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Abstract: In this work, we report a new facile method for the preparation of myrcene-limonene
copolymers and nanocomposites using a Lewis acid as a catalyst (AlCl3) and organo-modified clay
as a nano-reinforcing filler. The copolymer (myr-co-lim) was prepared by cationic copolymerization
using AlCl3 as a catalyst. The structure of the obtained copolymer is studied and confirmed by
Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, and Differential
Scanning Calorimetry. By improving the dispersion of the matrix polymer in sheets of the organoclay,
Maghnite-CTA+ (Mag-CTA+), an Algerian natural organophilic clay, was used to preparenanocompos-
ites of linear copolymer (myr-co-lim). In order to identify and assess their structural, morphological,
and thermal properties, the effect of the organoclay, used in varyingamounts (1, 4, 7, and 10% by
weight), and the preparation process were investigated. The Mag-CTA+ is an organophylic mont-
morillonite silicate clay prepared through a direct exchange process in which they were used as
green nano-reinforcing filler. The X-ray diffraction of the resulting nanocomposites revealed a con-
siderable alteration in the interlayer spacing of Mag-CTA+. As a result, interlayer expansion and
myr-co-lim exfoliation between layers of Mag-CTA+ were observed. Thermogravimetric analysis
provided information on the synthesized nanocomposites’ thermal properties. Fourier transform
infrared spectroscopy and scanning electronic microscopy, respectively, were used to determine the
structure and morphology of the produced nanocomposites (myr-co-lim/Mag). The intercalation of
myr-co-lim in the Mag-CTA+ sheets has been supported by the results, and the optimum amount of
organoclay needed to create a nanocomposite with high thermal stability is 10% by weight. Finally, a
new method for the preparation of copolymer and nanocomposites from myrcene and limonene in a
short reaction time was developed.

Keywords: myrcene; limonene; copolymerization; Maghnite; nanocomposites

1. Introduction

Creating polymers from renewable monomers has been the focus of numerous ongo-
ing research projects worldwide. The majority of research has been conductedon polymers
made from renewable resources among the various types of polymers that have been inves-
tigated [1–3]. The most effective investigations into terpene reactions in organic chemistry
synthesis have been published [4], although there are currently few instances of them being
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used in polymer science. A monocyclic terpene called limonene is found in many essential
oils made from citrus rinds and is used as a green solvent as well as an additive to meals,
drinks, and cosmetics for flavor and aroma. Limonene contains double bonds, which
give the bifunctionality required for polymerization, and because it is an allylic monomer
(CH2 = CH-CH2Y), limonene is of great importance in the field of polymerization [5,6].The
results of a literature search show that attempts have been made by chemists to create a
substitute for polyterpenes derived from petroleum distillates [7]. However, no such substi-
tute has yet been created because most terpenes are not homopolymerized in the absence
of a solvent [8], and have low stabilization energies between monomers and transition state
radicals [9], with the exception of β–pinene and limonene, which were polymerized by
clay [10], numerous items, including cosmetics, food additives, medicines, and even green
solvents, use limonene extensively [11].

Numerous essential oils contain myrcene, which is more properly categorized as
monoterpene. Myrcene is a key ingredient in the essential oils of various plants, including
bay, cannabis, and hops [12,13]. Monoterpenes are dimers of isoprenoid precursors. It
receives its name from the plant myrcia from which it is primarily semi-synthetically
produced. It serves as a crucial intermediary in the creation of a number of scents.
Myrcene was initially polymerized using Ziegler-Natta-type catalysts in 1960, but sadly
the 1,4-stereoregularity was not established [14]. Prior to now, the synthetic processes
for polymyrcene included controlled radical polymerization [15–17], anionic polymer-
ization with green solvents [18], and cationic polymerization with triflate esters as an
in-situ created starting system [19]. Chain transfer causes free radical polymerization to
fail, producing branched/cross-linked products [20–23]. The materials with the highest
conversions (almost 100%) were those that had 85% or more 1,4-cis enchainments and 15%
or fewer3,4-defects, according to an anionic initiator [24].

The last few decades have seen a rise in interest in nanocomposites, a new class of
materials strengthened by nanoscale particles. Toyota researchers first became interested in
these novel materials in the early 1990s. In fact, they demonstrated a notable improvement
in dimensional stability by dispersing clays in polyamide-6 through in situ polymeriza-
tions [25]. In several scientific disciplines, these findings have opened up new possibilities
for polymer matrix nanocomposites [26]. Others built on eco-friendly ingredients have
replaced toxic polymer-based nanocomposites in recent years. The physicochemical charac-
teristics of the resulting nanocomposites are improved when a polymer matrix is used and
a specific quantity of clay is added as reinforcement [27,28]. Two distinct types of nanocom-
posites structures, intercalated and exfoliated nanocomposites, can be created depending
on the degree of interaction between the modified polymer and the clay. Nanocomposites
can be created using a variety of techniques, including in-situ polymerization, solution
blending of polymers, and others [29].

