Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = nano-magnetic catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Viewed by 543
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 6168 KiB  
Article
Fe3O4@SiO2@WO3 Multifunctional Composite Photocatalyst with Magnetic Core and Dual Shells
by Xin Wang and Jia Chu
Catalysts 2025, 15(4), 314; https://doi.org/10.3390/catal15040314 - 26 Mar 2025
Viewed by 525
Abstract
WO3 has attracted great attention in the field of catalysts due to its excellent photocatalytic performance. However, the difficulty in recycling and low reuse percentage of nano WO3 limit its application. This paper used the hydrothermal method to prepare an Fe [...] Read more.
WO3 has attracted great attention in the field of catalysts due to its excellent photocatalytic performance. However, the difficulty in recycling and low reuse percentage of nano WO3 limit its application. This paper used the hydrothermal method to prepare an Fe3O4@SiO2@WO3 core–shell nanocatalyst. Its composition and structure were characterized by various techniques including XRD, FT-IR, and Raman analyses, which confirmed the successful preparation of a core–shell-structured catalyst with a strong response to an external magnetic field. In the degradation experiment of rhodamine B solution (RhB), the composite catalyst with a WO3 doping amount of 0.8 g and catalyst dosage amount of 30 mg had the best catalytic degradation effect on 10 ppm RhB, with a degradation efficiency of 99.80%. Due to its high transparency and ion conductivity, SiO2 did not affect the performance of the composite catalyst, but could effectively reduce the corrosion of WO3 by the reaction solution. The presence of a SiO2 interlayer prevented any deterioration in the catalytic efficiency of WO3 nanocrystal shells and the chemical and thermal stability of Fe3O4 nuclei. By applying an external magnetic field, this nanocatalyst can be easily recovered from the solution. These features not only maximize the value of this new material, but also provide sustainable solutions for environmental protection, energy crises, and health issues. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

20 pages, 6732 KiB  
Article
Preparation of Recyclable Magnetic Catalyst (Pd/PDA@Fe3O4) and the Catalytic Degradation of 4-Nitrophenol and Rhodamine B
by Wei Wang, Jiaqi Liu, Guang Shi, Shiqi Wu, Shihan Zhang and Ruixia Yuan
Catalysts 2025, 15(2), 175; https://doi.org/10.3390/catal15020175 - 13 Feb 2025
Viewed by 1130
Abstract
A magnetic shell-structured nano-catalyst was prepared by self-polymerization of dopamine wrapped by ferric oxide as the carrier, which was loaded with palladium nanoparticles (Pd/PDA@Fe3O4). The presence of magnetic Fe3O4 made it easy for nanoscale palladium particles [...] Read more.
A magnetic shell-structured nano-catalyst was prepared by self-polymerization of dopamine wrapped by ferric oxide as the carrier, which was loaded with palladium nanoparticles (Pd/PDA@Fe3O4). The presence of magnetic Fe3O4 made it easy for nanoscale palladium particles to recover and prevent the loss of palladium nanoparticles that is unavoidable in traditional usage and preparation procedures. The catalyst was characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, thermal weight loss analysis, Raman spectroscopy, X-ray photo-electron spectroscopy, and magnetic properties analysis. The catalytic performance of the prepared catalyst was investigated taking 4-nitrophenol (10 mg/L) and rhodamine B (15 mg/L) as the target pollutants. The results showed that under the conditions of 35 °C, pH = 7 and a catalyst dosage of 3 mg, the catalytic reduction efficiency of 4-nitrophenol, rhodamine B, and the mixture of them all can reach 99%. The catalytic efficiency of Pd/PDA@Fe3O4 remained above 90% after being used 10 times. The shell structure of Fe3O4 made it possible and easy to recover and recycle the nanoscale palladium, which was a real problem in the usage of nano-catalysts. At the same time, the problem of separation and recovery of palladium nano-catalyst is solved by magnetism, which provides research ideas for the recycling and utilization of nano-materials. Full article
Show Figures

