). The photoelectric current density is further increased to 2.04 mA cm−2 (at 1.23 V vs. RHE). The micro–nano-structure and noncrystalline–crystalline composite structure proposed in this study will provide valuable insights for the design and synthesis of high-efficiency photoelectrocatalysts. Full article
(This article belongs to the Special Issue Catalysts for Energy Storage)
Show Figures

Graphical abstract

13 pages, 3320 KiB  
Communication
Colossal Dielectric Constant of Nanocrystalline/Amorphous Homo-Composite BaTiO3 Films Deposited via Pulsed Laser Deposition Technique
by Shinya Kondo, Taichi Murakami, Loick Pichon, Joël Leblanc-Lavoie, Takashi Teranishi, Akira Kishimoto and My Ali El Khakani
Nanomaterials 2024, 14(20), 1677; https://doi.org/10.3390/nano14201677 - 18 Oct 2024
Cited by 1 | Viewed by 1406
Abstract
We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO3 (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant (εr) and extremely low dielectric loss (tan δ). By varying the substrate deposition temperature (T [...] Read more.
We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO3 (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant (εr) and extremely low dielectric loss (tan δ). By varying the substrate deposition temperature (Td) over a wide range (300–800 °C), we identified Td = 550 °C as the optimal temperature for growing BTO films with an εr as high as ~3060 and a tan δ as low as 0.04 (at 20 kHz). High-resolution transmission electron microscopy revealed that the PLD-BTO films consist of BTO nanocrystals (~20–30 nm size) embedded within an otherwise amorphous BTO matrix. The impressive dielectric behavior is attributed to the combination of highly crystallized small BTO nanograins, which amplify interfacial polarization, and the surrounding amorphous matrix, which effectively isolates the nanograins from charge carrier transport. Our findings could facilitate the development of next-generation integrated dielectric devices. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

14 pages, 9126 KiB  
Article
Acetone Sensors Based on Al-Coated and Ni-Doped Copper Oxide Nanocrystalline Thin Films
by Dinu Litra, Maxim Chiriac, Nicolai Ababii and Oleg Lupan
Sensors 2024, 24(20), 6550; https://doi.org/10.3390/s24206550 - 11 Oct 2024
Cited by 3 | Viewed by 1690
Abstract
Acetone detection is of significant importance in various industries, from cosmetics to pharmaceuticals, bioengineering, and paints. Sensor manufacturing involves the use of different semiconductor materials as well as different metals for doping and functionalization, allowing them to achieve advanced or unique properties in [...] Read more.
Acetone detection is of significant importance in various industries, from cosmetics to pharmaceuticals, bioengineering, and paints. Sensor manufacturing involves the use of different semiconductor materials as well as different metals for doping and functionalization, allowing them to achieve advanced or unique properties in different sensor applications. In the healthcare field, these sensors play a crucial role in the non-invasive diagnosis of various diseases, offering a potential way to monitor metabolic conditions by analyzing respiration. This article presents the synthesis method, using chemical solutions and rapid thermal annealing technology, to obtain Al-functionalized and Ni-doped copper oxide (Al/CuO:Ni) nanostructured thin films for biosensors. The nanocrystalline thin films are subjected to a thorough characterization, with examination of the morphological properties by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. The results reveal notable changes in the surface morphology and structure following different treatments, providing insight into the mechanism of function and selectivity of these nanostructures for gases and volatile compounds. The study highlights the high selectivity of developed Al/CuO:Ni nanostructures towards acetone vapors at different concentrations from 1 ppm to 1000 ppm. Gas sensitivity is evaluated over a range of operating temperatures, indicating optimum performance at 300 °C and 350 °C with the maximum sensor signal (S) response obtained being 45% and 50%, respectively, to 50 ppm gas concentration. This work shows the high potential of developed technology for obtaining Al/CuO:Ni nanostructured thin films as next-generation materials for improving the sensitivity and selectivity of acetone sensors for practical applications as breath detectors in biomedical diagnostics, in particular for diabetes monitoring. It also emphasizes the importance of these sensors in ensuring industrial safety by preventing adverse health and environmental effects of exposure to acetone. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

14 pages, 9409 KiB  
Article
The Effects of Nitrogen Content on the Mechanical and Tribological Properties of CrTaWNx Thin Films
by Li-Chun Chang, Li-Zhu Wang and Yung-I Chen
Coatings 2024, 14(8), 939; https://doi.org/10.3390/coatings14080939 - 26 Jul 2024
Cited by 2 | Viewed by 1152
Abstract
In the study described herein, CrTaWNx thin films were deposited on Si and 304 stainless-steel (SUS304) substrates through magnetron co-sputtering using CrW and Ta targets. The nitrogen flow ratio (fN2 = [N2/(N2 + Ar)]) was adjusted to [...] Read more.
In the study described herein, CrTaWNx thin films were deposited on Si and 304 stainless-steel (SUS304) substrates through magnetron co-sputtering using CrW and Ta targets. The nitrogen flow ratio (fN2 = [N2/(N2 + Ar)]) was adjusted to 0.05, 0.2, 0.4, and 0.5 to fabricate CrTaWNx films with various N contents. The CrTaWNx films prepared at a low fN2 of 0.05 exhibited a low stoichiometric ratio x of 0.16 and a nanocrystalline structure. In contrast, the CrTaWNx films fabricated at an fN2 of 0.2–0.5 exhibited x values of 0.42–0.62 and formed a face-centered cubic phase. The nanocrystalline (Cr0.34Ta0.20W0.46)N0.16 film exhibited mechanical properties and wear resistances that were inferior to those of the crystalline CrTaWNx thin films. A (Cr0.38Ta0.15W0.47)N0.55 film exhibited a hardness of 25.2 GPa, an elastic modulus of 289 GPa, and a low wear rate of 0.51 × 10−5 mm3/Nm. Full article
(This article belongs to the Special Issue Thin-Film Synthesis, Characterization and Properties)
Show Figures