It is highly intriguing to employ ultrasound to create nanocomposites based on poly-
mer and clay solutions. With the majority of them focused on exfoliating the packed layers
of clay, this method of synthesis was utilized to speed up the reaction time and increase the
dispersion of nano-fillers in the polymer matrix [30–33]. The use of ultrasound also affects
the morphology of the prepared nanocomposites, particularly in dispersion, such asin-situ
polymerization methods [34]. Ultrasonication induces acoustic stream and cavitation bub-
bles that then undergo an implosion process, releasing heat and energy as a result. This
results in a highly well-dispersed reaction medium [35]. For these reasons, many clay and
polymer-based nanocomposites were created using an ultrasound-assisted technique.

The use of AlCl3 as a catalyst in the synthesis of copolymers based on myrcene and
limonene is essentially nonexistent, according to our review of the literature. The main goal
of this research is to examine the catalytic properties of AlCl3 as a novel catalyst for the
copolymerization of myrcene and limonene and Mag-CTA+ as a novel, nano-reinforcing
filler for the synthesis of nanocomposites based on myrcene-limonene copolymer using
ultrasound-assisted method. In our previously published work, we have demonstrated the
benefits of various applications of this type of nano-reinforcing filler in several syntheses
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of nanocomposites in order to improve both the thermal and mechanical properties of the
obtained copolymer [36–40].

2. Materials and Method
2.1. Materials

In this work we have used Myrcene (97%), (R)-(+)-Limonene (97%), AlCl3, Methanol
(CH3OH, 99.9%), Dichloromethane (CH2Cl2, 99.8%), Sulfuric acid (H2SO4), Sodium chlo-
ride (NaCl), and cetyltrimethylammonuim bromide (CTAB) were purchased by Sigma
Aldrich and used as received. Maghnite (Algerian montmorillonite) is supplied in the raw
state by ENOF Bental Spa of the National Company of Nonferrous Mining Products, Magh-
nia Unit (Algeria). The ultrasonic apparatus used to create Mag-CTA+ and nanocomposites
is made up of a jacketed glass tank with an ultrasonic horn (13.6 mm in diameter, with a
non-replaceable titanium alloy Ti-6Al-4V tip) and a Sonics VC-750 Vibra 6 Cell generator.

2.2. Preparation of Mag-Na+ and Mag-CTA+

Mag-Na+ was prepared according to the protocol described by Derdar et al. [41,42].
The raw-Mag supplied by Bental Spa, is crushed and finely sieved, the activation of
Maghnite by sodium was carried out using 1 L of NaCl solution (1M) and 20 g of raw-Mag
(2% by weight), the latter is mixed for 24 h at room temperature, finally, the Maghnite was
washed several times with distilled water.

The Mag-CTA+ activation was carried out using ultrasound for 1 h [43]. Firstly 10 g
of Mag-Na+ is placed in a 1 L Erlenmeyer flask with the chosen concentration (1 CEC).
At the end of the exchange process, the suspension is filtered and then washed several
times with distilled water. Finally, the solid obtained is dried at 105 ◦C for 24 h and ground
(Scheme 1). The structure of organophyllic clay is confirmed by Fourier Transform Infra-
red Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis and their morphological
properties are studied by Scanning Electron Microscopy (SEM) and Transmission Electron
Microscopy (TEM) analysis.
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Scheme 1. Reaction steps of the preparation of Mag-Na+ and Mag-CTA+.

2.3. Synthesis of Copolymers and Nanocomposites

The copolymerization of myrcene with limonene was investigatedand performed at
room temperature for three hours in solution using AlCl3 as a catalyst, 0.02 mol of myrcene
and limonene, are kept under stirring in 10 mL of Toluene, with 5% by weight of AlCl3
(Scheme 2). The solution changed color to orange when AlCl3 was added to start the
copolymerization. Then, as the polymerization process continued, it became darker and
thicker. AlCl3 was removed from the reaction mixture by stirring with 10 mL of HCL
(0.1 M) until the orange color disappeared and the organic phase was washed several
times with NaOH (0.1 M) and with distilled water. The organic phase was then dried with



Polymers 2022, 14, 5271 4 of 13

magnesium sulphate (MgSO4) and toluene was evaporated. The products were dissolved
in THF, precipitated in cold methanol (MeOH), and dried in a vacuum overnight. Table 1
summarizes the operating conditions of the copolymerization.