Figure 1

34 pages, 4088 KiB  
Review
Magnetic Iron Oxide Nanomaterials for Lipase Immobilization: Promising Industrial Catalysts for Biodiesel Production
by Farid Hajareh Haghighi, Roya Binaymotlagh, Cleofe Palocci and Laura Chronopoulou
Catalysts 2024, 14(6), 336; https://doi.org/10.3390/catal14060336 - 22 May 2024
Cited by 8 | Viewed by 2414
Abstract
Biodiesel is a mixture of fatty acid alkyl esters (FAAEs) mainly produced via transesterification reactions among triglycerides and short-chain alcohols catalyzed by chemical catalysts (e.g., KOH, NaOH). Lipase-assisted enzymatic transesterification has been proposed to overcome the drawbacks of chemical synthesis, such as high [...] Read more.
Biodiesel is a mixture of fatty acid alkyl esters (FAAEs) mainly produced via transesterification reactions among triglycerides and short-chain alcohols catalyzed by chemical catalysts (e.g., KOH, NaOH). Lipase-assisted enzymatic transesterification has been proposed to overcome the drawbacks of chemical synthesis, such as high energy consumption, expensive separation of the catalyst from the reaction mixture and production of large amounts of wastewater during product separation and purification. However, one of the main drawbacks of this process is the enzyme cost. In recent years, nano-immobilized lipases have received extensive attention in the design of robust industrial biocatalysts for biodiesel production. To improve lipase catalytic efficiency, magnetic nanoparticles (MNPs) have attracted growing interest as versatile lipase carriers, owing to their unique properties, such as high surface-to-volume ratio and high enzyme loading capacity, low cost and inertness against chemical and microbial degradation, biocompatibility and eco-friendliness, standard synthetic methods for large-scale production and, most importantly, magnetic properties, which provide the possibility for the immobilized lipase to be easily separated at the end of the process by applying an external magnetic field. For the preparation of such effective magnetic nano-supports, various surface functionalization approaches have been developed to immobilize a broad range of industrially important lipases. Immobilization generally improves lipase chemical-thermal stability in a wide pH and temperature range and may also modify its catalytic performance. Additionally, different lipases can be co-immobilized onto the same nano-carrier, which is a highly effective strategy to enhance biodiesel yield, specifically for those feedstocks containing heterogeneous free fatty acids (FFAs). This review will present an update on the use of magnetic iron oxide nanostructures (MNPs) for lipase immobilization to catalyze transesterification reactions for biodiesel production. The following aspects will be covered: (1) common organic modifiers for magnetic nanoparticle support and (2) recent studies on modified MNPs-lipase catalysts for biodiesel production. Aspects concerning immobilization procedures and surface functionalization of the nano-supports will be highlighted. Additionally, the main features that characterize these nano-biocatalysts, such as enzymatic activity, reusability, resistance to heat and pH, will be discussed. Perspectives and key considerations for optimizing biodiesel production in terms of sustainability are also provided for future studies. Full article
Show Figures

Figure 1

14 pages, 4900 KiB  
Article
Preparation of Magnetic Nano-Catalyst Containing Schiff Base Unit and Its Application in the Chemical Fixation of CO2 into Cyclic Carbonates
by Na Kang, Yindi Fan, Dan Li, Xiaoli Jia and Sanhu Zhao
Magnetochemistry 2024, 10(5), 33; https://doi.org/10.3390/magnetochemistry10050033 - 26 Apr 2024
Cited by 4 | Viewed by 2411
Abstract
The development of a catalyst for the conversion of CO2 and epoxides to the corresponding cyclic carbonates is still a very attractive topic. Magnetic nano-catalysts are widely used in various organic reactions due to their magnetic separation and recycling properties. Here, a [...] Read more.
The development of a catalyst for the conversion of CO2 and epoxides to the corresponding cyclic carbonates is still a very attractive topic. Magnetic nano-catalysts are widely used in various organic reactions due to their magnetic separation and recycling properties. Here, a magnetic nano-catalyst containing a Schiff base unit was designed, synthesized and used as a heterogeneous catalyst to catalyze CO2 and epoxides to form cyclic carbonates without solvents and co-catalysts. The catalyst was characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric (TG), VSM, SEM, TEM and BET. The results show that the magnetic nano-catalyst containing the Schiff base unit has a high activity in the solvent-free cycloaddition reaction of CO2 with epoxide under mild conditions, and is easily separated from the reaction mixture driven by external magnetic force. The recovered catalyst maintains a high performance after five cycles. Full article
(This article belongs to the Special Issue Recent Progress of Magnetic Field Effect on Catalysts)
Show Figures