Figure 1

9 pages, 3850 KiB  
Article
Molybdenum-Doped ZnO Thin Films Obtained by Spray Pyrolysis
by Pavlina Bancheva-Koleva, Veselin Zhelev, Plamen Petkov and Tamara Petkova
Materials 2024, 17(9), 2164; https://doi.org/10.3390/ma17092164 - 6 May 2024
Cited by 4 | Viewed by 1928
Abstract
A batch of ZnO thin films, pure and doped with molybdenum (up to 2 mol %), were prepared using the spray pyrolysis technique on glass and silicon substrates. The effect of molybdenum concentration on the morphology, structure and optical properties of the films [...] Read more.
A batch of ZnO thin films, pure and doped with molybdenum (up to 2 mol %), were prepared using the spray pyrolysis technique on glass and silicon substrates. The effect of molybdenum concentration on the morphology, structure and optical properties of the films was investigated. X-ray diffraction (XRD) results show a wurtzite polycrystalline crystal structure. The average crystallite size increases from 30 to 80 nm with increasing molybdenum content. Scanning electron microscopy (SEM) images demonstrate a smooth and homogeneous surface with densely spaced nanocrystalline grains. The number of nuclei increases, growing over the entire surface of the substrate with uniform grains, when the molybdenum concentration is increased to 2 mol %. The estimated root mean square (RMS) roughness values for the undoped and doped with 1 mol % and 2 mol % of ZnO thin films, defined by atomic force microscopy (AFM), are 6.12, 23.54 and 23.83 nm, respectively. The increase in Mo concentration contributes to the increase in film transmittance. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

17 pages, 5623 KiB  
Article
Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films
by Victor Danchuk, Mykola Shatalov, Michael Zinigrad, Alexey Kossenko, Tamara Brider, Luc Le, Dustin Johnson, Yuri M. Strzhemechny and Albina Musin
Nanomaterials 2024, 14(8), 708; https://doi.org/10.3390/nano14080708 - 18 Apr 2024
Cited by 4 | Viewed by 1757
Abstract
The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2 [...] Read more.
The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2O3. Another method is the stabilization of the cubic phase in nanostructures—nanopowders or nanocrystallites of pure zirconia. We studied the relationship between the size factor and the dopant concentration range for the formation and stabilization of the cubic phase in scandium-stabilized zirconia (ScSZ) films. The thin films of (ZrO2)1−x(Sc2O3)x, with x from 0 to 0.2, were deposited on room-temperature substrates by reactive direct current magnetron co-sputtering. The crystal structure of films with an average crystallite size of 85 Å was cubic at Sc2O3 content from 6.5 to 17.5 mol%, which is much broader than the range of 8–12 mol.% of the conventional deposition methods. The sputtering of ScSZ films on hot substrates resulted in a doubling of crystallite size and a decrease in the cubic phase range to 7.4–11 mol% of Sc2O3 content. This confirmed that the size of crystallites is one of the determining factors for expanding the concentration range for forming and stabilizing the cubic phase of ScSZ films. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

17 pages, 5705 KiB  
Article
Development of n-Type, Passivating Nanocrystalline Silicon Oxide Films via Plasma-Enhanced Chemical Vapor Deposition
by Gurleen Kaur, Antonio J. Olivares and Pere Roca i Cabarrocas
Solar 2024, 4(1), 162-178; https://doi.org/10.3390/solar4010007 - 11 Mar 2024
Cited by 1 | Viewed by 2804
Abstract
Nanocrystalline silicon oxide (nc-SiOx:H) is a multipurpose material with varied applications in solar cells as a transparent front contact, intermediate reflector, back reflector layer, and even tunnel layer for passivating contacts, owing to the easy tailoring of its optical properties. In this work, [...] Read more.
Nanocrystalline silicon oxide (nc-SiOx:H) is a multipurpose material with varied applications in solar cells as a transparent front contact, intermediate reflector, back reflector layer, and even tunnel layer for passivating contacts, owing to the easy tailoring of its optical properties. In this work, we systematically investigate the influence of the gas mixture (SiH4, CO2, PH3, and H2), RF power, and process pressure on the optical, structural, and passivation properties of thin n-type nc-SiOx:H films prepared in an industrial, high-throughput, plasma-enhanced chemical vapor deposition (PECVD) reactor. We provide a detailed description of the n-type nc-SiOx:H material development using various structural and optical characterization techniques (scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Raman spectroscopy, and spectroscopic ellipsometry) with a focus on the relationship between the material properties and the passivation they provide to n-type c-Si wafers characterized by their effective carrier lifetime (τeff). Furthermore, we also outline the parameters to be kept in mind while developing different n-type nc-SiOx:H layers for different solar cell applications. We report a tunable optical gap (1.8–2.3 eV) for our n-type nc-SiOx:H films as well as excellent passivation properties with a τeff of up to 4.1 ms (implied open-circuit voltage (iVoc)~715 mV) before annealing. Oxygen content plays an important role in determining the crystallinity and hence passivation quality of the deposited nanocrystalline silicon oxide films. Full article
(This article belongs to the Special Issue Developments in Perovskite Solar Cells)
Show Figures

Graphical abstract

Back to TopTop