Myr-co-lim/Mag nanocomposites were prepared using a polymer and clay combi-
nation synthesis technique in solution. In 15 mL of dichloromethane (CH2Cl2), 0.5 g of
the obtained copolymer is dissolved. The copolymer is then fully dissolved by stirring the
mixture for an additional 15 min. The solution is then treated using an ultrasonic-assisted
technique for 3 h after receiving 1% by weight of Mag-CTA+ [43]. The resulting nanocom-
posite is filtered, precipitated in MeOH, and overnight vacuum-dried. The same process is
carried out again for Mag-CTA+ additions of 4, 7, and 10% by weight to myr-co-lim. The
samples were given the names myr-co-lim/Mag (see experimental conditions in Table 1).
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ultrasonic irradiation.

Table 1. Experimental conditions for the preparation of nanocomposites myr-co-lim/Mag.

Samples myr-co-lim Mag-CTA+ Time Frequency Yield

myr-co-lim/Mag1% 0.5 g 1% (wt) 3 h 20 KHz 100%

myr-co-lim/Mag4% 0.5 g 4% (wt) 3 h 20 KHz 100%

myr-co-lim/Mag7% 0.5 g 7% (wt) 3 h 20 KHz 100%

myr-co-lim/Mag10% 0.5 g 10% (wt) 3 h 20 KHz 100%

2.4. Characterization

The structure of the obtained copolymer is confirmed by Proton Nuclear Magnetic
Resonance Spectroscopy (1H-NMR) using a Brucker-Avance 400 MHZ apparatus with
Deuterated Chloroform as the solvent. The functional groups of the obtained copolymer,
the modified clay, and the obtained nanocomposites were analyzed by infrared spectroscopy
using a BRUKER ALPHA Diamond-ATR spectrometer. Differential scanning Calorimetry
(DSC) was used, to study the thermal properties of myr-co-lim copolymer, using a204 F1,
NETZSCH equipment, operating at a heating rate of 20 ◦C/min, from room temperature
up to 600 ◦C under an inert atmosphere with a flow rate of 50 mL/min. The morphology
of the modified clay and the prepared nanocomposites were observed by XRD diffraction
patterns using a Bruker AXS D8 diffractometer (Cu-K radiation), and FEG-SEM on a, JEOL
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7001F electron microscopy together with Transmission electron micrographs obtained using
a Hitachi 8100. Thermogravimetric analysis (TGA) using a PerkinElmer STA 6000 under
nitrogen in the temperature range of 30–700 ◦C with a heating rate of 20 ◦C/min, was used
to study the thermal properties of the obtained nanocomposites.

3. Results and Discussion
3.1. Characterization of Clay (Mag-Na+ and Mag-CTA+)

Figure 1 displays the FT-IR spectra of Mag-Na+ and Mag-CTA+. We notice two bands
at 455 and 515 cm−1 that are related to the elongation vibrations of the Si-O-Si and Si-O-Al
bonds, respectively, as well as a strong peak at 1057 cm−1 [44,45]. The Maghnite’s Si-O
vibration is what causes the band to vibrate at 1000 cm−1. Following the alteration of
Maghnite by CTA+, various bands were produced. For example, two new bands were seen
for Mag-CTA+ in the 2850 and 2922 cm−1 regions, which correspond to the C-H stretching
vibrations of the methyl group. The intercalation of the alkyl ammonium ions of the CTAB
between the clay sheets is confirmed by the FT-IR study results.
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Figure 1. FT-IR spectra of Mag-H+, Mag-Na+ and Mag-CTA+.

The X-Ray diffractograms of Raw-Mag, Mag-Na+ and Mag-CTA+ are shown in
Figure 2. Basal spacing (d001) was determined from XRD patterns using the Bragg equation
(2dsinθ = nλ.) where θ is half the scattering angle and λ is the incident beam wavelength; it
is 1.01 nm for Raw-Mag. Mag-Na+ and Mag-CTA+ diffractograms demonstrate that the
basal spacing (d001) varies from d = 1.23 nm for Mag-Na+ to d = 1.8 nm for Mag-CTA+. This
growth supports the CTAB’s alkyl ammonium ions’ intercalation in the inter-foliar galleries.
These outcomes demonstrate how Mag-CTA+ was affected by ultrasonic irradiation.
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In contrast to Aicha Khenif et al. [46], who achieved an interlayer distance of 1.98 nm
after 24 h of stirring to prepare CTAB/Clay, we were only able to achieve an interlayer
distance of 1.8 nm after 1 h.