Figure 1

28 pages, 12285 KiB  
Article
A Novel Recyclable Magnetic Nano-Catalyst for Fenton-Photodegradation of Methyl Orange and Imidazole Derivatives Catalytic Synthesis
by Marzough A. Albalawi, Amira K. Hajri, Bassem Jamoussi and Omnia A. Albalawi
Polymers 2024, 16(1), 140; https://doi.org/10.3390/polym16010140 - 1 Jan 2024
Cited by 6 | Viewed by 2246
Abstract
A magnetite chlorodeoxycellulose/ferroferric oxide (CDC@Fe3O4) heterogeneous photocatalyst was synthesised via treated and modified cotton in two steps. The designed nanocomposites were characterised by FTIR, TGA, XRD, SEM, and VSM analyses. The Fenton-photocatalytic decomposition efficiency of the synthesised magnetic catalyst [...] Read more.
A magnetite chlorodeoxycellulose/ferroferric oxide (CDC@Fe3O4) heterogeneous photocatalyst was synthesised via treated and modified cotton in two steps. The designed nanocomposites were characterised by FTIR, TGA, XRD, SEM, and VSM analyses. The Fenton-photocatalytic decomposition efficiency of the synthesised magnetic catalyst was evaluated under visible sunlight using Methyl Orange (MO) as a model organic pollutant. The impacts of several degradation parameters, including the light source, catalyst load, irradiation temperature, oxidant dose, and pH of the dye aqueous solution and its corresponding concentration on the Fenton photodegradation performance, were methodically investigated. The (CDC@Fe3O4) heterogeneous catalyst showed a remarkable MO removal rate of 97.9% at 10 min under visible-light irradiation. (CDC@Fe3O4) nanomaterials were also used in a heterogeneous catalytic optimised protocol for a multicomponent reaction procedure to obtain nine tetra-substituted imidazole derivatives. The green protocol afforded imidazole derivatives in 30 min with good yields (91–97%) at room temperature and under ultrasound irradiation. Generally, a synthesised recyclable heterogeneous nano-catalyst is a good example and is suitable for wastewater treatment and organic synthesis. Full article
(This article belongs to the Special Issue Advanced Composite Materials for Water Contaminant Removal)
Show Figures

Figure 1

24 pages, 11452 KiB  
Review
Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility
by Jiahuan Zheng, Rui Huang, Zhexuan Lin, Shaoqi Chen and Kaisong Yuan
Pharmaceutics 2024, 16(1), 44; https://doi.org/10.3390/pharmaceutics16010044 - 27 Dec 2023
Cited by 6 | Viewed by 3528
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such “tiny robots” show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the [...] Read more.
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such “tiny robots” show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described. Full article
Show Figures

Figure 1

20 pages, 7961 KiB  
Article
Magnetic Carbon Foam Adorned with Co/Fe Nanoneedles as an Efficient Activator of Oxone for Oxidative Environmental Remediation: Roles of Surficial and Chemical Enhancement
by Yi-Chun Chen, Xin-Yu Jiang, Bui Xuan Thanh, Jia-Yin Lin, Haitao Wang, Chao-Wei Huang, Hongta Yang, Afshin Ebrahimi, Sanya Sirivithayapakorn and Kun-Yi (Andrew) Lin
C 2023, 9(4), 107; https://doi.org/10.3390/c9040107 - 13 Nov 2023
Cited by 1 | Viewed by 2409
Abstract
As heterogeneous catalysis is a practical method for activating Oxone, the immobilization of transition metals (e.g., Co, Fe) on carbonaceous supports is a promising platform. Thus, this study attempts to develop a carbon-supported metallic catalyst by growing Co/Fe on carbon foam (CF) via [...] Read more.
As heterogeneous catalysis is a practical method for activating Oxone, the immobilization of transition metals (e.g., Co, Fe) on carbonaceous supports is a promising platform. Thus, this study attempts to develop a carbon-supported metallic catalyst by growing Co/Fe on carbon foam (CF) via adopting melamine foam as a readily available template which could be transferred to nitrogen-doped CF with marcoporous structures. Specifically, a unique adornment of Co/Fe species on this CF is facilely fabricated through a complexation of Co/Fe with a plant extract, tannic acid, on melamine foam, followed by carbonization to produce nano-needle-like Co/Fe on N-doped CF, forming a magnetic CF (MCF). This resultant MCF exhibits a much higher surface area of 54.6 m2/g than CF (9.5 m2/g), and possesses a much larger specific capacitance of 9.7 F/g, than that of CF as 4.0 F/g. These superior features of MCF enable it to accelerate Oxone activation in order to degrade an emerging contaminant, bis(4-hydroxyphenyl)methanone (BHPM). Furthermore, MCF + Oxone exhibits a lower activation energy as 18.6 kJ/mol for BHPM elimination and retains its effectiveness in eliminating BHPM over multiple rounds. More importantly, the CF is also prepared and directly compared with the MCF to study the composition-structure-property relationship to provide valuable insights for further understanding of catalytic behaviors, surficial characteristics, and application of such a functional carbon material. Full article
(This article belongs to the Special Issue Carbon-Based Catalyst (2nd Edition))
Show Figures

Figure 1

39 pages, 15083 KiB  
Review
Ferrite Nanoparticles as Catalysts in Organic Reactions: A Mini Review
by Nilima Maji and Harmanjit Singh Dosanjh
Magnetochemistry 2023, 9(6), 156; https://doi.org/10.3390/magnetochemistry9060156 - 14 Jun 2023
Cited by 25 | Viewed by 8138
Abstract
Ferrites have excellent magnetic, electric, and optical properties that make them an indispensable choice of material for a plethora of applications, such as in various biomedical fields, magneto–optical displays, rechargeable lithium batteries, microwave devices, internet technology, transformer cores, humidity sensors, high-frequency media, magnetic [...] Read more.
Ferrites have excellent magnetic, electric, and optical properties that make them an indispensable choice of material for a plethora of applications, such as in various biomedical fields, magneto–optical displays, rechargeable lithium batteries, microwave devices, internet technology, transformer cores, humidity sensors, high-frequency media, magnetic recordings, solar energy devices, and magnetic fluids. Recently, magnetically recoverable nanocatalysts are one of the most prominent fields of research as they can act both as homogeneous and heterogenous catalysts. Nano-ferrites provide a large surface area for organic groups to anchor, increase the product and decrease reaction time, providing a cost-effective method of transformation. Various organic reactions were reported, such as the photocatalytic decomposition of a different dye, alkylation, dehydrogenation, oxidation, C–C coupling, etc., with nano-ferrites as a catalyst. Metal-doped ferrites with Co, Ni, Mn, Cu, and Zn, along with the metal ferrites doped with Mn, Cr, Cd, Ag, Au, Pt, Pd, or lanthanides and surface modified with silica and titania, are used as catalysts in various organic reactions. Metal ferrites (MFe2O4) act as a Lewis acid and increase the electrophilicity of specific groups of the reactants by accepting electrons in order to form covalent bonds. Ferrite nanocatalysts are easily recoverable by applying an external magnetic field for their reuse without significantly losing their catalytic activities. The use of different metal ferrites in different organic transformations reduces the catalyst overloading and, at the same time, reduces the use of harmful solvents and the production of poisonous byproducts, hence, serving as a green method of chemical synthesis. This review provides insight into the application of different ferrites as magnetically recoverable nanocatalysts in different organic reactions and transformations. Full article
Show Figures