3.2. Characterization of the Obtained Copolymer (lim-co-sty)
3.2.1. H- NMR Measurements

Figure 3 displays the 1H-NMR spectrum of the produced copolymer. The proposed
structure was verified and further investigated using the 1H-NMR spectra. A signal at
0.8 ppm as well as multiple peaks corresponding to the protons of the methyl group
is clearly visible in the 1H-NMR spectrum of (myr-co-lim). The resulting copolymer’s
spectrum also shows the peak (e) at 1.16 ppm, which corresponds to the protons of the
methylene group (-CH2); limonene’s spectrum does not show this peak (see Figure 4). The
characteristic resonance of the protons caused by the internal double bonds (-CH=CH-)
of limonene and myrcene is represented by peaks (b, c and d) between 4.5 and 5.4 ppm
which clearly shows that the copolymerization of myrcene with limonene is successful
using AlCl3 as a catalyst.
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3.2.2. FT-IR Measurements

FT-IR measurements were also used to establish the copolymer’s structure. Figure 5
shows the FT-IR spectra of limonene (a) and the produced copolymer (b). The peaks in the
copolymer’s spectrum that correspond to the double bonds in limonene at 1309, 1217, 956,
913, and 885 cm−1 have disappeared, indicating that the copolymerization process was
successful. It should be noted the band corresponding to the stretching band of C=C at
1640 cm−1 in the spectra of limonene has decreased in the spectra of myr-co-lim and also
an intense band at 2930 cm−1 corresponding to the valence vibration of the methylene C-H.
A band at 886.38 cm−1 corresponds to the valence vibration C-H bond of CH2 out-of-plane.
The bands at 1456 and 1365 cm−1 are attributed to the deformation of the C-H bond of the



Polymers 2022, 14, 5271 7 of 13

CH2 and CH3 groups [47]. These results confirm the copolymerization of myrcene with
limonene and also confirm results obtained by NMR analysis.
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3.2.3. Differential Scanning Calorimetry (DSC)

The thermal characteristics of the produced copolymer were investigated using dif-
ferential scanning calorimetry (DSC). Figure 6 shows the myr-co-lim DSC curve. The
copolymer’s glass transition temperature (Tg), as determined by its DSC curve, is found to
be between 40 and 45 ◦C. Additionally, the successful copolymerization of myrcene with
limonene usingAlCl3 as catalyst is demonstrated by comparing the Tg of the copolymer
with those of polmyrcene (Tg) in the temperature range of −73.09 to −65.90 ◦C [48] and
polylimonene (Tg = 116 ◦C) [49].
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3.3. Characterization of the Obtained Nanocomposites (myr-co-lim/Mag)

The XRD patterns of the Mag-CTA+ copolymer and nanocomposites are shown in
Figure 7. We noticed that the copolymer we obtained (myr-co-lim) does not exhibit any
distinct peaks in its XRD pattern, indicatingan amorphous structure. The characteristic
basal diffraction peak of Mag-CTA+ at 2θ = 4.9◦ was almost completely absent in the case of
myr-co-lim/Mag 1%, demonstrating the exfoliation of the clay, which accounts for a good
diffusion of myr-co-lim copolymer in the clay galleries. In this case, the nanosheets are all
individualized and occupy the entire volume of material. The nanocomposites made by
adding 4, 7 and 10% of Mag-CTA+ had a single which corresponded to interlayer distances
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of 2.15, 2.62 and 3.27 nm. In comparison to the Mag-CTA+, which had an interlayer distance
of 1.8 nm, these nanocomposites’ interlayer distances were enhanced by a factor of more
than two. The increase ininterlayer distance indicates that there is an intercalation of the
copolymer into the Mag-CTA+ sheets and an agglomeration of leaves intercalated through
interactions between the sheets of Montmorillonite. This result confirms that the copolymer
was well intercalated between the clay galleries. These results are in agreement with those
obtained by Hanène Salmi-Mani et al. [50].
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Figure 8 displays the produced nanocomposites’ FT-IR spectra (myr-co-lim/Mag 1, 4, 7,
and 10%). We noticed that the produced nanocomposites exhibit vibration bands that almost
exactly match those of the organo-modified clay (Mag-CTA+) and are in good agreement
with the pure copolymer structure. The FT-IR spectra of the produced nanocomposites
revealed the double bond C-H in the copolymer at 2921 and 2867 cm−1, respectively which
corresponds to the vibration of the methyl and methylene group. The FT-IR spectra of
the produced nanocomposites display the appearance of a strong peak at 1000 cm−1 that
corresponds to the vibration of Si-O of the Mag-CTA+ in contrast to the FT-IR spectrum
of the pure copolymer, theseresults are due to the different amounts of clay used in the
preparation of nanocomposites. These findings demonstrate the intercalation of myr-co-lim
copolymer between the clay sheets.
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Figure 9 displays the SEM images of the produced nanocomposites (myr-co-lim/Mag
1, 7, and 10%) as well as the Mag-CTA+. We noticed a more structured montmorillonite
structure in small particles when comparing the morphology of Mag-CTA+ with myr-co-
lim/Mag 7 and 10% nanocomposites. The examination of nanocomposites at 10 m showed
the creation of separated montmorillonite plates, which is a partial exfoliation, as well as
a rougher surface and a covering of the montmorillonite surface by the copolymer in the
myr-co-lim/Mag 1% nanocomposites.
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Figure 9. SEM images of Mag-CTA+ [51] and myr-co-lim/Mag 1, 7, and 10%.