Figure 1

14 pages, 1892 KiB  
Article
Nano-Magnetic CaO/Fe2O3/Feldspar Catalysts for the Production of Biodiesel from Waste Oils
by Maryam Hanif, Ijaz Ahmad Bhatti, Muhammad Asif Hanif, Umer Rashid, Bryan R. Moser, Asma Hanif and Fahad A. Alharthi
Catalysts 2023, 13(6), 998; https://doi.org/10.3390/catal13060998 - 13 Jun 2023
Cited by 6 | Viewed by 2808
Abstract
Production of biodiesel from edible vegetable oils using homogenous catalysts negatively impacts food availability and cost while generating significant amounts of caustic wastewater during purification. Thus, there is an urgent need to utilize low-cost, non-food feedstocks for the production of biodiesel using sustainable [...] Read more.
Production of biodiesel from edible vegetable oils using homogenous catalysts negatively impacts food availability and cost while generating significant amounts of caustic wastewater during purification. Thus, there is an urgent need to utilize low-cost, non-food feedstocks for the production of biodiesel using sustainable heterogeneous catalysis. The objective of this study was to synthesize a novel supported nano-magnetic catalyst (CaO/Fe2O3/feldspar) for the production of biodiesel (fatty acid methyl esters) from waste and low-cost plant seed oils, including Sinapis arvensis (wild mustard), Carthamus oxyacantha (wild safflower) and Pongamia pinnata (karanja). The structure, morphology, surface area, porosity, crystallinity, and magnetization of the nano-magnetic catalyst was confirmed using XRD, FESEM/EDX, BET, and VSM. The maximum biodiesel yield (93.6–99.9%) was achieved at 1.0 or 1.5 wt.% catalyst with methanol-to-oil molar ratios of 5:1 or 10:1 at 40 °C for 2 h. The CaO/Fe2O3/feldspar catalyst retained high activity for four consecutive cycles for conversion of karanja, wild mustard, and wild safflower oils. The effective separation of the catalyst from biodiesel was achieved using an external magnet. Various different physico-chemical parameters, such as pour point, density, cloud point, iodine value, acid value, and cetane number, were also determined for the optimized fuels and found to be within the ranges specified in ASTM D6751 and EN 14214, where applicable. Full article
(This article belongs to the Special Issue Biomass Derived Heterogeneous and Homogeneous Catalysts, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 1591 KiB  
Article
A DFT Study of Ruthenium fcc Nano-Dots: Size-Dependent Induced Magnetic Moments
by Marietjie J. Ungerer and Nora H. de Leeuw
Nanomaterials 2023, 13(6), 1118; https://doi.org/10.3390/nano13061118 - 21 Mar 2023
Cited by 4 | Viewed by 3426
Abstract
Many areas of electronics, engineering and manufacturing rely on ferromagnetic materials, including iron, nickel and cobalt. Very few other materials have an innate magnetic moment rather than induced magnetic properties, which are more common. However, in a previous study of ruthenium nanoparticles, the [...] Read more.
Many areas of electronics, engineering and manufacturing rely on ferromagnetic materials, including iron, nickel and cobalt. Very few other materials have an innate magnetic moment rather than induced magnetic properties, which are more common. However, in a previous study of ruthenium nanoparticles, the smallest nano-dots showed significant magnetic moments. Furthermore, ruthenium nanoparticles with a face-centred cubic (fcc) packing structure exhibit high catalytic activity towards several reactions and such catalysts are of special interest for the electrocatalytic production of hydrogen. Previous calculations have shown that the energy per atom resembles that of the bulk energy per atom when the surface-to-bulk ratio < 1, but in its smallest form, nano-dots exhibit a range of other properties. Therefore, in this study, we have carried out calculations based on the density functional theory (DFT) with long-range dispersion corrections DFT-D3 and DFT-D3-(BJ) to systematically investigate the magnetic moments of two different morphologies and various sizes of Ru nano-dots in the fcc phase. To confirm the results obtained by the plane-wave DFT methodologies, additional atom-centred DFT calculations were carried out on the smallest nano-dots to establish accurate spin-splitting energetics. Surprisingly, we found that in most cases, the high spin electronic structures had the most favourable energies and were hence the most stable. Full article
(This article belongs to the Special Issue Theoretical Calculation and Molecular Modeling of Nanomaterials)
Show Figures