Figure 10 displays the images acquired using TEM of Mag-CTA+ and the nanocom-
posites that were produced. The dispersion of Mag-CTA+ in the copolymer matrix was
ascertained by TEM analysis, which was also used to validate the outcomes of the XRD
investigation. The dark and brilliant lines make it simple for Mag-CTA+ to identify the
silicate layers. The clay nanoparticles are mostly evenly spread in the copolymer matrix of
the nanocomposites made with 1% by weight of Mag-CTA+, and they exhibit a partially
or completely exfoliated structure. However, the nanocomposites of myr-co-lim/Mag 7
and 10% exhibit a modified clay intercalated structure. These findings support those of the
XRD analysis. These results are in agreement with those obtained by H Derdar et al. [51].
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Figure 11 displays the TGA curves of the produced nanocomposites and pure copoly-
mer. We found that pure copolymer and all nanocomposites have a one-step process for
weight loss. The thermal stability of the produced nanocomposites is improved by the
Mag-CTA+, according to TGA curves. While the degradation temperature of the pure
copolymer was observed at 120 ◦C, it can be seen that nanocomposites prepared with 1 and
10% by wt of Mag-CTA+ exhibit high thermal stability up to a degradation temperature
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of about 200 ◦C. The richer the nanocomposite is in copolymer, the quicker it is degraded.
According to previous research [52], the creation of a protective carbonized layer is what
causes this increase in thermal stability. The fine dispersion of intercalated or exfoliated
clay particles, which serve as an inorganic support, aids in the creation of this layer [53]. In
general, the insertion of exfoliated lamellar silicates raises the degradation temperature of
the polymers, increasing their value and enabling their use at higher temperatures [54–56].
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4. Conclusions

With the use of AlCl3 as a catalyst, myrcene and limonene were successfully copoly-
merized and the copolymerization proceeds by a cationic mechanism and the results are
outstanding. The structure of the resulting copolymer is confirmed by H1-NMR, FTIR, and
DSC analysis. It also investigated how the characteristics of myr-co-lim/Mag nanocompos-
ites are affected by the preparation and application of organomodified clay (Mag-CTA+) in
various ratios. The research demonstrates that the varied organoclay (Mag-CTA+) ratios
have an effect on how nanocomposites copolymer/clay are formed. The nanocomposites
prepared with 1% by weight of Mag-CTA+ were exfoliated, according to the FT-IR and XRD
data, while those prepared with 4, 7, and 10% wt of Mag-CTA+ were intercalated, expand-
ing the interlayer gap between the layers. SEM and TEM studies confirmed an organization
of some particles and in other cases, a separation in plates made up of montmorillonite
layers, this supports partial or complete exfoliation of montmorillonite in the copolymer
matrix and development of the nanocomposites. According to thermogravimetric data,
the nanocomposites exhibit greater thermal stability than pure copolymer (T 200 ◦C). The
main goal of this research is to create copolymers and nanocomposites using terpenes and
clay as green raw materials. The obtained nanocomposites (myr-co-lim/Mag) will use in
different areas such as cosmetics, medication, and even as a pollution absorber.

Author Contributions: Conceptualization, H.D., G.R.M., A.M., S.C., Z.O.E., V.S.M., Z.C., K.B., R.C.,
R.M., A.H. and M.B.; Synthesis, H.D., S.C. and Z.C.; Characterization, H.D., R.C., K.B. and Z.O.E.;
validation, H.D., G.RM., V.S.M. and R.M.; writing—original draft preparation, H.D. and G.R.M.;
supervision, G.R.M., A.M., V.S.M., K.B., R.M., A.H. and M.B. All authors have read and agreed to the
published version of the manuscript.

Funding: The work at CRAPC and LCP was supported by funding from (DGRSDT) Direction
générale de la Recherche Scientifique et du développement Technologique-Algeria and the work at
CDRSP was supported by funding from the Portuguese Fundação para a Ciência e a Tecnologia (FCT)



Polymers 2022, 14, 5271 11 of 13

and Centro2020 though the Project Reference UID/Multi/04044/2019 and the bilateral programme
Green Thermosets.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the (DGRSDT) Direction générale de la Recherche
Scientifique et du développement Technologique-Algeria, and the CDRSP-IPLeiria (centre for rapid
and sustainable product development) for giving us access to their STA device. We also would like M
C. Baghdadli for their help and advices through all the writing process.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. King, S.L.; Truong, V.X.; Kirchhoefer, C.; Pitto-Barry, A.; Dove, A.P. Synthetic strategies, sustainability and biological applications

of malic acid–based polymers. Green Mater. 2014, 3, 107–122. [CrossRef]
2. Jaillet, F.; Darroman, E.; Ratsimihety, A.; Boutevin, B.; Caillol, S. Synthesis of cardanol oil building blocks for polymer synthesis.

Green Mater. 2015, 3, 59–70. [CrossRef]
3. Wang, J.; Yu, J.; Liu, Y.; Chen, Y.; Wang, C.; Tang, C.; Chu, F. Synthesis and characterization of a novel rosin-based monomer:

Free-radical polymerization and epoxy curing. Green Mater. 2013, 2, 105–113. [CrossRef]
4. Jansen, D.J.; Shenvi, R.A. Synthesis of medicinally relevant terpenes: Reducing the cost and time of drug discovery. Future Med.

Chem. 2014, 6, 1127–1148. [CrossRef] [PubMed]
5. Ibáñez, M.D.; Sanchez-Ballester, N.M.; Blázquez, M.A. Encapsulated Limonene: A Pleasant Lemon-Like Aroma with Promising

Application in the Agri-Food Industry. A Review. Molecules 2020, 25, 2598. [CrossRef] [PubMed]
6. Satira, A.; Espro, C.; Paone, E.; Calabrò, P.S.; Pagliaro, M.; Ciriminna, R.; Mauriello, F. The Limonene Biorefinery: From Extractive

Technologies to Its Catalytic Upgrading into p-Cymene. Catalysts 2021, 11, 387. [CrossRef]
7. Keszler, B.; Kennedy, J.P. Synthesis of high molecular weight poly (β-pinene). Adv. Polym. Sci. 1992, 100, 1–9.
8. Mosquera, M.E.G.; Jiménez, G.; Tabernero, V.; Vinueza-Vaca, J.; García-Estrada, C.; Kosalková, K.; Sola-Landa, A.; Monje, B.;

Acosta, C.; Alonso, R.; et al. Terpenes and Terpenoids: Building Blocks to Produce Biopolymers. Sustain. Chem. 2021, 2, 467–492.
[CrossRef]

9. Scholten, P.B.; Moatsou, D.; Detrembleur, C.; Meier, M.A.R. Progress Toward Sustainable Reversible Deactivation Radical
Polymerization. Macromol. Rapid. Commun. 2020, 41, 2000266. [CrossRef]

10. Derdar, H.; Belbachir, M.; Hennaoui, F.; Akeb, M.; Harrane, A. Green copolymerization of limonene with β-pinene catalyzed by
an eco-catalyst Maghnite-H+. Polym. Sci. Ser. B 2018, 60, 555–562. [CrossRef]

11. Calvo-Flores, F.G.; Monteagudo-Arrebola, M.J.; Dobado, J.A.; Isac-García, J. Green and Bio-Based Solvents. Top. Curr. Chem. 2018,
18, 376. [CrossRef] [PubMed]

12. Behr, A.; Johnen, L. Myrcene as a Natural Base Chemical in Sustainable Chemistry: A Critical Review. Chem. Sus. Chem. 2009,
12, 1072–1095. [CrossRef] [PubMed]

13. Chyau, C.C.; Mau, J.L.; Wu, C.M. Characteristics of the Steam-Distilled Oil and Carbon Dioxide Extract of Zanthoxylumsimulans
Fruits. J. Agricul. Food. Chem. 1996, 44, 1096–1099. [CrossRef]

14. Marvel, C.S.; Hwa, C.C.S. Polymyrcene. J. Polym. Sci. 1960, 45, 25–34. [CrossRef]
15. Sarkar, P.; Bhowmick, A.K. Synthesis, characterization and properties of a bio-based elastomer: Polymyrcene. RSC Adv. 2014,

4, 61343–61354. [CrossRef]
16. Bauer, N.; Brunke, J.; Kali, G. Controlled Radical Polymerization of Myrcene in Bulk: Mapping the Effect of Conditions on the

System. ACS Sustain. Chem. Eng. 2017, 5, 10084–10092. [CrossRef]
17. Métafiot, A.; Kanawati, Y.; Gérard, J.F.; Defoort, B.; Maric, M. Synthesis of β-Myrcene-Based Polymers and Styrene Block and

Statistical Copolymers by SG1 Nitroxide-Mediated Controlled Radical Polymerization. Macromolecules 2017, 50, 3101–3120.
[CrossRef]