Figure 1

19 pages, 2683 KiB  
Article
Tuning the Photocatalytic Performance of Ni-Zn Ferrite Catalyst Using Nd Doping for Solar Light-Driven Catalytic Degradation of Methylene Blue
by Pooja Dhiman, Garima Rana, Elmuez A. Dawi, Amit Kumar, Gaurav Sharma, Arun Kumar and Jayati Sharma
Water 2023, 15(1), 187; https://doi.org/10.3390/w15010187 - 2 Jan 2023
Cited by 30 | Viewed by 3994
Abstract
In this paper, we describe the creation of a moderate band gap Nd-substituted Ni-Zn ferrite as a nano photo catalyst via a simple and cost-effective process of solution combustion. Nd substitution alters the crystallite size, shape, band gap, and magnetic characteristics of Ni-Zn [...] Read more.
In this paper, we describe the creation of a moderate band gap Nd-substituted Ni-Zn ferrite as a nano photo catalyst via a simple and cost-effective process of solution combustion. Nd substitution alters the crystallite size, shape, band gap, and magnetic characteristics of Ni-Zn ferrite significantly. Investigations using X-ray diffraction revealed that all samples display a pure phase. The average crystallite size was determined to be between 31.34 and 38.67 nm. On Nd doping, morphology investigations indicated that the shape of nanoparticles changed from approximately spherical to stacked grains. Band gap experiments confirmed the red shift in optical band gap on Nd doping. The synthesized catalysts Ni0.5Zn0.5Fe2O4 (Nd0), Ni0.5Zn0.45Nd0.05Fe2O4 (Nd1), and Ni0.5Zn0.5Nd0.05Fe1.95O4 (Nd2) have been effectively used for the degradation of methylene blue dye under the solar light irradiation. The sample with Nd substitution on Fe sites had the highest methylene blue degradation efficiency. Nd2 photo catalyst degrades the methylene blue dye with a degradation efficiency of 98% in 90 min of solar light irradiation. The photocatalytic activity is triggered by the existence of oxygen vacancies and a mixed valence state of Ni, Fe, and Nd, as confirmed by the XPS investigation. In addition, the investigations on scavenging reveal that the hydroxyl radical is a reactive component in the degradation process. The degradation route has been investigated in relation to the many potential reactions and discovered reactive substances. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 4521 KiB  
Article
Green Copolymers and Nanocomposites from Myrcene and Limonene Using Algerian Nano-Clay as Nano-Reinforcing Filler
by Hodhaifa Derdar, Geoffrey Robert Mitchell, Artur Mateus, Sarra Chaibedraa, Zinelabidine Otmane Elabed, Vidhura Subash Mahendra, Zakaria Cherifi, Khaldoun Bachari, Redouane Chebout, Rachid Meghabar, Amine Harrane and Mohammed Belbachir
Polymers 2022, 14(23), 5271; https://doi.org/10.3390/polym14235271 - 2 Dec 2022
Cited by 3 | Viewed by 2800
Abstract
In this work, we report a new facile method for the preparation of myrcene-limonene copolymers and nanocomposites using a Lewis acid as a catalyst (AlCl3) and organo-modified clay as a nano-reinforcing filler. The copolymer (myr-co-lim) was prepared by cationic copolymerization using [...] Read more.
In this work, we report a new facile method for the preparation of myrcene-limonene copolymers and nanocomposites using a Lewis acid as a catalyst (AlCl3) and organo-modified clay as a nano-reinforcing filler. The copolymer (myr-co-lim) was prepared by cationic copolymerization using AlCl3 as a catalyst. The structure of the obtained copolymer is studied and confirmed by Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, and Differential Scanning Calorimetry. By improving the dispersion of the matrix polymer in sheets of the organoclay, Maghnite-CTA+ (Mag-CTA+), an Algerian natural organophilic clay, was used to preparenanocomposites of linear copolymer (myr-co-lim). In order to identify and assess their structural, morphological, and thermal properties, the effect of the organoclay, used in varyingamounts (1, 4, 7, and 10% by weight), and the preparation process were investigated. The Mag-CTA+ is an organophylic montmorillonite silicate clay prepared through a direct exchange process in which they were used as green nano-reinforcing filler. The X-ray diffraction of the resulting nanocomposites revealed a considerable alteration in the interlayer spacing of Mag-CTA+. As a result, interlayer expansion and myr-co-lim exfoliation between layers of Mag-CTA+ were observed. Thermogravimetric analysis provided information on the synthesized nanocomposites’ thermal properties. Fourier transform infrared spectroscopy and scanning electronic microscopy, respectively, were used to determine the structure and morphology of the produced nanocomposites (myr-co-lim/Mag). The intercalation of myr-co-lim in the Mag-CTA+ sheets has been supported by the results, and the optimum amount of organoclay needed to create a nanocomposite with high thermal stability is 10% by weight. Finally, a new method for the preparation of copolymer and nanocomposites from myrcene and limonene in a short reaction time was developed. Full article
Show Figures