18. Glatzel, J.; Noack, S.; Schanzenbach, D.; Schlaad, H. Anionic polymerization of dienes in ‘green’ solvents. Polym. Int. 2020,
70, 181–184. [CrossRef]

19. Radchenko, A.V.; Bouchekif, H.; Peruch, F. Triflate esters as in-situ generated initiating system for carbocationic polymerization of
vinyl ethers, isoprene, myrcene and ocimene. Eur. Polym. J. 2017, 89, 34–41. [CrossRef]

20. Cawse, J.L.; Stanford, J.L.; Still, R.H. Polymers from Renewable Sources. III. Hydroxy-Terminated Myrcene Polymers. J. Appl.
Polym. Sci. 1986, 31, 1963–1975. [CrossRef]

21. Cawse, J.L.; Stanford, J.L.; Still, R.H. Polymers from Renewable Sources. IV. Polyurethane Elastomers Based on Myrcene Polyols.
J. Appl. Polym. Sci. 1986, 31, 1549–1565. [CrossRef]

22. Cawse, J.L.; Stanford, J.L.; Still, R.H. Polymers from Renewable Sources: 5. Myrcene-Based Polyols as Rubber-Toughening Agents
in Glassy Polyurethanes. Polymer 1987, 28, 368–374. [CrossRef]

http://doi.org/10.1680/gmat.14.00005
http://doi.org/10.1680/jgrma.15.00004
http://doi.org/10.1680/gmat.12.00013
http://doi.org/10.4155/fmc.14.71
http://www.ncbi.nlm.nih.gov/pubmed/25078134
http://doi.org/10.3390/molecules25112598
http://www.ncbi.nlm.nih.gov/pubmed/32503168
http://doi.org/10.3390/catal11030387
http://doi.org/10.3390/suschem2030026
http://doi.org/10.1002/marc.202000266
http://doi.org/10.1134/S1560090418050056
http://doi.org/10.1007/s41061-018-0191-6
http://www.ncbi.nlm.nih.gov/pubmed/29691726
http://doi.org/10.1002/cssc.200900186
http://www.ncbi.nlm.nih.gov/pubmed/20013989
http://doi.org/10.1021/jf950577d
http://doi.org/10.1002/pol.1960.1204514503
http://doi.org/10.1039/C4RA09475A
http://doi.org/10.1021/acssuschemeng.7b02091
http://doi.org/10.1021/acs.macromol.6b02675
http://doi.org/10.1002/pi.6152
http://doi.org/10.1016/j.eurpolymj.2017.02.001
http://doi.org/10.1002/app.1986.070310702
http://doi.org/10.1002/app.1986.070310602
http://doi.org/10.1016/0032-3861(87)90187-X


Polymers 2022, 14, 5271 12 of 13

23. Still, R.H.; Cawse, J.L.; Stanford, J.L. Functionally Terminated Polymers from Terpene Monomers and Their Applications. U.S.
Patent 4564718 A, 14 January 1986.

24. Newmark, R.A.; Majumdar, R.N. 13C-NMR spectra of cis-polymyrcene and cis-polyfarnesene. J. Polym. Sci. A Polym. Chem. 1988,
26, 71–77. [CrossRef]

25. Fengge, G. Clay/polymer composites: The story. Materialstoday 2004, 7, 50–55.
26. Avella, M.; Buzarovska, A.; Errico, M.E.; Gentile, G.; Grozdanov, A. Eco-Challenges of Bio-Based Polymer Composites. Materials

2009, 2, 911–925. [CrossRef]
27. Kotal, M.; Bhowmick, A.K. Polymer nanocomposites from modified clays: Recent advances and challenges. Pro. Polym. Sci. 2015,

51, 127–187. [CrossRef]
28. Mykola, S.; Olga, N.; Dmitry, M. The influence of alkylammonium modified clays on the fungal resistance and biodeterioration of

epoxy-clay nanocomposites. Int. Biodeterior. Biodegrad. 2016, 110, 136–140. [CrossRef]
29. Bhanvase, B.A.; Pinjari, D.V.; Gogate, P.R.; Sonawane, S.H.; Pandit, A.B. Process intensification of encapsulation of functionalized

CaCO3 nanoparticles using ultrasound assisted emulsion polymerization. Chem. Eng. Process. 2011, 50, 1160–1168. [CrossRef]
30. Panahi-Sarmad, M.; Abrisham, M.; Noroozi, M.; Amirkiai, A.; Dehghan, P.; Goodarzi, V.; Zahiri, B. Deep focusing on the role

of microstructures in shape memory properties of polymer composites: A critical review. Europ. Polym. J. 2019, 117, 280–303.
[CrossRef]

31. Bhanvase, B.A.; Pinjari, D.V.; Gogate, P.R.; Sonawane, S.H.; Pandit, A.B. Synthesis of exfoliated poly(styrene-co-methyl methacry-
late)/montmorillonite nanocomposite using ultrasound assisted in situ emulsion copolymerization. Chem. Eng. J. 2012,
181, 770–778. [CrossRef]

32. Bhanvase, B.A.; Pinjari, D.V.; Gogate, P.R.; Sonawane, S.H.; Pandit, A.B. Analysis of semibatch emulsion polymerization: Role of
ultrasound and initiator. Ultrason. Sonochem. 2012, 19, 97–103. [CrossRef] [PubMed]

33. Bhanvase, B.A.; Sonawane, S.H.; Pinjari, D.V.; Gogate, P.R.; Pandit, A.B. Kinetic studies of semibatch emulsion copolymerization
of methyl methacrylate and styrene in the presence of high intensity ultrasound and initiator. Chem. Eng. Process. Process Intensif.
2014, 85, 168–177. [CrossRef]

34. Bhanvase, B.A.; Sonawane, S.H. Ultrasound Assisted In-Situ Emulsion Polymerization for Polymer Nanocomposite: A Review.
Chem. Eng. Process. Process Intensif. 2014, 85, 86–107. [CrossRef]

35. Yusof, N.S.M.; Babgi, B.; Alghamdi, Y.; Aksu, M.; Madhavan, J.; Ashokkumar, M. Physical and chemical effects of acoustic
cavitation in selected ultrasonic cleaning applications. Ultrason. Sonochem. 2016, 29, 568–576. [CrossRef] [PubMed]

36. Derdar, H.; Mitchell, G.R.; Mahendra, V.S.; Beachgoer, M.; Haoue, S.; Cherifi, Z.; Bachari, K.; Harrane, A.; Meghabar, R. Green
Nanocomposites from Rosin-Limonene Copolymer and Algerian Clay. Polymers 2020, 12, 1971. [CrossRef] [PubMed]

37. Derdar, H.; Meghabar, R.; Benachour, M.; Mitchell, G.R.; Bachari, K.; Belbachir, M.; Cherifi, Z.; Baghdadli, M.C.; Harrane, A.
Polymer-Clay Nanocomposites: Exfoliation and Intercalation of Organophilic Montmorillonite Nanofillers in Styrene–Limonene
Copolymer. Polym. Sci. Ser. A 2021, 63, 568–575. [CrossRef]

38. Cherifi, Z.; Zaoui, A.; Boukoussa, B.; Derdar, H.; Elabed, Z.O.; Zeggai, F.Z.; Meghabar, R.; Chebout, R.; Bachari, K. Ultrasound-
promoted preparation of cellulose acetate/organophilic clay bio-nanocomposites films by solvent casting method. Polym.
Bull 2022. [CrossRef]

39. Derdar, H.; Mitchell, G.R.; Cherifi, Z.; Belbachir, M.; Benachour, M.; Meghabar, R.; Bachari, K.; Harrane, A. Ultrasound assisted
synthesis of polylimonene and organomodified-clay nanocomposites: A structural, morphological and thermal properties. Bull.
Chem. React. Eng. Catal. 2020, 15, 798–807. [CrossRef]

40. Baghdadli, M.C.; Derdar, H.; Cherifi, Z.; Harrane, A.; Meghabar, R. Nanocomposites by in situ polymerization based on
styrene-maleic anhydride copolymer and clay. Polym. Bull. 2022. [CrossRef]

41. Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. Polymerization of ethylene glycol dimethacrylate (EGDM), using an Algerian
clay as eco-catalyst (maghnite-H+ and Maghnite-Na+). Bull. Chem. React. Eng. Catal. 2020, 15, 221–230. [CrossRef]

42. Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene
Glycol (PEG). Chem. Chemicla. Tech. 2020, 14, 468–473. [CrossRef]

43. Cherifi, Z.; Boukoussa, B.; Zaoui, A.; Belbachir, M.; Meghabar, R. Structural, morphological and thermal properties of nanocom-
posites poly(GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason. Sonochem. 2018, 48, 188–198. [CrossRef]
[PubMed]

44. Cicel, B. Mineralogical composition and distribution of Si, Al, Fe, Mg and Ca in the fine fractions of some Czech and Slovak
bentonites. Geologica. Carpath. Ser. Clays 1992, 43, 3–7.

45. Grenier, A.; Wendorff, H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angewandte. Chemie.
International. Ed. 2007, 46, 5670–5703. [CrossRef]

46. Khenifi, A.; Zohra, B.; Kahina, B.; Houari, H.; Zoubir, D. Removal of 2,4- DCP from wastewater by CTAB/bentonite using
one-step and two-step methods: A comparative study. Chem. Eng. J. 2009, 146, 345–354. [CrossRef]
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