Graphical abstract

14 pages, 5048 KiB  
Article
Environmentally Safe Magnetic Nanocatalyst for the Production of Biodiesel from Pongamia pinnata Oil
by Hafiza Qurat ul Ain Sami, Muhammad Asif Hanif, Umer Rashid, Shafaq Nisar, Ijaz Ahmad Bhatti, Samuel Lalthazuala Rokhum, Toshiki Tsubota and Ali Alsalme
Catalysts 2022, 12(10), 1266; https://doi.org/10.3390/catal12101266 - 18 Oct 2022
Cited by 6 | Viewed by 2775
Abstract
Biodiesel is an alternative fuel in many developing and developed countries worldwide. Biodiesel has significant and numerous economic, environmental, and social benefits. However, the problem with conventional biodiesel production is the high industrial production cost, mainly contributed by the raw materials. Therefore, catalysts [...] Read more.
Biodiesel is an alternative fuel in many developing and developed countries worldwide. Biodiesel has significant and numerous economic, environmental, and social benefits. However, the problem with conventional biodiesel production is the high industrial production cost, mainly contributed by the raw materials. Therefore, catalysts and feedstock are essential in increasing total biodiesel production rates and minimizing production costs. Magnetic nano-catalysts play a crucial role in heterogeneous catalysis due to their easy recovery, recyclability, excellent selectivity, and fast reaction rates, owing to their larger surface area. This research activity used heterogeneous magnetic nano-catalysts of ICdO, ISnO, and their modified form, to produce biodiesel. The synthesized nano-catalysts were made through co-precipitation and found quite efficient for transesterifying Pongamia pinnata oil. The effect of various parameters on biodiesel yield in the presence of prepared magnetic nano-catalysts has been studied. In the transesterification supported by ISnO, high yield, i.e., 99%, was achieved after 2 h of reaction time at 60 °C. The nano-catalysts were magnetically recovered and reused 4–5 times without any change in their activity. All the synthesized magnetic nano-catalysts performed SEM analysis. Each fraction of the produced biodiesel was assessed for different quality parameters, and the results were per ASTM standards. The components present in biodiesel produced from Pongamia pinnata oil were determined by GCMS. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

26 pages, 4978 KiB  
Article
Efficient Production of Wild and Non-Edible Brassica juncea (L.) Czern. Seed Oil into High-Quality Biodiesel via Novel, Green and Recyclable NiSO4 Nano-Catalyst
by Maryam Tanveer Akhtar, Mushtaq Ahmad, Maliha Asma, Mamoona Munir, Muhammad Zafar, Shazia Sultana, M. A. Mujtaba, Abdullah Mohamed and Md Abul Kalam
Sustainability 2022, 14(16), 10188; https://doi.org/10.3390/su141610188 - 17 Aug 2022
Cited by 9 | Viewed by 3156
Abstract
In the current study, a novel green nano-catalyst from Tragacanth gum (TG) was synthesized and used for sustainable biodiesel production from Brassica juncea (L.) Czern. seed oil. Brassica juncea (L.) Czern contains 30% oil on dry basis and free fatty acid content of [...] Read more.
In the current study, a novel green nano-catalyst from Tragacanth gum (TG) was synthesized and used for sustainable biodiesel production from Brassica juncea (L.) Czern. seed oil. Brassica juncea (L.) Czern contains 30% oil on dry basis and free fatty acid content of 0.43 mg KOH/g. Physiochemical characterization of a newly synthesized nano-catalyst was performed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. The XRD results showed an average crystalline size of 39.29 nm. TEM analysis showed the cluster form of NiSO4 nanoparticles with a size range from 30–50.5 nm. SEM analysis of the catalyst showed semispherical and ovoid shapes with surface agglomeration. The synthesized catalyst was recovered and re-used in four repeated transesterification cycles. Maximum biodiesel yield (93%) was accomplished at 6:1 methanol to oil molar ratio, catalyst concentration of 0.3 wt%, at 90 °C for 120 min at 600 rpm using Response Surface Methodology (RSM) coupled with central composite design (CCD). Brassica juncea (L.) Czern. biodiesel was characterized by Thin Layer Chromatography (TLC), FT-IR, Nuclear Magnetic Resonance (NMR) (1H, 13C), and Gas Chromatography-Mass Spectroscopy (GCMS) analytical techniques. The major fatty acid methyl esters were 16-Octadecenoic acid and 9-Octadecenoic acid methyl ester. The fuel properties, i.e., flash point (97 °C), density (825 kg/m3 at 40 °C), kinematic viscosity (4.66 mm2/s), pour point (–10 °C), cloud point (–14 °C), sulfur content (66 wt.%), and total acid number (182 mg KOH/g) were according to the International biodiesel standards. The reaction kinetic parameters were determined, and all the reactions followed Pseudo first-order kinetics. It was concluded that non-edible Brassica juncea (L.) Czern. seed oil is one of the sustainable candidates for the future biofuel industry using a cleaner, reusable, and highly active Ni-modified TG nano-catalyst. Full article
(This article belongs to the Special Issue Sustainable Biodiesel Production)
Show Figures

Figure 1

Back to TopTop